1
|
Musyoki VM, Mureithi M, Heikinheimo A, Maleche-Obimbo E, Kithinji D, Musau S, Njaanake K, Anzala O. Effect of hyperglycemia on lung microbiota and treatment outcome in pulmonary tuberculosis: A scoping review. F1000Res 2024; 13:1543. [PMID: 39981106 PMCID: PMC11840297 DOI: 10.12688/f1000research.159555.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/22/2025] Open
Abstract
The comorbidity due to pulmonary tuberculosis (TB) and diabetes mellitus (DM) is a global health problem, but its mechanism remains unclear. It is suspected that hyperglycemic alteration of the immune response to TB and the composition of the lung microbiota play an important role. This scoping review aimed to contribute to the understanding of the mechanisms by mapping evidence on the effect of hyperglycemia on physical health indicators, immune cell counts, cytokine levels, and the composition of lung microbiota in patients with the DM-TB comorbidity. A systematic search for research articles about the relationship between hyperglycemia and physical health, immune cells, and cytokine levels in humans was conducted in MEDLINE, Scopus, and CINAHL Plus. Then, articles on the interactions between the immune cells, cytokines, and lung microbiota were identified through Google Scholar and Google search engines. Characteristics of the studies focusing on effects of hyperglycemia, the findings of the articles relevant to the research objectives, and strengths and weaknesses of the selected articles were charted in a data extraction tool. Twenty-one articles on the effects of hyperglycemia on immune mediators and health outcomes of patients with DM-TB were included. The evidence showed hyperglycemia to be associated with unfavorable treatment outcomes; altered counts and functioning of dendritic cells, monocytes, and CD4+ T cells; and changes in cytokine levels (mainly INF-γ, IL-17, IL-1β, IL-2, IL-6, IL-10, and TNF-α) in patients with DM-TB. The composition of the lung microbiota changed in correlation with changes in physical health outcomes, counts of immune cells, and cytokine levels. Thus, hyperglycemia, immune responses, and dysbiosis of the lung microbiota are integral in the pathogenesis of DM-TB and TB treatment outcomes. A prospective cohort study, especially in individuals with newly diagnosed DM versus known DM and concomitant latent TB versus active TB, is recommended to define causal relationships.
Collapse
Affiliation(s)
- Victor Moses Musyoki
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- Tuberculosis and HIV co-infection Training Program in Kenya, Fogarty International Center, Bethesda, Maryland, 2220, USA
| | - Marianne Mureithi
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
| | - Annamari Heikinheimo
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- Department of Veterinary Medicine, University of Helsinki, Helsinki, Uusimaa, 00014, Finland
| | - Elizabeth Maleche-Obimbo
- Tuberculosis and HIV co-infection Training Program in Kenya, Fogarty International Center, Bethesda, Maryland, 2220, USA
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
| | - Dennis Kithinji
- Department of Medical Laboratory Sciences, Meru University of Science and Technology, Meru, Meru County, 60200, Kenya
- Research Methodology, Medright Consulting LTD, Maua, Meru, 60600, Kenya
| | - Susan Musau
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- Tuberculosis and HIV co-infection Training Program in Kenya, Fogarty International Center, Bethesda, Maryland, 2220, USA
| | - Kariuki Njaanake
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
| | - Omu Anzala
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi, Nairobi County, 00202, Kenya
| |
Collapse
|
2
|
Yu J, Yan N, Gong Z, Ma Q, Liu J, Wu X, Deng G. Mycobacterium manipulate glutaminase 1 mediated glutaminolysis to regulate macrophage autophagy for bacteria intracellular survival. Cell Signal 2024; 124:111422. [PMID: 39307377 DOI: 10.1016/j.cellsig.2024.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Autophagy plays a vital role in eliminating intracellular mycobacterium. It is regulated by multiple metabolic processes including glutaminolysis. Glutaminase 1 (GLS1) is the rate-limiting enzyme of glutaminolysis and has been reported to control intracellular Gln content. However, its function on regulating autophagy in mycobacterium infected macrophage is still obscure. Hence, the current study hired mycobacterium virulent strain H37Rv or attenuated strain BCG to infect macrophage and detected the changes in cell glutaminolysis. The function of GLS1 on regulating autophagy in mycobacterium infected macrophages was further investigated. The results showed that BCG infection promoted macrophage autophagy, enhanced glutaminolysis, reduced intracellular Gln content, accompanied with the up-regulation of GLS1. Conversely, H37Rv infection resulted in completely opposite effects. Meanwhile, knockdown of GLS1 increased Gln content and attenuated autophagy in BCG infected macrophages. In addition, the deprivation of Gln not only promoted the autophagy of H37Rv infected macrophages, but also abolished the effect of knockdown GLS1 on regulating BCG infection-induced mTOR activation or autophagy. To sum up, our study suggested that different virulent strains of mycobacterium infection have totally opposite effects on glutaminolysis and the expression of GLS1. Specifically, mycobacterium virulent strain reduced GLS1 expression and decreased Gln content but mycobacterium attenuated strain promoted GLS1 expression and enhanced Gln content. Furthermore, GLS1 inhibits the activation of the mTOR signaling pathway and promotes autophagy by decreasing Gln content.
