1
|
Li Q, Wang Z, Jiang C, Yin J, Liu Y, Qu X, Yi X, Gao C. Integration of Transcriptomics and Proteomics to Elucidate Inhibitory Effect and Mechanism of Antifungalmycin B from Marine Streptomyces hiroshimensis in Treating Talaromyces marneffei. Mar Drugs 2025; 23:76. [PMID: 39997200 PMCID: PMC11857274 DOI: 10.3390/md23020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Talaromyces marneffei (TM) is an opportunistic pathogenic fungus that mainly infects immunocompromised patients. Currently, the global prevalence of talaromycosis caused by TM is increasing, leading to an increased demand for anti-TM drugs. In our previous study, a novel 28-membered macrolide compound, antifungalmycin B (ANB), was isolated from Streptomyces hiroshimensis GXIMD 06359, exhibiting significant antifungal properties. However, its in vivo mechanisms and direct antifungal effects warrant further investigation. In this study, we employed a mouse model in conjunction with transcriptomic and proteomic approaches to explore the antifungal activity of ANB against T. marneffei. In an in vivo mouse model infected with T. marneffei infection, ANB significantly reduced fungal burdens in the liver, spleen, lungs, and kidneys. Additionally, it markedly decreased the levels of reactive oxygen species (ROS) and cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Proteomic and transcriptomic studies, complemented by parallel reaction monitoring (PRM) analysis, revealed that ANB effectively disrupted acid biosynthesis and cellular energy metabolism, thereby impairing mitochondrial functions in T. marneffei. These effects were exerted through multiple pathways. These findings highlight the potential of ANB as a versatile inhibitor of polyene macrolide-resistant fungi, offering a promising therapeutic avenue for the treatment of talaromycosis.
Collapse
Affiliation(s)
- Qiqi Li
- Institute of Marine Drugs/Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.L.); (Z.W.); (C.J.); (J.Y.); (Y.L.)
- Guangxi Key Laboratory of Marine Drugs/Guangxi University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhou Wang
- Institute of Marine Drugs/Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.L.); (Z.W.); (C.J.); (J.Y.); (Y.L.)
- Guangxi Key Laboratory of Marine Drugs/Guangxi University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Cuiping Jiang
- Institute of Marine Drugs/Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.L.); (Z.W.); (C.J.); (J.Y.); (Y.L.)
- Guangxi Key Laboratory of Marine Drugs/Guangxi University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jianglin Yin
- Institute of Marine Drugs/Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.L.); (Z.W.); (C.J.); (J.Y.); (Y.L.)
- Guangxi Key Laboratory of Marine Drugs/Guangxi University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Institute of Marine Drugs/Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.L.); (Z.W.); (C.J.); (J.Y.); (Y.L.)
- Guangxi Key Laboratory of Marine Drugs/Guangxi University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xinjian Qu
- Institute of Marine Drugs/Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.L.); (Z.W.); (C.J.); (J.Y.); (Y.L.)
- Guangxi Key Laboratory of Marine Drugs/Guangxi University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiangxi Yi
- Institute of Marine Drugs/Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.L.); (Z.W.); (C.J.); (J.Y.); (Y.L.)
- Guangxi Key Laboratory of Marine Drugs/Guangxi University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenghai Gao
- Institute of Marine Drugs/Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.L.); (Z.W.); (C.J.); (J.Y.); (Y.L.)
- Guangxi Key Laboratory of Marine Drugs/Guangxi University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
2
|
Spettel K, Bumberger D, Kriz R, Frank S, Loy M, Galazka S, Suchomel M, Lagler H, Makristathis A, Willinger B. In vitro long-term exposure to chlorhexidine or triclosan induces cross-resistance against azoles in Nakaseomyces glabratus. Antimicrob Resist Infect Control 2025; 14:2. [PMID: 39849551 PMCID: PMC11755926 DOI: 10.1186/s13756-024-01511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Topical antiseptics are crucial for preventing infections and reducing transmission of pathogens. However, commonly used antiseptic agents have been reported to cause cross-resistance to other antimicrobials in bacteria, which has not yet been described in yeasts. This study aims to assess the in vitro efficacy of antiseptics against clinical and reference isolates of Candida albicans and Nakaseomyces glabratus, and whether prolonged exposure to antiseptics promotes the development of antifungal (cross)resistance. METHODS A high-throughput approach for in vitro resistance development was established to simultaneously expose 96 C. albicans and N. glabratus isolates to increasing concentrations of a given antiseptic - chlorhexidine, triclosan or octenidine. Susceptibility testing and whole genome sequencing of yeast isolates pre- and post-exposure were performed. RESULTS Long-term exposure to antiseptics does not result in the development of stable resistance to the antiseptics themselves. However, 50 N. glabratus isolates acquired resistance to azole antifungals after long-term exposure to triclosan or chlorhexidine, revealing newly acquired mutations in the PDR1 and PMA1 genes. CONCLUSIONS Chlorhexidine as well as triclosan, but not octenidine, were able to introduce selective pressure promoting resistance to azole antifungals. Although we assessed this phenomenon only in vitro, these findings warrant critical monitoring in clinical settings.
