1
|
Marpaung DSS, Yap Sinaga AO, Damayanti D. Norovirus detection technologies: From conventional methods to innovative biosensors. Anal Biochem 2025; 698:115750. [PMID: 39674390 DOI: 10.1016/j.ab.2024.115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The norovirus (NoV), known for its high contagion rate, is the leading cause of acute gastroenteritis. The development of a NoV vaccine is hindered by significant antigenic variation, lack of suitable models, unknown vaccine protection duration, limited human challenge studies, complex performance patterns, and the absence of a reliable in vitro cultivation system, making prevention, early detection, and control the only effective measures to mitigate outbreaks. This review aims to discuss about several norovirus biosensor for point-of-care analysis. Several innovative biosensors have been developed, including techniques such as electrochemical NoV biosensors, colorimetric NoV biosensors, fluorescence NoV biosensors, CRISPR-based NoV biosensors, and other NoV biosensors. These approaches have detected norovirus in biological samples with high sensitivity and specificity. This biosensing technique holds significant promise, not only in improving the speed and accuracy of diagnostic processes but also in strengthening the global response to norovirus infections, thereby underscoring its pivotal role in public health and disease prevention.
Collapse
Affiliation(s)
- David Septian Sumanto Marpaung
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia.
| | - Ayu Oshin Yap Sinaga
- Department of Biology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Damayanti Damayanti
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| |
Collapse
|
2
|
Angel NZ, Sullivan MJ, Alsheikh-Hussain A, Fang L, MacDonald S, Pribyl A, Wills B, Tyson GW, Hugenholtz P, Parks DH, Griffin P, Wood DLA. Metagenomics: a new frontier for routine pathology testing of gastrointestinal pathogens. Gut Pathog 2025; 17:4. [PMID: 39827146 PMCID: PMC11742996 DOI: 10.1186/s13099-024-00673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Accurate and comprehensive identification of enteropathogens, causing infectious gastroenteritis, is essential for optimal patient treatment and effective isolation processes in health care systems. Traditional diagnostic techniques are well established and optimised in low-cost formats. However, thorough testing for a wider range of causal agents is time consuming and remains limited to a subset of pathogenic organisms. Metagenomic next-generation sequencing (mNGS) allows the identification of all pathogens in a sample in a single test, without a reliance on culture or introduction of target selection bias. This study aims to determine the ability to routinely apply mNGS testing, in comparison to traditional culture or polymerase chain reaction (PCR) based tests, for the identification of causal pathogens for gastrointestinal infections. RESULTS The performance of mNGS, PCR and microscopy, culture and sensitivity (MCS) assays was established using 2,619 prospectively collected faecal samples from patients with symptomology indicative of infectious gastroenteritiss. Commonly experienced pathogens including Aeromonas spp, Campylobacter spp, Salmonella spp and Giardia spp, in single and co-infected patients, were used to establish test outcomes. When testing for these organisms, using the combined result from either or both PCR and MCS testing as the comparator, the mNGS assay had clinically acceptable sensitivity (89.2-100%). Further, the mNGS assay detected 14 additional enteropathogens, that were either not detected or not tested, by initial PCR/MCS testing. CONCLUSIONS The advantage of mNGS compared to other syndromic testing systems is the broad range of detectable targets and the ability to interrogate samples without clinician informed or assay specific bias. With the development of newer sequencing assays, it is now feasible to test for a wide range of target organisms in a sample using a single mNGS test. Overall, the mNGS based approach enabled pathogen detection that was comparable to conventional diagnostics and was shown to have the potential to be extended for the detection of many pathogens and genes of clinical interest. In conclusion, the mNGS assay offers an easy, sample to answer workflow with rapid detection of enteropathogens and has the potential to improve diagnosis, therapy and infection control precautions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gene W Tyson
- Microba Pty Ltd, Brisbane, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Philip Hugenholtz
- Microba Pty Ltd, Brisbane, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | | | - Paul Griffin
- Microba Pty Ltd, Brisbane, Australia
- Department of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Mater Research Raymond Terrace, South Brisbane, Australia
| | | |
Collapse
|
3
|
Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, Todi SK, Mohan A, Hegde A, Jagiasi BG, Krishna B, Rodrigues C, Govil D, Pal D, Divatia JV, Sengar M, Gupta M, Desai M, Rungta N, Prayag PS, Bhattacharya PK, Samavedam S, Dixit SB, Sharma S, Bandopadhyay S, Kola VR, Deswal V, Mehta Y, Singh YP, Myatra SN. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024; 28:S104-S216. [PMID: 39234229 PMCID: PMC11369928 DOI: 10.5005/jp-journals-10071-24677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 09/06/2024] Open
Abstract
How to cite this article: Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, et al. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024;28(S2):S104-S216.