Collapse
Affiliation(s)
- Jialin Yu
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China
| | - Na Yan
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China
| | - Zhaoqian Gong
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China
| | - Qinmei Ma
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China
| | - Jing Liu
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Niangxia, 750021, China
| | - Xiaoling Wu
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China.
| | - Guangcun Deng
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China.
| |
Collapse
|
3
|
Arumugam P, Kielian T. Metabolism Shapes Immune Responses to Staphylococcus aureus. J Innate Immun 2023; 16:12-30. [PMID: 38016430 PMCID: PMC10766399 DOI: 10.1159/000535482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a common cause of hospital- and community-acquired infections that can result in various clinical manifestations ranging from mild to severe disease. The bacterium utilizes different combinations of virulence factors and biofilm formation to establish a successful infection, and the emergence of methicillin- and vancomycin-resistant strains introduces additional challenges for infection management and treatment. SUMMARY Metabolic programming of immune cells regulates the balance of energy requirements for activation and dictates pro- versus anti-inflammatory function. Recent investigations into metabolic adaptations of leukocytes and S. aureus during infection indicate that metabolic crosstalk plays a crucial role in pathogenesis. Furthermore, S. aureus can modify its metabolic profile to fit an array of niches for commensal or invasive growth. KEY MESSAGES Here we focus on the current understanding of immunometabolism during S. aureus infection and explore how metabolic crosstalk between the host and S. aureus influences disease outcome. We also discuss how key metabolic pathways influence leukocyte responses to other bacterial pathogens when information for S. aureus is not available. A better understanding of how S. aureus and leukocytes adapt their metabolic profiles in distinct tissue niches may reveal novel therapeutic targets to prevent or control invasive infections.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Menezes dos Reis L, Berçot MR, Castelucci BG, Martins AJE, Castro G, Moraes-Vieira PM. Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses 2023; 15:v15020525. [PMID: 36851739 PMCID: PMC9965666 DOI: 10.3390/v15020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.
Collapse
Affiliation(s)
- Larissa Menezes dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Marcelo Rodrigues Berçot
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Bianca Gazieri Castelucci
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Ana Julia Estumano Martins
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Correspondence:
| |
Collapse
|
5
|
Snyder BM, Gebretsadik T, Turi KN, McKennan C, Havstad S, Jackson DJ, Ober C, Lynch S, McCauley K, Seroogy CM, Zoratti EM, Khurana Hershey GK, Berdnikovs S, Cunningham G, Summar ML, Gern JE, Hartert TV. Association of citrulline concentration at birth with lower respiratory tract infection in infancy: Findings from a multi-site birth cohort study. Front Pediatr 2022; 10:979777. [PMID: 36324820 PMCID: PMC9618869 DOI: 10.3389/fped.2022.979777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Assessing the association of the newborn metabolic state with severity of subsequent respiratory tract infection may provide important insights on infection pathogenesis. In this multi-site birth cohort study, we identified newborn metabolites associated with lower respiratory tract infection (LRTI) in the first year of life in a discovery cohort and assessed for replication in two independent cohorts. Increased citrulline concentration was associated with decreased odds of LRTI (discovery cohort: aOR 0.83 [95% CI 0.70-0.99], p = 0.04; replication cohorts: aOR 0.58 [95% CI 0.28-1.22], p = 0.15). While our findings require further replication and investigation of mechanisms of action, they identify a novel target for LRTI prevention and treatment.
Collapse
Affiliation(s)
- Brittney M. Snyder
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kedir N. Turi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Suzanne Havstad
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States
| | - Daniel J. Jackson
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, United States
| | - Susan Lynch
- Department of Medicine, University of California, San Francisco, CA, United States
| | - Kathryn McCauley
- Department of Medicine, University of California, San Francisco, CA, United States
| | | | - Edward M. Zoratti
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States
| | - Gurjit K. Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sergejs Berdnikovs
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Gary Cunningham
- Department of Genetics and Metabolism, Children’s National Medical Center, Washington, DC, United States
| | - Marshall L. Summar
- Department of Genetics and Metabolism, Children’s National Medical Center, Washington, DC, United States
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | | |
Collapse
|
6
|
Karimi Z, Oskouie AA, Rezaie F, Ajaminejad F, Marashi SM, Azad TM. The Effect of Influenza Virus on The Metabolism of Peripheral Blood Mononuclear Cells with Metabolomics Approach. J Med Virol 2022; 94:4383-4392. [DOI: 10.1002/jmv.27843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zeinab Karimi
- Department of Virology, School of Public Health, Tehran University of Medical ScienceTehranIran
| | - Afsaneh Arefi Oskouie
- Department of Basic, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical SciencesTehranIran
| | - Farhad Rezaie
- Department of Virology, School of Public Health, Tehran University of Medical ScienceTehranIran
| | - Fatemeh Ajaminejad
- Department of Virology, School of Public Health, Tehran University of Medical ScienceTehranIran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical ScienceTehranIran
| | - Talat Mokhtari Azad
- Department of Virology, School of Public Health, Tehran University of Medical ScienceTehranIran
| |
Collapse
|
7
|
Cui HR, Zhang JY, Cheng XH, Zheng JX, Zhang Q, Zheng R, You LZ, Han DR, Shang HC. Immunometabolism at the service of traditional Chinese medicine. Pharmacol Res 2022; 176:106081. [PMID: 35033650 DOI: 10.1016/j.phrs.2022.106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
To enhance therapeutic efficacy and reduce adverse effects, ancient practitioners of traditional Chinese medicine (TCM) prescribe combinations of plant species/animal species and minerals designated "TCM formulae" developed based on TCM theory and clinical experience. TCM formulae have been shown to exert curative effects on complex diseases via immune regulation but the underlying mechanisms remain unknown at present. Considerable progress in the field of immunometabolism, referring to alterations in the intracellular metabolism of immune cells that regulate their function, has been made over the past decade. The core context of immunometabolism is regulation of the allocation of metabolic resources supporting host defense and survival, which provides a critical additional dimension and emerging insights into how the immune system and metabolism influence each other during disease progression. This review summarizes research findings on the significant association between the immune function and metabolic remodeling in health and disease as well as the therapeutic modulatory effects of TCM formulae on immunometabolism. Progressive elucidation of the immunometabolic mechanisms involved during the course of TCM treatment continues to aid in the identification of novel potential targets against pathogenicity. In this report, we have provided a comprehensive overview of the benefits of TCM based on regulation of immunometabolism that are potentially applicable for the treatment of modern diseases.