Collapse
Affiliation(s)
- Kathrin Spettel
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, 1100, Austria
| | - Dominik Bumberger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Richard Kriz
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, 1100, Austria
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, 1090, Austria
| | - Sarah Frank
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Madita Loy
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Sonia Galazka
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, Vienna, 1220, Austria
| | - Miranda Suchomel
- Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, 1090, Austria
| | - Heimo Lagler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, 1090, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
3
|
Manville RW, Illeck CL, Lewis A, McCrossan ZA, Goldstein SA, Abbott GW. The molecular basis of pH sensing by the human fungal pathogen Candida albicans TOK potassium channel. iScience 2024; 27:111451. [PMID: 39720530 PMCID: PMC11667011 DOI: 10.1016/j.isci.2024.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Two-pore domain, outwardly rectifying potassium (TOK) channels are exclusively expressed in fungi. Human fungal pathogen TOK channels are potential antifungal targets, but TOK channel modulation in general is poorly understood. Here, we discovered that Candida albicans TOK (CaTOK) is regulated by extracellular pH, in contrast to TOK channels from other fungal species tested. Low pH increased CaTOK channel outward currents (pKa = 6.0), hyperpolarized the voltage-dependence of TOK activation, and increased pore selectivity for K+ over Na+, shifting the reversal potential (E REV) toward E K. Mutating H144 in the S1-S2 extracellular linker partially diminished pH sensitivity, suggesting H144 forms part of the CaTOK pH sensor. Functional analysis of chimeras made with pH-insensitive Saccharomyces cerevisiae TOK and point mutants revealed that CaTOK V462 and S466 in the final transmembrane segment complete the pH-responsive elements. A tripartite network of residues thus endows CaTOK with the ability to respond functionally to changes in pH.
Collapse
Affiliation(s)
- Rían W. Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Claire L. Illeck
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Anthony Lewis
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT Hants, UK
| | - Zoe A. McCrossan
- NIHR Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, Southampton, SO16 7NS Hampshire, UK
| | - Steven A.N. Goldstein
- Departments of Physiology & Biophysics, Pediatrics, and Pharmaceutical Sciences, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Wang WH, Chen HY, Chen SY, Lan CY. Transcriptional profiling reveals the role of Candida albicans Rap1 in oxidative stress response. Biosci Rep 2024; 44:BSR20240689. [PMID: 39575984 DOI: 10.1042/bsr20240689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Candida albicans is a member of the human commensal microbiota but can also cause opportunistic infections, including life-threatening invasive candidiasis, particularly in immunocompromised patients. One of the important features of C. albicans commensalism and virulence is its ability to adapt to diverse environmental stress conditions within the host. Rap1 is a DNA-binding protein identified in yeasts, protozoa, and mammalian cells, and it plays multiple functions, including telomere regulation. Intriguingly, our previous study showed that Rap1 is also involved in cell wall integrity, biofilm formation, and virulence in C. albicans. In this work, using RNA-seq analysis and other approaches, the role of C. albicans Rap1 in oxidative stress response was further revealed. The RAP1-deletion mutant exhibited greater resistance to the superoxide generator menadione, a lower level of intracellular reactive oxygen species (ROS) upon menadione treatment, and higher expression levels of superoxide dismutase genes, all in response to oxidative stress. Moreover, the association between Rap1-mediated oxidative stress response and the mitogen-activated protein kinase (MAPK) Hog1, the transcription factor Cap1 and the TOR signalling was also determined. Together, these findings expand our understanding of the complex signalling and transcriptional mechanisms regulating stress responses in C. albicans.
Collapse
Affiliation(s)
- Wen-Han Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hsuan-Yu Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Sheng-Yuan Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
5
|
Zeise KD, Falkowski NR, Metcalf JD, Brown CA, Huffnagle GB. Gene expression profiling reveals host defense strategies for restricting Candida albicans invasion and gastritis to the limiting ridge of the murine stomach. Infect Immun 2024; 92:e0043824. [PMID: 39535200 PMCID: PMC11629626 DOI: 10.1128/iai.00438-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Candida albicans is a fungal constituent of the human gastrointestinal microbiota that can tolerate acidic environments like the stomach, where it can be associated with ulcers and chronic gastritis. In mice, C. albicans induces gastritis without concurrent intestinal inflammation, suggesting that the stomach is particularly prone to fungal infection. We previously showed that C. albicans invasion in the limiting ridge does not extend to or elicit an inflammatory response in the adjacent glandular region, indicating regionalized gastritis in the murine stomach. However, the molecular pathways involved in the host response to C. albicans specifically in the limiting ridge have not been investigated. Here, we found that gastric dysbiosis was associated with C. albicans limiting ridge colonization and gastritis. We isolated the limiting ridge and evaluated the expression of over 90 genes involved in mucosal responses. C. albicans infection triggered a type 3 immune response marked by elevated Il17a, Il17f, Il1b, Tnf, and Il36g, as well as an upregulation of Il12a, Il4, Il10, and l13. Chemokine gene induction (including Ccl2, Ccl3, Ccl4, Ccl1l, Cxcl1, Cxcl2, Cxcl9, and Cxcl10) coincided with an influx of neutrophils, monocytes/macrophages, and eosinophils. Hyphal invasion caused tissue damage, epithelial remodeling, and upregulation of genes linked to epithelium signaling and antimicrobial responses in the limiting ridge. Our findings support a need for continued exploration into the interactions between the immunological milieu, the host microbiota, and clinical interventions such as the use of antibiotics and immunotherapeutic agents and their collective impact on invasive candidiasis risk.