Collapse
Affiliation(s)
- Gopi C Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, PSRI Hospital, New Delhi, India
| | - Pawan Tiwari
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Atul P Kulkarni
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Dhruva Chaudhry
- Department of Pulmonary and Critical Care Medicine, University of Health Sciences, Rohtak, Haryana, India
| | - Kapil G Zirpe
- Department of Neuro Trauma Unit, Grant Medical Foundation, Pune, Maharashtra, India
| | - Subhash K Todi
- Department of Critical Care, AMRI Hospital, Kolkata, West Bengal, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Ashit Hegde
- Department of Medicine & Critical Care, P D Hinduja National Hospital, Mumbai, India
| | - Bharat G Jagiasi
- Department of Critical Care, Kokilaben Dhirubhai Ambani Hospital, Navi Mumbai, Maharashtra, India
| | - Bhuvana Krishna
- Department of Critical Care Medicine, St John's Medical College and Hospital, Bengaluru, India
| | - Camila Rodrigues
- Department of Microbiology, P D Hinduja National Hospital, Mumbai, India
| | - Deepak Govil
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Divya Pal
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Jigeeshu V Divatia
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mukesh Desai
- Department of Immunology, Pediatric Hematology and Oncology Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Narendra Rungta
- Department of Critical Care & Anaesthesiology, Rajasthan Hospital, Jaipur, India
| | - Parikshit S Prayag
- Department of Transplant Infectious Diseases, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India
| | - Pradip K Bhattacharya
- Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Srinivas Samavedam
- Department of Critical Care, Ramdev Rao Hospital, Hyderabad, Telangana, India
| | - Subhal B Dixit
- Department of Critical Care, Sanjeevan and MJM Hospital, Pune, Maharashtra, India
| | - Sudivya Sharma
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Susruta Bandopadhyay
- Department of Critical Care, AMRI Hospitals Salt Lake, Kolkata, West Bengal, India
| | - Venkat R Kola
- Department of Critical Care Medicine, Yashoda Hospitals, Hyderabad, Telangana, India
| | - Vikas Deswal
- Consultant, Infectious Diseases, Medanta - The Medicity, Gurugram, Haryana, India
| | - Yatin Mehta
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Yogendra P Singh
- Department of Critical Care, Max Super Speciality Hospital, Patparganj, New Delhi, India
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Golaviya A, Mathakiya R, Jakhesara S, Koringa P. Determining genetic diversity of prevalent G and P genotype of Bovine Rotavirus A from neonatal calves of Gujarat, India. J Vet Sci 2024; 25:e55. [PMID: 39083207 PMCID: PMC11291431 DOI: 10.4142/jvs.24124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 08/03/2024] Open
Abstract
IMPORTANCE Neonatal calf diarrhea is a major cause of mortality in newborn calves worldwide, posing a significant challenge in bovine herds. Group A Bovine Rotaviruses (BRVA) are the primary contributors to severe gastroenteritis in calves under two months old. OBJECTIVES This study examined the prevalence and molecular characterization of BRVA in neonatal calves in Gujarat, India. METHODS Sixty-nine diarrheic fecal samples were collected and subjected to various molecular methods of BRVA detection, isolation, and characterization. RESULTS The latex agglutination test (LAT), electropherotyping (RNA-PAGE), and reverse transcription polymerase chain reaction revealed positivity rates of 39.13%, 20.30%, and 37.70%, respectively. RNA-PAGE identified 11 bands with a 4:2:3:2 migration pattern, indicative of the segmented genome of BRVA. BRVA was successfully isolated from LAT-positive samples, with 26 samples exhibiting clear cytopathic effects upon passage in MA-104 cell lines. Genotyping identified G10 as the predominant G genotype, with P[11] genotypes comprising 76.92% of the isolates. The most common G/P combination was G10P[11], highlighting its zoonotic potential. CONCLUSIONS AND RELEVANCE These findings underscore the importance of molecular detection and genotyping for effective vaccine development. This study provides crucial insights into the prevalent G and P genotypes of BRVA in Gujarat, India, aiding in the development of targeted control measures.