Collapse
Affiliation(s)
- He-Rong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Xue-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia-Xin Zheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Liang-Zhen You
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dong-Ran Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
8
|
Ostaszewski M, Niarakis A, Mazein A, Kuperstein I, Phair R, Orta‐Resendiz A, Singh V, Aghamiri SS, Acencio ML, Glaab E, Ruepp A, Fobo G, Montrone C, Brauner B, Frishman G, Monraz Gómez LC, Somers J, Hoch M, Kumar Gupta S, Scheel J, Borlinghaus H, Czauderna T, Schreiber F, Montagud A, Ponce de Leon M, Funahashi A, Hiki Y, Hiroi N, Yamada TG, Dräger A, Renz A, Naveez M, Bocskei Z, Messina F, Börnigen D, Fergusson L, Conti M, Rameil M, Nakonecnij V, Vanhoefer J, Schmiester L, Wang M, Ackerman EE, Shoemaker JE, Zucker J, Oxford K, Teuton J, Kocakaya E, Summak GY, Hanspers K, Kutmon M, Coort S, Eijssen L, Ehrhart F, Rex DAB, Slenter D, Martens M, Pham N, Haw R, Jassal B, Matthews L, Orlic‐Milacic M, Senff Ribeiro A, Rothfels K, Shamovsky V, Stephan R, Sevilla C, Varusai T, Ravel J, Fraser R, Ortseifen V, Marchesi S, Gawron P, Smula E, Heirendt L, Satagopam V, Wu G, Riutta A, Golebiewski M, Owen S, Goble C, Hu X, Overall RW, Maier D, Bauch A, Gyori BM, Bachman JA, Vega C, Grouès V, Vazquez M, Porras P, Licata L, Iannuccelli M, Sacco F, Nesterova A, Yuryev A, de Waard A, Turei D, Luna A, Babur O, et alOstaszewski M, Niarakis A, Mazein A, Kuperstein I, Phair R, Orta‐Resendiz A, Singh V, Aghamiri SS, Acencio ML, Glaab E, Ruepp A, Fobo G, Montrone C, Brauner B, Frishman G, Monraz Gómez LC, Somers J, Hoch M, Kumar Gupta S, Scheel J, Borlinghaus H, Czauderna T, Schreiber F, Montagud A, Ponce de Leon M, Funahashi A, Hiki Y, Hiroi N, Yamada TG, Dräger A, Renz A, Naveez M, Bocskei Z, Messina F, Börnigen D, Fergusson L, Conti M, Rameil M, Nakonecnij V, Vanhoefer J, Schmiester L, Wang M, Ackerman EE, Shoemaker JE, Zucker J, Oxford K, Teuton J, Kocakaya E, Summak GY, Hanspers K, Kutmon M, Coort S, Eijssen L, Ehrhart F, Rex DAB, Slenter D, Martens M, Pham N, Haw R, Jassal B, Matthews L, Orlic‐Milacic M, Senff Ribeiro A, Rothfels K, Shamovsky V, Stephan R, Sevilla C, Varusai T, Ravel J, Fraser R, Ortseifen V, Marchesi S, Gawron P, Smula E, Heirendt L, Satagopam V, Wu G, Riutta A, Golebiewski M, Owen S, Goble C, Hu X, Overall RW, Maier D, Bauch A, Gyori BM, Bachman JA, Vega C, Grouès V, Vazquez M, Porras P, Licata L, Iannuccelli M, Sacco F, Nesterova A, Yuryev A, de Waard A, Turei D, Luna A, Babur O, Soliman S, Valdeolivas A, Esteban‐Medina M, Peña‐Chilet M, Rian K, Helikar T, Puniya BL, Modos D, Treveil A, Olbei M, De Meulder B, Ballereau S, Dugourd A, Naldi A, Noël V, Calzone L, Sander C, Demir E, Korcsmaros T, Freeman TC, Augé F, Beckmann JS, Hasenauer J, Wolkenhauer O, Wilighagen EL, Pico AR, Evelo CT, Gillespie ME, Stein LD, Hermjakob H, D'Eustachio P, Saez‐Rodriguez J, Dopazo J, Valencia A, Kitano H, Barillot E, Auffray C, Balling R, Schneider R. COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms. Mol Syst Biol 2021; 17:e10387. [PMID: 34664389 PMCID: PMC8524328 DOI: 10.15252/msb.202110387] [Show More Authors] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
Collapse
Affiliation(s)
- Marek Ostaszewski
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Anna Niarakis
- Université Paris‐SaclayLaboratoire Européen de Recherche pour la Polyarthrite rhumatoïde ‐ GenhotelUniv EvryEvryFrance
- Lifeware GroupInria Saclay‐Ile de FrancePalaiseauFrance
| | - Alexander Mazein
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Inna Kuperstein
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Robert Phair
- Integrative Bioinformatics, Inc.Mountain ViewCAUSA
| | - Aurelio Orta‐Resendiz
- Institut PasteurUniversité de Paris, Unité HIVInflammation et PersistanceParisFrance
- Bio Sorbonne Paris CitéUniversité de ParisParisFrance
| | - Vidisha Singh
- Université Paris‐SaclayLaboratoire Européen de Recherche pour la Polyarthrite rhumatoïde ‐ GenhotelUniv EvryEvryFrance
| | - Sara Sadat Aghamiri
- Inserm‐ Institut national de la santé et de la recherche médicaleParisFrance
| | - Marcio Luis Acencio
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Andreas Ruepp
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Gisela Fobo
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Corinna Montrone
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Barbara Brauner
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Goar Frishman
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Luis Cristóbal Monraz Gómez
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Julia Somers
- Department of Molecular and Medical GeneticsOregon Health & Sciences UniversityPortlandORUSA
| | - Matti Hoch
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | | | - Julia Scheel
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | - Hanna Borlinghaus
- Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
| | - Tobias Czauderna
- Faculty of Information TechnologyDepartment of Human‐Centred ComputingMonash UniversityClaytonVic.Australia
| | - Falk Schreiber
- Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
- Faculty of Information TechnologyDepartment of Human‐Centred ComputingMonash UniversityClaytonVic.Australia
| | | | | | - Akira Funahashi
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Yusuke Hiki
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Noriko Hiroi
- Graduate School of Media and GovernanceResearch Institute at SFCKeio UniversityKanagawaJapan
| | - Takahiro G Yamada