Collapse
Affiliation(s)
- Karen D. Zeise
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph D. Metcalf
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher A. Brown
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Advanced Research Computing, Information and Technology Services, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary B. Huffnagle
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Ikeda E, Yamaguchi M, Ono M, Kawabata S. In Vitro Acid Resistance of Pathogenic Candida Species in Simulated Gastric Fluid. GASTRO HEP ADVANCES 2024; 4:100591. [PMID: 39996247 PMCID: PMC11847298 DOI: 10.1016/j.gastha.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 02/26/2025]
Abstract
Background and Aims Although species in the fungal genus Candida are often commensal residents of the gastrointestinal (GI) tract, they can also cause high-mortality systemic candidiasis. Most pathogenic Candida species are dimorphic fungi that exist predominantly in filamentous forms in the invading tissues. Candida albicans is the most prominent pathogen among Candida species, but nonalbicans Candida species have also emerged as important pathogens. The stomach is the most acidic niche in the GI tract and is maintained at pH 1-2 in healthy individuals. The aim of the present study was to determine whether Candida species can survive in gastric fluid and to observe their morphology under varied pH conditions. Methods We investigated the in vitro survival of the pathogenic Candida species C. albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis in simulated gastric fluid. Results We first described that a portion of the 4 Candida species can survive under highly acidic conditions. Moreover, dimorphic Candida species, namely, C. albicans, C. parapsilosis, and C. tropicalis, exhibited yeast-hyphal transition in simulated gastric fluid with elevated pH. Pathogenic filamentous cells had lower acid resistance than yeast cells. Conclusion These findings may illuminate the migration to the lower GI tract by commensal fungi of the oral cavity.
Collapse
Affiliation(s)
- Eri Ikeda
- Department of Microbiology, Graduates School of Dentistry, Osaka University, Osaka, Japan
| | - Masaya Yamaguchi
- Department of Microbiology, Graduates School of Dentistry, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
- Bioinformatics Research Unit, Graduates School of Dentistry, Osaka University, Osaka, Japan
- Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masayuki Ono
- Department of Microbiology, Graduates School of Dentistry, Osaka University, Osaka, Japan
- Bioinformatics Research Unit, Graduates School of Dentistry, Osaka University, Osaka, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Graduates School of Dentistry, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Zeise KD, Falkowski NR, Stark KG, Brown CA, Huffnagle GB. Profiling inflammatory outcomes of Candida albicans colonization and food allergy induction in the murine glandular stomach. mBio 2024; 15:e0211324. [PMID: 39347572 PMCID: PMC11559088 DOI: 10.1128/mbio.02113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
We investigated the effects of Candida albicans colonization on inflammatory responses in the murine glandular stomach, which is similar to the glandular mucosa of the human stomach. We also explored whether the presence of a food allergy could exacerbate C. albicans-induced inflammation or if C. albicans would amplify allergic inflammation in the glandular stomach. C. albicans successfully colonized the stomach of amoxicillin-pre-treated BALB/c mice and induced gastritis in the limiting ridge with minimal inflammation in the glandular stomach. There was significant upregulation of Il18, calprotectin (S100a8 and S100a9), and several antimicrobial peptides, but minimal induction of type 1, 2, or 3 responses in the glandular stomach. A robust type 2 response, inflammatory cell recruitment, and tissue remodeling occurred in the glandular stomach following oral ovalbumin challenges in sensitized mice. The type 2 response was not augmented by C. albicans colonization, but there was significant upregulation of Il1b, Il12a, Tnf, and Il17a in C. albicans-colonized food allergic mice. The presence of C. albicans did not affect the expression of genes involved in barrier integrity and signaling, many of which were upregulated during food allergy. Overall, our data indicate that C. albicans colonization induces minimal inflammation in the glandular stomach but augments antimicrobial peptide expression. Induction of a food allergy results in robust type 2 inflammation in the glandular stomach, and while C. albicans colonization does not exacerbate type 2 inflammation, it does activate a number of innate and type 3 immune responses amid the backdrop of allergic inflammation. IMPORTANCE Food allergy continues to be a growing public health concern, affecting at least 1 in 10 individuals in the United States alone. However, little is known about the involvement of the gastric mucosa in food allergy. Gastrointestinal Candida albicans colonization has been reported to promote gastrointestinal inflammation in a number of chronic diseases. Using a mouse model of food allergy to egg white protein, we demonstrate regionalization of the inflammatory response to C. albicans colonization, induction of robust type 2 (allergic) inflammation in the stomach, and augmentation of innate and type 3 responses by C. albicans colonization during food allergy.
Collapse
Affiliation(s)
- Karen D. Zeise
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelsey G. Stark
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher A. Brown
- Advanced Research Computing, Information and Technology Services, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary B. Huffnagle
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Silao FGS, Valeriano VD, Uddström E, Falconer E, Ljungdahl PO. Diverse mechanisms control amino acid-dependent environmental alkalization by Candida albicans. Mol Microbiol 2024; 121:696-716. [PMID: 38178569 DOI: 10.1111/mmi.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.