Collapse
Affiliation(s)
- Akash Golaviya
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anand, Kamdhenu University, Gujarat 388001, India
| | - Rafiyuddin Mathakiya
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anand, Kamdhenu University, Gujarat 388001, India.
| | - Subhash Jakhesara
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anand, Kamdhenu University, Gujarat 388001, India
| | - Prakash Koringa
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anand, Kamdhenu University, Gujarat 388001, India
| |
Collapse
|
5
|
Ji Y, Guo Y, Deng H, Zhang J, Wang Y, Dai E, Fan Z, Tang G, Jia M, Ding B. Rapid diagnosis of Tobacco mosaic virus in tobacco using time-resolved fluorescence immunoassay. FOOD AGR IMMUNOL 2023. [DOI: 10.1080/09540105.2023.2185568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Affiliation(s)
- Yuan Ji
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, People’s Republic of China
- Shandong Institute for Food and Drug Control, Jinan, People’s Republic of China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, People’s Republic of China
| | - Huimin Deng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, People’s Republic of China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, People’s Republic of China
| | - Yuemao Wang
- China Tobacco Yunnan Import & Export Co., Ltd., Kunming, People’s Republic of China
| | - En Dai
- Yunnan Tobacco Co., Ltd. Kunming Branch, Kunming, People’s Republic of China
| | - Ziyan Fan
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, People’s Republic of China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, People’s Republic of China
| | - Mengao Jia
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, People’s Republic of China
| | - Bo Ding
- Shandong Institute for Food and Drug Control, Jinan, People’s Republic of China
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
6
|
Eifan S, Nour I, Hanif A, Alhetheel A, Al-Ashkar I. Molecular Epidemiology and Surveillance of Human Adenovirus and Rotavirus A Associated Gastroenteritis in Riyadh, Saudi Arabia. Trop Med Infect Dis 2023; 8:tropicalmed8050279. [PMID: 37235327 DOI: 10.3390/tropicalmed8050279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In Saudi Arabia, acute gastroenteritis (GE) is a common illness affecting children and adults; however, the extent to which human rotavirus A (HRV) and human adenovirus (HAdV) strains contribute to the condition is unclear. The surveillance of the GE-causing viruses, HRV and HadV, was performed using polymerase chain reaction, sequencing, and phylogenetic analysis at King Khalid University Hospital. The associations between virus prevalence and meteorological factors were analyzed. The prevalence of HAdV was recorded (7%), followed by HRV (2%). On a gender basis, HAdV infections were found to be dominant in females (5:2) (U = 407.5; p < 0.0001), whereas HRV was only detected in males (U = 50; p < 0.0001). A significantly higher HAdV prevalence was recorded at the age of 3.5 ± 0.63 years (21.1%; p = 0.00047), whereas HRV cases were found equally distributed between <3 years and 3-5 years. The highest HAdV prevalence was recorded in autumn, followed by winter and spring. A significant correlation was detected between humidity and the total number of recorded cases (p = 0.011). Phylogenetic analysis depicted the dominance of HAdV type 41 and the G2 lineage of HRV among circulating strains. The current study uncovered the epidemiology and genotypes of HRV and HadV, and provided forecasting equations for monitoring climatic-mediated outbreaks.
Collapse
Affiliation(s)
- Saleh Eifan
- Molecular Virology Laboratory, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Islam Nour
- Molecular Virology Laboratory, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Atif Hanif
- Molecular Virology Laboratory, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulkarim Alhetheel
- Virology Laboratory, Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Recent advances in diagnostic approaches for orf virus. Appl Microbiol Biotechnol 2023; 107:1515-1523. [PMID: 36723701 DOI: 10.1007/s00253-023-12412-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Orf virus (ORFV), the prototype species of the Parapoxvirus genus, is an important zoonotic virus, causing great economic losses in livestock production. At present, there are no effective drugs for orf treatment. Therefore, it is crucial to develop accurate and rapid diagnostic approaches for ORFV. Over decades, various diagnostic methods have been established, including conventional methods such as virus isolation and electron microscopy; serological methods such as virus neutralization test (VNT), immunohistochemistry (IHC) assay, immunofluorescence assay (IFA), and enzyme-linked immunosorbent assay (ELISA); and molecular methods such as polymerase chain reaction (PCR), real-time PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and recombinase-aided amplification (RAA) assay. This review provides an overview of currently available diagnostic approaches for ORFV and discusses their advantages and limitations and future perspectives, which would be significantly helpful for ORFV early diagnosis and surveillance to prevent outbreak of orf. KEY POINTS: • Orf virus emerged and reemerged in past years • Rapid and efficient diagnostic approaches are needed and critical for ORFV detection • Novel and sensitive diagnostic methods are required for ORFV detection.