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial‐Resistant PathogensInstitute for Bioinformatics and Medical Informatics (IBMI)University of TübingenTübingenGermany
- Department of Computer ScienceUniversity of TübingenTübingenGermany
- German Center for Infection Research (DZIF), partner siteTübingenGermany
| | - Alina Renz
- Computational Systems Biology of Infections and Antimicrobial‐Resistant PathogensInstitute for Bioinformatics and Medical Informatics (IBMI)University of TübingenTübingenGermany
- Department of Computer ScienceUniversity of TübingenTübingenGermany
| | - Muhammad Naveez
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
- Institute of Applied Computer SystemsRiga Technical UniversityRigaLatvia
| | - Zsolt Bocskei
- Sanofi R&DTranslational SciencesChilly‐MazarinFrance
| | - Francesco Messina
- Dipartimento di Epidemiologia Ricerca Pre‐Clinica e Diagnostica AvanzataNational Institute for Infectious Diseases 'Lazzaro Spallanzani' I.R.C.C.S.RomeItaly
- COVID‐19 INMI Network Medicine for IDs Study GroupNational Institute for Infectious Diseases 'Lazzaro Spallanzani' I.R.C.C.SRomeItaly
| | - Daniela Börnigen
- Bioinformatics Core FacilityUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Liam Fergusson
- Royal (Dick) School of Veterinary MedicineThe University of EdinburghEdinburghUK
| | - Marta Conti
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Marius Rameil
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Vanessa Nakonecnij
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Jakob Vanhoefer
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Leonard Schmiester
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
- Center for MathematicsChair of Mathematical Modeling of Biological SystemsTechnische Universität MünchenGarchingGermany
| | - Muying Wang
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
| | - Emily E Ackerman
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
| | - Jason E Shoemaker
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | | | | | | | | | | | - Kristina Hanspers
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | - Martina Kutmon
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtThe Netherlands
| | - Susan Coort
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Lars Eijssen
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht University Medical CentreMaastrichtThe Netherlands
| | | | - Denise Slenter
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Marvin Martens
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Nhung Pham
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Robin Haw
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | - Bijay Jassal
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | | | | | - Andrea Senff Ribeiro
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- Universidade Federal do ParanáCuritibaBrasil
| | - Karen Rothfels
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | | | - Ralf Stephan
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | - Cristoffer Sevilla
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Thawfeek Varusai
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Jean‐Marie Ravel
- INSERM UMR_S 1256Nutrition, Genetics, and Environmental Risk Exposure (NGERE)Faculty of Medicine of NancyUniversity of LorraineNancyFrance
- Laboratoire de génétique médicaleCHRU NancyNancyFrance
| | - Rupsha Fraser
- Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Vera Ortseifen
- Senior Research Group in Genome Research of Industrial MicroorganismsCenter for BiotechnologyBielefeld UniversityBielefeldGermany
| | - Silvia Marchesi
- Department of Surgical ScienceUppsala UniversityUppsalaSweden
| | - Piotr Gawron
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Ewa Smula
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Laurent Heirendt
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Venkata Satagopam
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Guanming Wu
- Department of Medical Informatics and Clinical EpidemiologyOregon Health & Science UniversityPortlandORUSA
| | - Anders Riutta
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | | | - Stuart Owen
- Department of Computer ScienceThe University of ManchesterManchesterUK
| | - Carole Goble
- Department of Computer ScienceThe University of ManchesterManchesterUK
| | - Xiaoming Hu
- Heidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Technische Universität DresdenDresdenGermany
- Institute for BiologyHumboldt University of BerlinBerlinGermany
| | | | | | - Benjamin M Gyori
- Harvard Medical SchoolLaboratory of Systems PharmacologyBostonMAUSA
| | - John A Bachman
- Harvard Medical SchoolLaboratory of Systems PharmacologyBostonMAUSA
| | - Carlos Vega
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Valentin Grouès
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | | | - Pablo Porras
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Luana Licata
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | | | - Francesca Sacco
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | | | | | | | - Denes Turei
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Augustin Luna
- cBio Center, Divisions of Biostatistics and Computational BiologyDepartment of Data SciencesDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Ozgun Babur
- Computer Science DepartmentUniversity of Massachusetts BostonBostonMAUSA
| | | | - Alberto Valdeolivas
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Marina Esteban‐Medina
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
| | - Maria Peña‐Chilet
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