Collapse
Affiliation(s)
- Fitz Gerald S Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Valerie Diane Valeriano
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Erika Uddström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Emilie Falconer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Per O Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Yang SZ, Peng LT. Significance of the plasma membrane H +-ATPase and V-ATPase for growth and pathogenicity in pathogenic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:31-53. [PMID: 37597947 DOI: 10.1016/bs.aambs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Pathogenic fungi are widespread and cause a variety of diseases in human beings and other organisms. At present, limited classes of antifungal agents are available to treat invasive fungal diseases. With the wide use of the commercial antifungal agents, drug resistance of pathogenic fungi are continuously increasing. Therefore, exploring effective antifungal agents with novel drug targets is urgently needed to cope with the challenges that the antifungal area faces. pH homeostasis is vital for multiple cellular processes, revealing the potential for defining novel drug targets. Fungi have evolved a number of strategies to maintain a stable pH internal environment in response to rapid metabolism and a dramatically changing extracellular environment. Among them, plasma membrane H+-ATPase (PMA) and vacuolar H+-ATPase (V-ATPase) play a central role in the regulation of pH homeostasis system. In this chapter, we will summarize the current knowledge about pH homeostasis and its regulation mechanisms in pathogenic fungi, especially for the recent advances in PMA and V-ATPase, which would help in revealing the regulating mechanism of pH on cell growth and pathogenicity, and further designing effective drugs and identify new targets for combating fungal diseases.
Collapse
Affiliation(s)
- S Z Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.
| | - L T Peng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
10
|
Wilson HB, Lorenz MC. Candida albicans Hyphal Morphogenesis within Macrophages Does Not Require Carbon Dioxide or pH-Sensing Pathways. Infect Immun 2023; 91:e0008723. [PMID: 37078861 PMCID: PMC10187119 DOI: 10.1128/iai.00087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
The opportunistic fungal pathogen Candida albicans has evolved a variety of mechanisms for surviving inside and escaping macrophages, including the initiation of filamentous growth. Although several distinct models have been proposed to explain this process at the molecular level, the signals driving hyphal morphogenesis in this context have yet to be clarified. Here, we evaluate the following three molecular signals as potential hyphal inducers within macrophage phagosomes: CO2, intracellular pH, and extracellular pH. Additionally, we revisit previous work suggesting that the intracellular pH of C. albicans fluctuates in tandem with morphological changes in vitro. Using time-lapse microscopy, we observed that C. albicans mutants lacking components of the CO2-sensing pathway were able to undergo hyphal morphogenesis within macrophages. Similarly, a rim101Δ strain was competent in hyphal induction, suggesting that neutral/alkaline pH sensing is not necessary for the initiation of morphogenesis within phagosomes either. Contrary to previous findings, single-cell pH-tracking experiments revealed that the cytosolic pH of C. albicans remains tightly regulated both within macrophage phagosomes and under a variety of in vitro conditions throughout the process of morphogenesis. This finding suggests that intracellular pH is not a signal contributing to morphological changes.
Collapse
Affiliation(s)
- Hannah B. Wilson
- Graduate School for Biomedical Sciences, University of Texas Science Center at Houston, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Abstract
Mitogen-activated protein kinases (MAPKs) regulate a variety of cellular processes in eukaryotes. In fungal pathogens, conserved MAPK pathways control key virulence functions such as infection-related development, invasive hyphal growth, or cell wall remodeling. Recent findings suggest that ambient pH acts as a key regulator of MAPK-mediated pathogenicity, but the underlying molecular events are unknown. Here, we found that in the fungal pathogen Fusarium oxysporum, pH controls another infection-related process, hyphal chemotropism. Using the ratiometric pH sensor pHluorin we show that fluctuations in cytosolic pH (pHc) induce rapid reprogramming of the three conserved MAPKs in F. oxysporum, and that this response is conserved in the fungal model organism Saccharomyces cerevisiae. Screening of a subset of S. cerevisiae mutants identified the sphingolipid-regulated AGC kinase Ypk1/2 as a key upstream component of pHc-modulated MAPK responses. We further show that acidification of the cytosol in F. oxysporum leads to an increase of the long-chain base (LCB) sphingolipid dihydrosphingosine (dhSph) and that exogenous addition of dhSph activates Mpk1 phosphorylation and chemotropic growth. Our results reveal a pivotal role of pHc in the regulation of MAPK signaling and suggest new ways to target fungal growth and pathogenicity. IMPORTANCE Fungal phytopathogens cause devastating losses in global agriculture. All plant-infecting fungi use conserved MAPK signaling pathways to successfully locate, enter, and colonize their hosts. In addition, many pathogens also manipulate the pH of the host tissue to increase their virulence. Here, we establish a functional link between cytosolic pH (pHc) and MAPK signaling in the control of pathogenicity in the vascular wilt fungal pathogen Fusarium oxysporum. We demonstrate that fluctuations in pHc cause rapid reprogramming of MAPK phosphorylation, which directly impacts key processes required for infection, such as hyphal chemotropism and invasive growth. Targeting pHc homeostasis and MAPK signaling can thus open new ways to combat fungal infection.
Collapse
|
12
|
Velazhahan V, McCann BL, Bignell E, Tate CG. Developing novel antifungals: lessons from G protein-coupled receptors. Trends Pharmacol Sci 2023; 44:162-174. [PMID: 36801017 DOI: 10.1016/j.tips.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 02/18/2023]
Abstract
Up to 1.5 million people die yearly from fungal disease, but the repertoire of antifungal drug classes is minimal and the incidence of drug resistance is rising rapidly. This dilemma was recently declared by the World Health Organization as a global health emergency, but the discovery of new antifungal drug classes remains excruciatingly slow. This process could be accelerated by focusing on novel targets, such as G protein-coupled receptor (GPCR)-like proteins, that have a high likelihood of being druggable and have well-defined biology and roles in disease. We discuss recent successes in understanding the biology of virulence and in structure determination of yeast GPCRs, and highlight new approaches that might pay significant dividends in the urgent search for novel antifungal drugs.