Collapse
|
8
|
Babaei A, Rafiee N, Taheri B, Sohrabi H, Mokhtarzadeh A. Recent Advances in Early Diagnosis of Viruses Associated with Gastroenteritis by Biosensors. BIOSENSORS 2022; 12:499. [PMID: 35884302 PMCID: PMC9313180 DOI: 10.3390/bios12070499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Gastroenteritis, as one of the main worldwide health challenges, especially in children, leads to 3-6 million deaths annually and causes nearly 20% of the total deaths of children aged ˂5 years, of which ~1.5 million gastroenteritis deaths occur in developing nations. Viruses are the main causative agent (~70%) of gastroenteritis episodes and their specific and early diagnosis via laboratory assays is very helpful for having successful antiviral therapy and reduction in infection burden. Regarding this importance, the present literature is the first review of updated improvements in the employing of different types of biosensors such as electrochemical, optical, and piezoelectric for sensitive, simple, cheap, rapid, and specific diagnosis of human gastroenteritis viruses. The Introduction section is a general discussion about the importance of viral gastroenteritis, types of viruses that cause gastroenteritis, and reasons for the combination of conventional diagnostic tests with biosensors for fast detection of viruses associated with gastroenteritis. Following the current laboratory detection tests for human gastroenteritis viruses and their limitations (with subsections: Electron Microscope (EM), Cell Culture, Immunoassay, and Molecular Techniques), structural features and significant aspects of various biosensing methods are discussed in the Biosensor section. In the next sections, basic information on viruses causing gastroenteritis and recent developments for fabrication and testing of different biosensors for each virus detection are covered, and the prospect of future developments in designing different biosensing platforms for gastroenteritis virus detection is discussed in the Conclusion and Future Directions section as well.
Collapse
Affiliation(s)
- Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin 59811-34197, Iran;
| | - Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran;
| | - Behnaz Taheri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran;
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran
| |
Collapse
|
9
|
Mostafa-Hedeab G, Allayeh AK, Elhady HA, Eledrdery AY, Mraheil MA, Mostafa A. Viral Eco-Genomic Tools: Development and Implementation for Aquatic Biomonitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7707. [PMID: 35805367 PMCID: PMC9265447 DOI: 10.3390/ijerph19137707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/17/2022]
Abstract
Enteric viruses (EVs) occurrence within aquatic environments varies and leads to significant risk on public health of humans, animals, and diversity of aquatic taxa. Early and efficacious recognition of cultivable and fastidious EVs in aquatic systems are important to ensure the sanitary level of aquatic water and implement required treatment strategies. Herein, we provided a comprehensive overview of the conventional and up-to-date eco-genomic tools for aquatic biomonitoring of EVs, aiming to develop better water pollution monitoring tools. In combination with bioinformatics techniques, genetic tools including cloning sequencing analysis, DNA microarray, next-generation sequencing (NGS), and metagenomic sequencing technologies are implemented to make informed decisions about the global burden of waterborne EVs-associated diseases. The data presented in this review are helpful to recommend that: (1) Each viral pollution detection method has its own merits and demerits; therefore, it would be advantageous for viral pollution evaluation to be integrated as a complementary platform. (2) The total viral genome pool extracted from aquatic environmental samples is a real reflection of pollution status of the aquatic eco-systems; therefore, it is recommended to conduct regular sampling through the year to establish an updated monitoring system for EVs, and quantify viral peak concentrations, viral typing, and genotyping. (3) Despite that conventional detection methods are cheaper, it is highly recommended to implement molecular-based technologies to complement aquatic ecosystems biomonitoring due to numerous advantages including high-throughput capability. (4) Continuous implementation of the eco-genetic detection tools for monitoring the EVs in aquatic ecosystems is recommended.
Collapse
Affiliation(s)
- Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Skaka 11564, Saudi Arabia
| | - Abdou Kamal Allayeh
- Water Pollution Department, Virology Laboratory, National Research Centre, Dokki, Giza 12622, Egypt;
| | | | - Abozer Y. Eledrdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 11564, Saudi Arabia;
| | - Mobarak Abu Mraheil
- German Center for Infection Research (DZIF), Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
10
|
Campos-Ferreira D, Visani V, Córdula C, Nascimento G, Montenegro L, Schindler H, Cavalcanti I. COVID-19 challenges: From SARS-CoV-2 infection to effective point-of-care diagnosis by electrochemical biosensing platforms. Biochem Eng J 2021; 176:108200. [PMID: 34522158 PMCID: PMC8428033 DOI: 10.1016/j.bej.2021.108200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022]
Abstract
In January 2020, the World Health Organization (WHO) identified a new zoonotic virus, SARS-CoV-2, responsible for causing the COVID-19 (coronavirus disease 2019). Since then, there has been a collaborative trend between the scientific community and industry. Multidisciplinary research networks try to understand the whole SARS-CoV-2 pathophysiology and its relationship with the different grades of severity presented by COVID-19. The scientific community has gathered all the data in the quickly developed vaccines that offer a protective effect for all variants of the virus and promote new diagnostic alternatives able to have a high standard of efficiency, added to shorter response analysis time and portability. The industry enters in the context of accelerating the path taken by science until obtaining the final product. In this review, we show the principal diagnostic methods developed during the COVID-19 pandemic. However, when we observe the diagnostic tools section of an efficient infection outbreak containment report and the features required for such tools, we could observe a highlight of electrochemical biosensing platforms. Such devices present a high standard of analytical performance, are low-cost tools, easy to handle and interpret, and can be used in the most remote and low-resource regions. Therefore, probably, they are the ideal point-of-care diagnostic tools for pandemic scenarios.