- Bioinformatics in Rare Diseases (BiER)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)FPS, Hospital Virgen del RocíoSevillaSpain
| | - Kinza Rian
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
| | - Tomáš Helikar
- Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | | | - Dezso Modos
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Agatha Treveil
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Marton Olbei
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | | | - Stephane Ballereau
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Aurélien Dugourd
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Institute of Experimental Medicine and Systems BiologyFaculty of Medicine, RWTHAachen UniversityAachenGermany
| | | | - Vincent Noël
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Laurence Calzone
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Chris Sander
- cBio Center, Divisions of Biostatistics and Computational BiologyDepartment of Data SciencesDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Emek Demir
- Department of Molecular and Medical GeneticsOregon Health & Sciences UniversityPortlandORUSA
| | | | - Tom C Freeman
- The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Franck Augé
- Sanofi R&DTranslational SciencesChilly‐MazarinFrance
| | | | - Jan Hasenauer
- Helmholtz Zentrum München – German Research Center for Environmental HealthInstitute of Computational BiologyNeuherbergGermany
- Interdisciplinary Research Unit Mathematics and Life SciencesUniversity of BonnBonnGermany
| | - Olaf Wolkenhauer
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | - Egon L Wilighagen
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Alexander R Pico
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | - Chris T Evelo
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtThe Netherlands
| | - Marc E Gillespie
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- St. John’s University College of Pharmacy and Health SciencesQueensNYUSA
| | - Lincoln D Stein
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Henning Hermjakob
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | | | | | - Joaquin Dopazo
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
- Bioinformatics in Rare Diseases (BiER)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)FPS, Hospital Virgen del RocíoSevillaSpain
- FPS/ELIXIR‐esHospital Virgen del RocíoSevillaSpain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Hiroaki Kitano
- Systems Biology InstituteTokyoJapan
- Okinawa Institute of Science and Technology Graduate SchoolOkinawaJapan
| | - Emmanuel Barillot
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Charles Auffray
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Rudi Balling
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | | |
Collapse
|
9
|
Altaie AM, Venkatachalam T, Samaranayake LP, Soliman SSM, Hamoudi R. Comparative Metabolomics Reveals the Microenvironment of Common T-Helper Cells and Differential Immune Cells Linked to Unique Periapical Lesions. Front Immunol 2021; 12:707267. [PMID: 34539639 PMCID: PMC8446658 DOI: 10.3389/fimmu.2021.707267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Periapical abscesses, radicular cysts, and periapical granulomas are the most frequently identified pathological lesions in the alveolar bone. While little is known about the initiation and progression of these conditions, the metabolic environment and the related immunological behaviors were examined for the first time to model the development of each pathological condition. Metabolites were extracted from each lesion and profiled using gas chromatography-mass spectrometry in comparison with healthy pulp tissue. The metabolites were clustered and linked to their related immune cell fractions. Clusters I and J in the periapical abscess upregulated the expression of MMP-9, IL-8, CYP4F3, and VEGF, while clusters L and M were related to lipophagy and apoptosis in radicular cyst, and cluster P in periapical granuloma, which contains L-(+)-lactic acid and ethylene glycol, was related to granuloma formation. Oleic acid, 17-octadecynoic acid, 1-nonadecene, and L-(+)-lactic acid were significantly the highest unique metabolites in healthy pulp tissue, periapical abscess, radicular cyst, and periapical granuloma, respectively. The correlated enriched metabolic pathways were identified, and the related active genes were predicted. Glutamatergic synapse (16-20),-hydroxyeicosatetraenoic acids, lipophagy, and retinoid X receptor coupled with vitamin D receptor were the most significantly enriched pathways in healthy control, abscess, cyst, and granuloma, respectively. Compared with the healthy control, significant upregulation in the gene expression of CYP4F3, VEGF, IL-8, TLR2 (P < 0.0001), and MMP-9 (P < 0.001) was found in the abscesses. While IL-12A was significantly upregulated in cysts (P < 0.01), IL-17A represents the highest significantly upregulated gene in granulomas (P < 0.0001). From the predicted active genes, CIBERSORT suggested the presence of natural killer cells, dendritic cells, pro-inflammatory M1 macrophages, and anti-inflammatory M2 macrophages in different proportions. In addition, the single nucleotide polymorphisms related to IL-10, IL-12A, and IL-17D genes were shown to be associated with periapical lesions and other oral lesions. Collectively, the unique metabolism and related immune response shape up an environment that initiates and maintains the existence and progression of these oral lesions, suggesting an important role in diagnosis and effective targeted therapy.