Collapse
Affiliation(s)
- Vaithish Velazhahan
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Bethany L McCann
- MRC Centre for Medical Mycology, Stocker Road, University of Exeter, Exeter EX4 4QD, UK
| | - Elaine Bignell
- MRC Centre for Medical Mycology, Stocker Road, University of Exeter, Exeter EX4 4QD, UK.
| | - Christopher G Tate
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
13
|
Zhang F, Meng Y, Wang Y, Zhu S, Liu R, Li J, Xu L, Huang L. VmPma1 contributes to virulence via regulation of the acidification process during host infection in Valsa mali. Int J Biol Macromol 2023; 228:123-137. [PMID: 36566811 DOI: 10.1016/j.ijbiomac.2022.12.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Valsa mali is a destructive phytopathogenic fungus that mainly infects apple and pear trees. Infection with V. mali results in host tissue acidification via the generation of citric acid, which promote invasion. Here, two plasma membrane H+-ATPases, VmPma1 and VmPma2, were identified in V. mali. The VmPma1 deletion mutant (∆VmPma1) displayed higher intracellular acid accumulation and a lower growth rate compared to the wild type. In contrast, the VmPma2 deletion mutant (∆VmPma2) showed no obvious phenotypic differences. Meanwhile, loss of VmPma1, but not VmPma2, in V. mali led to a significant decrease in growth under acidic or alkaline conditions compared with WT. More importantly, ∆VmPma1 showed a greater reduction in ATPase hydrolase activity and acidification of the external environment, more sensitivity to abiotic stress, and weaker pathogenicity than ∆VmPma2. This evidence indicates that VmPma1 is the main gene of the two plasma membrane H+-ATPases. Transcriptomic analysis indicated that many metabolic processes regulated by VmPma1 are strictly pH-regulated. Besides, we identified two genes (named VmAgn1p and Vmap1) that contribute to the pathogenicity of V. mali by differentially regulating external acidification capacity. Overall, our findings show that VmPma1 plays a pivotal role in pathogenicity by affecting the acidification of V. mali.
Collapse
Affiliation(s)
- Feiran Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shan Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ronghao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Marycz M, Rodríguez Y, Gębicki J, Muñoz R. Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii. CHEMOSPHERE 2022; 306:135608. [PMID: 35810858 DOI: 10.1016/j.chemosphere.2022.135608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/08/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
This work systematically compared the potential of a conventional fungal biofilter (BF) and a fungal biotrickling filter (BTF) for the abatement of a mixture of hydrophobic volatile organic compounds (VOCs). Candida subhashii was herein used for the first time, to the best of the author's knowledge, to remove n-hexane, trichloroethylene, toluene and α-pinene under aerobic conditions. C. subhashii immobilized on polyurethane foam supported steady state removal efficiencies of n-hexane, trichloroethylene, toluene and α-pinene of 25.4 ± 0.9%, 20.5 ± 1.0%, 19.6 ± 1.5% and 25.6 ± 2.8% in the BF, and 35.7 ± 0.9%, 24.0 ± 1.6%, 44.0 ± 1.7% and 26.2 ± 1.8% in the BTF, respectively, at relatively short gas residence times (30 s). The ability of C. subhashii to biodegrade n-hexane, TCE, toluene and α-pinene was confirmed in a batch test conducted in serum bottles, where a biodegradation pattern (toluene ≈ n-hexane > α-pinene > trichloroethylene) comparable to that recorded in the BF and BTF was recorded.
Collapse
Affiliation(s)
- Milena Marycz
- Institute of Sustainable Processes, Universidad de Valladolid, Dr. Mergelina s/n, 47011, Spain; Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | - Yadira Rodríguez
- Institute of Sustainable Processes, Universidad de Valladolid, Dr. Mergelina s/n, 47011, Spain
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | - Raúl Muñoz
- Institute of Sustainable Processes, Universidad de Valladolid, Dr. Mergelina s/n, 47011, Spain.
| |
Collapse
|
15
|
Petrovich GD, Corradi GR, Adamo HP. The effect of metal ions on the Spf1p P5A-ATPase. High sensitivity to irreversible inhibition by zinc. Arch Biochem Biophys 2022; 732:109450. [DOI: 10.1016/j.abb.2022.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
|
16
|
The plasma membrane H +-ATPase is critical for cell growth and pathogenicity in Penicillium digitatum. Appl Microbiol Biotechnol 2022; 106:5123-5136. [PMID: 35771244 DOI: 10.1007/s00253-022-12036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
Abstract
The plasma membrane H+-ATPase (PMA1) is a major cytosolic pH regulator and a potential candidate for antifungal drug discovery due to its fungal specificity and criticality. In this study, the function of Penicillum digitatum PMA1 was characterized through RNA interference (RNAi) and overexpression technology. The results showed that silencing the PMA1 gene reduces cell growth and pathogenicity, and increases susceptibility of P. digitatum to proton pump inhibitors (PPIs). Under scanning electron microscopy (SEM) and transmission electron microscopy (TEM) examination, cell morphology was significantly altered in the PMA1- silenced mutant (si57). When compared with wild type (WT) and the overexpressed mutant (oe9), the cell walls of the si57 mutant were thicker and their cell membrane damage manifested particularly at sites of polarized growth. Consistent with the morphological change on the cell wall, chitin and glucan content of the cell wall of si57 were significantly lower and accompanied with increased activities of chitinase and glucanase. The lower ergosterol content in the si57 mutant then increased cell membrane permeability, ultimately leading to leakage of cytoplasmic contents such as ions, reduced sugars and soluble proteins. Furthermore, significantly decreased activity of cell wall degrading enzymes of si57 during citrus fruit infections indicates a reduced pathogenicity in this mutant. We conclude that PMA1 in P. digitatum plays an important role in maintaining pathogenesis and PMA1 could be a candidate novel fungicidal drug discovery for citrus green mold. KEY POINTS: Silencing PMA1 gene decreased the growth and pathogenicity of P. digitatum. Silencing PMA1 gene damaged cell wall and cell membrane integrity of P. digitatum. PMA1 appears to be a suitable fungicidal target against citrus green mold.
Collapse
|
17
|
Correia BL, Gomes ATPC, Noites R, Ferreira JMF, Duarte AS. New and Efficient Bioactive Glass Compositions for Controlling Endodontic Pathogens. NANOMATERIALS 2022; 12:nano12091577. [PMID: 35564288 PMCID: PMC9105659 DOI: 10.3390/nano12091577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
Endodontic treatment aims to conserve teeth through removing infected tissue, disinfecting, and filling/sealing the root canal. One of the most important treatment steps is the removal of microorganisms to avoid reinfection and consequent tooth loss. Due to increased resistance to intracanal medications, new alternative procedures are needed. Thus, an intracanal medication is suggested using three bioactive glass (BG) compositions (BG1, BG2, and BG3) produced by the sol–gel method, with different molar contents of bactericidal oxides. The BGs were morphologically and physically characterized. Their ability to inhibit the growth of two oral pathogens responsible for the failure of endodontic treatments (E. faecalis and C. albicans) was also studied. The results suggest that BG2 and BG3 can inhibit the growth of E. faecalis after 48 h of incubation, and all BG samples have a significant effect on C. albicans survival.
Collapse
Affiliation(s)
- Bruna L. Correia
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, Campus Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (B.L.C.); (J.M.F.F.)
| | - Ana T. P. C. Gomes
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
| | - Rita Noites
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
| | - José M. F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, Campus Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (B.L.C.); (J.M.F.F.)
| | - Ana S. Duarte
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
- Correspondence: ; Tel.: +351-232-419-500
| |
Collapse
|
18
|
A review on lactoferrin as a proton pump inhibitor. Int J Biol Macromol 2022; 202:309-317. [PMID: 35038474 DOI: 10.1016/j.ijbiomac.2022.01.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Lactoferrin (Lf) is a versatile natural milk-derived protein that exhibits multiple interesting biological activities. Since it is safe for human administration and currently manufactured using low cost and well-established large-scale processes, the Lf scientific community has been devoted at dissecting its mechanisms of action towards its more rational and efficient use for various applications. Emerging literature has identified proton pumping ATPases as molecular targets of Lf in different cellular models linked to distinct activities of this natural protein. Information on this subject has not been systematically analysed before, hence herein we review the current state of art on the effect of Lf on proton pumping ATPases. Though structurally different, we propose that Lf holds a proton pump inhibitor (PPI)-like activity based on the functional resemblance with the classical inhibitors of the stomach H+/K+-ATPase. The downstream events and outcomes of the PPI-like activity of Lf, as well as its impact for the development of improved Lf applications are also discussed.
Collapse
|
19
|
Ramos Carvalho Â, Candice Genz Bazana L, Meneghello Fuentefria A, Flôres Ferrão M. Digital images coupled to PLS regression for pH prediction in sterile culture medium. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Amino Acid Sensing and Assimilation by the Fungal Pathogen Candida albicans in the Human Host. Pathogens 2021; 11:pathogens11010005. [PMID: 35055954 PMCID: PMC8781990 DOI: 10.3390/pathogens11010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/04/2023] Open
Abstract
Nutrient uptake is essential for cellular life and the capacity to perceive extracellular nutrients is critical for coordinating their uptake and metabolism. Commensal fungal pathogens, e.g., Candida albicans, have evolved in close association with human hosts and are well-adapted to using diverse nutrients found in discrete host niches. Human cells that cannot synthesize all amino acids require the uptake of the “essential amino acids” to remain viable. Consistently, high levels of amino acids circulate in the blood. Host proteins are rich sources of amino acids but their use depends on proteases to cleave them into smaller peptides and free amino acids. C. albicans responds to extracellular amino acids by pleiotropically enhancing their uptake and derive energy from their catabolism to power opportunistic virulent growth. Studies using Saccharomyces cerevisiae have established paradigms to understand metabolic processes in C. albicans; however, fundamental differences exist. The advent of CRISPR/Cas9-based methods facilitate genetic analysis in C. albicans, and state-of-the-art molecular biological techniques are being applied to directly examine growth requirements in vivo and in situ in infected hosts. The combination of divergent approaches can illuminate the biological roles of individual cellular components. Here we discuss recent findings regarding nutrient sensing with a focus on amino acid uptake and metabolism, processes that underlie the virulence of C. albicans.