Collapse
Affiliation(s)
- Alaa Muayad Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Lakshman P. Samaranayake
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral Biosciences, Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
10
|
Pharyngeal Microbial Signatures Are Predictive of the Risk of Fungal Pneumonia in Hematologic Patients. Infect Immun 2021; 89:e0010521. [PMID: 33782152 DOI: 10.1128/iai.00105-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability to predict invasive fungal infections (IFI) in patients with hematological malignancies is fundamental for successful therapy. Although gut dysbiosis is known to occur in hematological patients, whether airway dysbiosis also contributes to the risk of IFI has not been investigated. Nasal and oropharyngeal swabs were collected for functional microbiota characterization in 173 patients with hematological malignancies recruited in a multicenter, prospective, observational study and stratified according to the risk of developing IFI. A lower microbial richness and evenness were found in the pharyngeal microbiota of high-risk patients that were associated with a distinct taxonomic and metabolic profile. A murine model of IFI provided biologic plausibility for the finding that loss of protective anaerobes, such as Clostridiales and Bacteroidetes, along with an apparent restricted availability of tryptophan, is causally linked to the risk of IFI in hematologic patients and indicates avenues for antimicrobial stewardship and metabolic reequilibrium in IFI.
Collapse
|
11
|
Taha MA, Hall CA, Shortess CJ, Rathbone RF, Barham HP. Treatment Protocol for COVID-19 Based on T2R Phenotype. Viruses 2021; 13:v13030503. [PMID: 33803811 PMCID: PMC8003114 DOI: 10.3390/v13030503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
COVID-19 has become a global pandemic of the highest priority. Multiple treatment protocols have been proposed worldwide with no definitive answer for acure. A prior retrospective study showed association between bitter taste receptor 38 (T2R38) phenotypes and the severity of COVID-19. Based on this, we proposed assessing the different T2R38 phenotypes response towards a targeted treatment protocol. Starting July 2020 till December 2020, we tested subjects for T2R38 phenotypic expression (supertasters, tasters, and nontasters). Subjects who were subsequently infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (diagnosed via PCR) were included. Based on their taster status, supertasters were given dexamethasone for 4 days; tasters were given azithromycin and dexamethasone +/− hydroxychloroquine for 7 days; and nontasters were given azithromycin and dexamethasone for 12 days. Subjects were followed prospectively and their outcomes were documented. Seven hundred forty-seven COVID-19 patients were included, with 184 (24.7%) supertasters, 371 (49.6%) tasters, and192 (25.7%) nontasters. The average duration of symptoms with the treatment protocol was 5 days for supertasters, 8.1 days for tasters, and 16.2 days for nontasters. Only three subjects (0.4%) required hospitalization (3/3 nontasters). Targeted treatment protocol showed significant correlation (p < 0.05) based on patients’ T2R38 phenotypic expression. Assessing treatment protocols for COVID-19 patients according to their T2R38 phenotype could provide insight into the inconsistent results obtained from the different studies worldwide. Further study is warranted on the categorization of patients based on their T2R38 phenotype.
Collapse
Affiliation(s)
- Mohamed A. Taha
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, 8585 Picardy Ave., Suite 210, Baton Rouge, LA 70809, USA; (C.A.H.); (C.J.S.); (R.F.R.); (H.P.B.)
- Department of Otorhinolaryngology, Cairo University, Cairo 11451, Egypt
- Correspondence: ; Tel.: +1-225-819-1181; Fax: +1-225-246-8333
| | - Christian A. Hall
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, 8585 Picardy Ave., Suite 210, Baton Rouge, LA 70809, USA; (C.A.H.); (C.J.S.); (R.F.R.); (H.P.B.)
- Sinus and Nasal Specialists of Louisiana, Baton Rouge, LA 70809, USA
| | - Colin J. Shortess
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, 8585 Picardy Ave., Suite 210, Baton Rouge, LA 70809, USA; (C.A.H.); (C.J.S.); (R.F.R.); (H.P.B.)
| | - Richard F. Rathbone
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, 8585 Picardy Ave., Suite 210, Baton Rouge, LA 70809, USA; (C.A.H.); (C.J.S.); (R.F.R.); (H.P.B.)
| | - Henry P. Barham
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, 8585 Picardy Ave., Suite 210, Baton Rouge, LA 70809, USA; (C.A.H.); (C.J.S.); (R.F.R.); (H.P.B.)
- Sinus and Nasal Specialists of Louisiana, Baton Rouge, LA 70809, USA
| |
Collapse
|
12
|
Gautam K, Negi S, Saini V. Targeting endogenous gaseous signaling molecules as novel host-directed therapies against tuberculosis infection. Free Radic Res 2021; 55:655-670. [PMID: 33641567 DOI: 10.1080/10715762.2021.1892091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tuberculosis (TB) is a chronic pulmonary disease caused by Mycobacterium tuberculosis which is a major cause of morbidity and mortality worldwide. Due to the complexity of disease and its continuous global spread, there is an urgent need to improvise the strategies for prevention, diagnosis, and treatment. The current anti-TB regimen lasts for months and warrants strict compliance to clear infection and to minimize the risk of development of multi drug-resistant tuberculosis. This underscores the need to have new and improved therapeutics for TB treatment. Several studies have highlighted the unique ability of Mycobacterium tuberculosis to exploit host factors to support its survival inside the intracellular environment. One of the key players to mycobacterial disease susceptibility and infection are endogenous gases such as oxygen, nitric oxide, carbon monoxide and hydrogen sulfide. Nitric oxide and carbon monoxide as the physiological gaseous messengers are considered important to the outcome of Mycobacterium tuberculosis infection. The role of hydrogen sulfide in human tuberculosis is yet not fully elucidated, but this gas has been shown to play a significant role in bacterial respiration, growth and pathogenesis. This review will focus on the host factors majorly endogenous gaseous signaling molecules which contributes to Mycobacterium tuberculosis survival inside the intracellular environment and highlight the potential therapeutic targets.