Collapse
|
21
|
Baldewijns S, Sillen M, Palmans I, Vandecruys P, Van Dijck P, Demuyser L. The Role of Fatty Acid Metabolites in Vaginal Health and Disease: Application to Candidiasis. Front Microbiol 2021; 12:705779. [PMID: 34276639 PMCID: PMC8282898 DOI: 10.3389/fmicb.2021.705779] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
Although the vast majority of women encounters at least one vaginal infection during their life, the amount of microbiome-related research performed in this area lags behind compared to alternative niches such as the intestinal tract. As a result, effective means of diagnosis and treatment, especially of recurrent infections, are limited. The role of the metabolome in vaginal health is largely elusive. It has been shown that lactate produced by the numerous lactobacilli present promotes health by limiting the chance of infection. Short chain fatty acids (SCFA) have been mainly linked to dysbiosis, although the causality of this relationship is still under debate. In this review, we aim to bring together information on the role of the vaginal metabolome and microbiome in infections caused by Candida. Vulvovaginal candidiasis affects near to 70% of all women at least once in their life with a significant proportion of women suffering from the recurrent variant. We assess the role of fatty acid metabolites, mainly SCFA and lactate, in onset of infection and virulence of the fungal pathogen. In addition, we pinpoint where lack of research limits our understanding of the molecular processes involved and restricts the possibility of developing novel treatment strategies.
Collapse
Affiliation(s)
- Silke Baldewijns
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Mart Sillen
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ilse Palmans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
22
|
Silva VKA, Bhattacharya S, Oliveira NK, Savitt AG, Zamith-Miranda D, Nosanchuk JD, Fries BC. Replicative Aging Remodels the Cell Wall and Is Associated with Increased Intracellular Trafficking in Human Pathogenic Yeasts. mBio 2021; 13:e0019022. [PMID: 35164553 PMCID: PMC8844920 DOI: 10.1128/mbio.00190-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Replicative aging is an underexplored field of research in medical mycology. Cryptococcus neoformans (Cn) and Candida glabrata (Cg) are dreaded fungal pathogens that cause fatal invasive infections. The fungal cell wall is essential for yeast viability and pathogenesis. In this study, we provide data characterizing age-associated modifications to the cell wall of Cn and Cg. Here, we report that old yeast cells upregulate genes of cell wall biosynthesis, leading to cell wall reorganization and increased levels of all major components, including glucan, chitin, and its derivatives, as well as mannan. This results in a significant thickening of the cell wall in aged cells. Old-generation yeast cells exhibited drastic ultrastructural changes, including the presence of abundant vesicle-like particles in the cytoplasm, and enlarged vacuoles with altered pH homeostasis. Our findings suggest that the cell wall modifications could be enabled by augmented intracellular trafficking. This work furthers our understanding of the cell phenotype that emerges during aging. It highlights differences in these two fungal pathogens and elucidates mechanisms that explain the enhanced resistance of old cells to antifungals and phagocytic attacks. IMPORTANCE Cryptococcus neoformans and Candida glabrata are two opportunistic human fungal pathogens that cause life-threatening diseases. During infection, both microorganisms have the ability to persist for long periods, and treatment failure can occur even if standard testing identifies the yeasts to be sensitive to antifungals. Replicative life span is a trait that is measured by the number of divisions a cell undergoes before death. Aging in fungi is associated with enhanced tolerance to antifungals and resistance to phagocytosis, and characterization of old cells may help identify novel antifungal targets. The cell wall remains an attractive target for new therapies because it is essential for fungi and is not present in humans. This study shows that the organization of the fungal cell wall changes remarkably during aging and becomes thicker and is associated with increased intracellular trafficking as well as the alteration of vacuole morphology and pH homeostasis.
Collapse
Affiliation(s)
- Vanessa K. A. Silva
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Somanon Bhattacharya
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Natalia Kronbauer Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Anne G. Savitt
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bettina C. Fries
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| |
Collapse
|
23
|
Candida albicans as an Essential "Keystone" Component within Polymicrobial Oral Biofilm Models? Microorganisms 2020; 9:microorganisms9010059. [PMID: 33379333 PMCID: PMC7823588 DOI: 10.3390/microorganisms9010059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Existing standardized biofilm assays focus on simple mono-species or bacterial-only models. Incorporating Candida albicans into complex biofilm models can offer a more appropriate and relevant polymicrobial biofilm for the development of oral health products. Aims: This study aimed to assess the importance of interkingdom interactions in polymicrobial oral biofilm systems with or without C. albicans, and test how these models respond to oral therapeutic challenges in vitro. Materials and Methods: Polymicrobial biofilms (two models containing 5 and 10 bacterial species, respectively) were created in parallel in the presence and absence of C. albicans and challenged using clinically relevant antimicrobials. The metabolic profiles and biomasses of these complex biofilms were estimated using resazurin dye and crystal violet stain, respectively. Quantitative PCR was utilized to assess compositional changes in microbial load. Additional assays, for measurements of pH and lactate, were included to monitor fluctuations in virulence "biomarkers." Results: An increased level of metabolic activity and biomass in the presence of C. albicans was observed. Bacterial load was increased by more than a factor of 10 in the presence of C. albicans. Assays showed inclusion of C. albicans impacted the biofilm virulence profiles. C. albicans did not affect the biofilms' responses to the short-term incubations with different treatments. Conclusions: The interkingdom biofilms described herein are structurally robust and exhibit all the hallmarks of a reproducible model. To our knowledge, these data are the first to test the hypothesis that yeasts may act as potential "keystone" components of oral biofilms.
Collapse
|
24
|
Dias LP, Santos ALE, Araújo NMS, Silva RRS, Santos MHC, Roma RR, Rocha BAM, Oliveira JTA, Teixeira CS. Machaerium acutifolium lectin alters membrane structure and induces ROS production in Candida parapsilosis. Int J Biol Macromol 2020; 163:19-25. [PMID: 32599250 DOI: 10.1016/j.ijbiomac.2020.06.236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/28/2023]
Abstract
Lectins are a group of widely distributed and structurally heterogeneous proteins of nonimmune origin. These proteins have the ability to interact with glycans present on cell surfaces and elicit diverse biological activities. Machaerium acutifolium lectin (MaL) is an N-acetyl-D-glucosamine-binding lectin that exhibits antinociceptive activity via transient receptor potential cation channel subfamily V member 1 (TRPV1). Lectins that have the ability to recognize and interact with N-acetyl-D-glucosamine residues are potential candidates for studies of fungicidal activity. In this work, we show that MaL has antifungal activity against Candida species, and we describe its mode of action towards Candida parapsilosis. MaL inhibited the growth of C. albicans and C. parapsilosis. However, MaL was more potent against C. parapsilosis. The candidacidal mode of action of MaL on C. parapsilosis involves enhanced cell permeabilization, alteration of the plasma membrane proton-pumping ATPase function (H+-ATPase), induction of oxidative stress, and DNA damage. MaL also exhibited antibiofilm activity and noncytotoxicity to Vero cells. These results indicate that MaL is a promising candidate for the future development of a new, natural, and safe drug for the treatment of infections caused by C. parapsilosis.
Collapse
Affiliation(s)
- Lucas P Dias
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Ana L E Santos
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Maranhão, Brazil
| | - Nadine M S Araújo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Romério R S Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Maria H C Santos
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Maranhão, Brazil
| | - Renato R Roma
- Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão, Chapadinha, Maranhão, Brazil
| | - Bruno A M Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Jose T A Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Claudener S Teixeira
- Instituto de Formação de Educadores, Universidade Federal do Cariri, Brejo Santo, Ceará, Brazil.
| |
Collapse
|
25
|
Munusamy K, Loke MF, Vadivelu J, Tay ST. LC-MS analysis reveals biological and metabolic processes essential for Candida albicans biofilm growth. Microb Pathog 2020; 152:104614. [PMID: 33202254 DOI: 10.1016/j.micpath.2020.104614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
Candidiasis is the most common fungal infection associated with high morbidity and mortality among immunocompromised patients. The ability to form biofilm is essential for Candida albicans pathogenesis and drug resistance. In this study, the planktonic cell and biofilm proteomes of C. albicans SC5314 strain analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) were compared. In total, 280 and 449 proteins are annotated from the planktonic cell and biofilm proteomes, respectively. The biofilm proteome demonstrated significantly higher proportion of proteins associated with the endomembrane system, mitochondrion and cytoplasm than planktonic proteome. Among proteins detected, 143 and 207 biological processes are annotated, of which, 38 and 102 are specific to the planktonic cell and biofilm proteomes, respectively, while 105 are common biological processes. The specific biological processes of C. albicans planktonic cell proteome are associated with cell polarity, energy metabolism and nucleotide (purine) metabolism, oxido-reduction coenzyme metabolic process, monosaccharide and amino acid (methionine) biosynthesis, regulation of anatomical structure morphogenesis and cell cycling, and single organism reproduction. Meanwhile, regulation of cellular macromolecule biosynthesis and metabolism, transcription and gene expression are major biological processes specifically associated with C. albicans biofilm proteome. Biosynthesis of leucine, isoleucine, and thiocysteine are highlighted as planktonic-related pathways, whereas folate metabolism, fatty acid metabolism and biosynthesis of amino acids (lysine, serine and glycine) are highlighted as biofilm-related pathways. In summary, LC-MS-based proteomic analysis reveals different adaptative strategies of C. albicans via specific biological and metabolic processes for planktonic cell and biofilm lifestyles. The mass spectrometry data are available via ProteomeXchange with identifiers PXD007830 (for biofilm proteome) and PXD007831 (for planktonic cell proteome).
Collapse
Affiliation(s)
- Komathy Munusamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Mba IE, Nweze EI. Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 2020; 39:1797-1819. [PMID: 32372128 DOI: 10.1007/s10096-020-03912-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Candida is the most implicated fungal pathogen in the clinical setting. Several factors play important roles in the pathogenesis of Candida spp. Multiple transcriptional circuits, morphological and phenotypic switching, biofilm formation, tissue damaging extracellular hydrolytic enzymes, metabolic flexibility, genome plasticity, adaptation to environmental pH fluctuation, robust nutrient acquisition system, adherence and invasions (mediated by adhesins and invasins), heat shock proteins (HSPs), cytolytic proteins, escape from phagocytosis, evasion from host immune system, synergistic coaggregation with resident microbiota, resistance to antifungal agents, and the ability to efficiently respond to multiple stresses are some of the major pathogenic determinants of Candida species. The existence of multiple connections, in addition to the interactions and associations among all of these factors, are distinctive features that play important roles in the establishment of Candida infections. This review describes all the underlying factors and mechanisms involved in Candida pathogenesis by evaluating pathogenic determinants of Candida species. It reinforces the already available pool of data on the pathogenesis of Candida species by providing a clear and simplified understanding of the most important factors implicated in the pathogenesis of Candida species. The Candida pathogenesis network, an illustration linking all the major determinants of Candida pathogenesis, is also presented. Taken together, they will further improve our current understanding of how these factors modulate virulence and consequent infection(s). Development of new antifungal drugs and better therapeutic approaches to candidiasis can be achieved in the near future with continuing progress in the understanding of the mechanisms of Candida pathogenesis.
Collapse
|
27
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|