Collapse
Affiliation(s)
- Kamini Gautam
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sheetal Negi
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
13
|
McCartney SA, Kachikis A, Huebner EM, Walker CL, Chandrasekaran S, Adams Waldorf KM. Obesity as a contributor to immunopathology in pregnant and non-pregnant adults with COVID-19. Am J Reprod Immunol 2020; 84:e13320. [PMID: 32779790 PMCID: PMC7435524 DOI: 10.1111/aji.13320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has led to a global public health emergency with the need to identify vulnerable populations who may benefit from increased screening and healthcare resources. Initial data suggest that overall, pregnancy is not a significant risk factor for severe coronavirus disease 2019 (COVID-19). However, case series have suggested that maternal obesity is one of the most important comorbidities associated with more severe disease. In obese individuals, suppressors of cytokine signaling are upregulated and type I and III interferon responses are delayed and blunted leading to ineffective viral clearance. Obesity is also associated with changes in systemic immunity involving a wide range of immune cells and mechanisms that lead to low-grade chronic inflammation, which can compromise antiviral immunity. Macrophage activation in adipose tissue can produce low levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). Further, adipocyte secretion of leptin is pro-inflammatory and high circulating levels of leptin have been associated with mortality in patients with acute respiratory distress syndrome. The synergistic effects of obesity-associated delays in immune control of COVID-19 with mechanical stress of increased adipose tissue may contribute to a greater risk of pulmonary compromise in obese pregnant women. In this review, we bring together data regarding obesity as a key co-morbidity for COVID-19 in pregnancy with known changes in the antiviral immune response associated with obesity. We also describe how the global burden of obesity among reproductive age women has serious public health implications for COVID-19.
Collapse
Affiliation(s)
| | - Alisa Kachikis
- Department of Obstetrics and GynecologyUniversity of WashingtonSeattleWAUSA
| | | | | | | | - Kristina M. Adams Waldorf
- Department of Obstetrics and GynecologyUniversity of WashingtonSeattleWAUSA
- Department of Global HealthUniversity of WashingtonSeattleWAUSA
- Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
14
|
Bernatchez JA, McCall LI. Insights gained into respiratory infection pathogenesis using lung tissue metabolomics. PLoS Pathog 2020; 16:e1008662. [PMID: 32663224 PMCID: PMC7360053 DOI: 10.1371/journal.ppat.1008662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, California, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|
15
|
Abstract
For infectious-disease outbreaks, clinical solutions typically focus on efficient pathogen destruction. However, the COVID-19 pandemic provides a reminder that infectious diseases are complex, multisystem conditions, and a holistic understanding will be necessary to maximize survival. For COVID-19 and all other infectious diseases, metabolic processes are intimately connected to the mechanisms of disease pathogenesis and the resulting pathology and pathophysiology, as well as the host defence response to the infection. Here, I examine the relationship between metabolism and COVID-19. I discuss why preexisting metabolic abnormalities, such as type 2 diabetes and hypertension, may be important risk factors for severe and critical cases of infection, highlighting parallels between the pathophysiology of these metabolic abnormalities and the disease course of COVID-19. I also discuss how metabolism at the cellular, tissue and organ levels might be harnessed to promote defence against the infection, with a focus on disease-tolerance mechanisms, and speculate on the long-term metabolic consequences for survivors of COVID-19.
Collapse
Affiliation(s)
- Janelle S Ayres
- Molecular and Systems Physiology Laboratory, Gene Expression Laboratory, NOMIS Center for Immunology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
16
|
Ramalho R, Rao M, Zhang C, Agrati C, Ippolito G, Wang FS, Zumla A, Maeurer M. Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Semin Immunopathol 2020; 42:279-313. [PMID: 32519148 PMCID: PMC7282544 DOI: 10.1007/s00281-020-00798-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Modulation of immune responses by nutrients is an important area of study in cellular biology and clinical sciences in the context of cancer therapies and anti-pathogen-directed immune responses in health and disease. We review metabolic pathways that influence immune cell function and cellular persistence in chronic infections. We also highlight the role of nutrients in altering the tissue microenvironment with lessons from the tumor microenvironment that shapes the quality and quantity of cellular immune responses. Multiple layers of biological networks, including the nature of nutritional supplements, the genetic background, previous exposures, and gut microbiota status have impact on cellular performance and immune competence against molecularly defined targets. We discuss how immune metabolism determines the differentiation pathway of antigen-specific immune cells and how these insights can be explored to devise better strategies to strengthen anti-pathogen-directed immune responses, while curbing unwanted, non-productive inflammation.
Collapse
Affiliation(s)
- Renata Ramalho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Applied Nutrition Studies Group G.E.N.A.-IUEM), Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | | | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.
- I Medizinische Klinik, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
17
|
Li X, Zhang C, Liu L, Gu M. Existing bitter medicines for fighting 2019-nCoV-associated infectious diseases. FASEB J 2020; 34:6008-6016. [PMID: 32281695 PMCID: PMC7262065 DOI: 10.1096/fj.202000502] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
The sudden outbreak of COVID-19 has led to more than seven thousand deaths. Unfortunately, there are no specific drugs available to cure this disease. Type 2 taste receptors (TAS2Rs) may play an important role in host defense mechanisms. Based on the idea of host-directed therapy (HDT), we performed a negative co-expression analysis using big data of 60 000 Affymetrix expression arrays and 5000 TCGA data sets to determine the functions of TAS2R10, which can be activated by numerous bitter substances. Excitingly, we found that the main functions of TAS2R10 involved controlling infectious diseases caused by bacteria, viruses, and parasites, suggesting that TAS2R10 is a key trigger of host defense pathways. To quickly guide the clinical treatment of 2019-nCoV, we searched currently available drugs that are agonists of TAS2Rs. We identified many cheap, available, and safe medicines, such as diphenidol, quinine, chloroquine, artemisinin, chlorpheniramine, yohimbine, and dextromethorphan, which may target the most common symptoms caused by 2019-nCoV. We suggest that a cocktail-like recipe of existing bitter drugs may help doctors to fight this catastrophic disease and that the general public may drink or eat bitter substances, such as coffee, tea, or bitter vegetables, to reduce the risk of infection.
Collapse
Affiliation(s)
- Xiangqi Li
- Department of EndocrinologyShanghai Gongli Hospital, The Second Military Medical UniversityShanghaiChina
| | - Chaobao Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell BiologyChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Lianyong Liu
- Department of EndocrinologyPunan Hospital of Pudong New DistrictShanghaiChina
| | - Mingjun Gu
- Department of EndocrinologyShanghai Gongli Hospital, The Second Military Medical UniversityShanghaiChina
| |
Collapse
|
18
|
Pellon A, Sadeghi Nasab SD, Moyes DL. New Insights in Candida albicans Innate Immunity at the Mucosa: Toxins, Epithelium, Metabolism, and Beyond. Front Cell Infect Microbiol 2020; 10:81. [PMID: 32195196 PMCID: PMC7062647 DOI: 10.3389/fcimb.2020.00081] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
The mucosal surfaces of the human body are challenged by millions of microbes on a daily basis. Co-evolution with these microbes has led to the development of plastic mechanisms in both host and microorganisms that regulate the balance between preserving beneficial microbes and clearing pathogens. Candida albicans is a fungal pathobiont present in most healthy individuals that, under certain circumstances, can become pathogenic and cause everything from mild mucosal infections to life-threatening systemic diseases. As an essential part of the innate immunity in mucosae, epithelial cells elaborate complex immune responses that discriminate between commensal and pathogenic microbes, including C. albicans. Recently, several significant advances have been made identifying new pieces in the puzzle of host-microbe interactions. This review will summarize these advances in the context of our current knowledge of anti-Candida mucosal immunity, and their impact on epithelial immune responses to this fungal pathogen.
Collapse
Affiliation(s)
- Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Majd AMM, Faghihzadeh S, Pourfarzam S, Eghtedardoost M, Jamali D, Mirsharif ES, Dilmaghanian R, Ghazanfari T. Serum and sputum levels of IL-17, IL-21, TNFα and mRNA expression of IL-17 in sulfur mustard lung tissue with long term pulmonary complications (28 years after sulfur mustard exposure). Int Immunopharmacol 2019; 76:105828. [DOI: 10.1016/j.intimp.2019.105828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/16/2023]
|
20
|
Hong CH, Tang MR, Hsu SH, Yang CH, Tseng CS, Ko YC, Guo CS, Yang CW, Lee SC. Enhanced early immune response of leptospiral outer membrane protein LipL32 stimulated by narrow band mid-infrared exposure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111560. [PMID: 31336216 DOI: 10.1016/j.jphotobiol.2019.111560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Previous studies revealed significant impact on cancer cell by mid-infrared (MIR) radiation. However, the effects of narrow band MIR on immune reaction and infectious disease are still unknown. In this study, an enhanced innate immune response was observed through the interaction between Leptospiral outer membrane protein (LipL32) and toll-like receptor 2 (TLR2). Thereafter, human kidney proximal tubular cells (HK-2 cells) initiated a serial reaction of enhanced MCP-1 production. The 6 μm narrow bandwidth light source emitted by waveguide thermal emitter (WTE) was applied to induce carbonyl group (CO bond) stretching vibration during the stage of antigen-receptor complex formation. The amount of MCP-1 gene expression had 2.5 folds increase after narrow band MIR illumination comparing to non-MIR illumination at low dose LipL32 condition. Besides, both ELISA and confocal microscopy results also revealed that the chemokine concentration increased significantly after narrow band MIR illumination either at low or high concentration of LipL32. Furthermore, a specific phenomenon that narrow band MIR can amplify the signal of weak immune response by enhancing sensitivity of the interaction between antigen and receptor was observed. This study exhibits clear evidence that the narrow band MIR exposure can modulate the early immune response of infectious disease and play a potential role to develop host-directed therapy in the future.
Collapse
Affiliation(s)
- Chung-Hung Hong
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan.
| | - Ming-Ru Tang
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan.
| | - Shen-Hsing Hsu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| | - Chi-Shin Tseng
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi-Ching Ko
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Che-Shao Guo
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Si-Chen Lee
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|