Collapse
Affiliation(s)
- D. Campos-Ferreira
- Laboratório de Imunopatologia Keizo Asami – LIKA/ UFPE, Av. Prof. Moraes Rego, s/n, CEP: 506070-901 Recife, PE, Brazil,Corresponding author
| | - V. Visani
- Laboratório de Imunopatologia Keizo Asami – LIKA/ UFPE, Av. Prof. Moraes Rego, s/n, CEP: 506070-901 Recife, PE, Brazil
| | - C. Córdula
- Laboratório de Imunopatologia Keizo Asami – LIKA/ UFPE, Av. Prof. Moraes Rego, s/n, CEP: 506070-901 Recife, PE, Brazil
| | - G.A. Nascimento
- Laboratório de Imunopatologia Keizo Asami – LIKA/ UFPE, Av. Prof. Moraes Rego, s/n, CEP: 506070-901 Recife, PE, Brazil,Centro Acadêmico do Agreste - CAA/UFPE, Av. Marielle Franco, s/n - Km 59 - Bairro Nova Caruaru, CEP: 55.014-900 Caruaru, PE, Brazil
| | - L.M.L. Montenegro
- Fundação Oswaldo Cruz (Fiocruz), Centro de Pesquisas Instituto Aggeu Magalhães (IAM), Av. Professor Moraes Rego s/n, CEP: 50670-901 Recife, PE, Brazil
| | - H.C. Schindler
- Fundação Oswaldo Cruz (Fiocruz), Centro de Pesquisas Instituto Aggeu Magalhães (IAM), Av. Professor Moraes Rego s/n, CEP: 50670-901 Recife, PE, Brazil
| | - I.M.F. Cavalcanti
- Laboratório de Imunopatologia Keizo Asami – LIKA/ UFPE, Av. Prof. Moraes Rego, s/n, CEP: 506070-901 Recife, PE, Brazil,Centro Acadêmico de Vitória – CAV/UFPE, R. Alto do Reservatório, CEP: 55 612-440 Vitória de Santo Antão, PE, Brazil
| |
Collapse
|
11
|
Zaczek-Moczydlowska MA, Beizaei A, Dillon M, Campbell K. Current state-of-the-art diagnostics for Norovirus detection: Model approaches for point-of-care analysis. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Asdaq SMB, Ikbal AMA, Sahu RK, Bhattacharjee B, Paul T, Deka B, Fattepur S, Widyowati R, Vijaya J, Al mohaini M, Alsalman AJ, Imran M, Nagaraja S, Nair AB, Attimarad M, Venugopala KN. Nanotechnology Integration for SARS-CoV-2 Diagnosis and Treatment: An Approach to Preventing Pandemic. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1841. [PMID: 34361227 PMCID: PMC8308419 DOI: 10.3390/nano11071841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 outbreak is the COVID-19 disease, which has caused massive health devastation, prompting the World Health Organization to declare a worldwide health emergency. The corona virus infected millions of people worldwide, and many died as a result of a lack of particular medications. The current emergency necessitates extensive therapy in order to stop the spread of the coronavirus. There are various vaccinations available, but no validated COVID-19 treatments. Since its outbreak, many therapeutics have been tested, including the use of repurposed medications, nucleoside inhibitors, protease inhibitors, broad spectrum antivirals, convalescence plasma therapies, immune-modulators, and monoclonal antibodies. However, these approaches have not yielded any outcomes and are mostly used to alleviate symptoms associated with potentially fatal adverse drug reactions. Nanoparticles, on the other hand, may prove to be an effective treatment for COVID-19. They can be designed to boost the efficacy of currently available antiviral medications or to trigger a rapid immune response against COVID-19. In the last decade, there has been significant progress in nanotechnology. This review focuses on the virus's basic structure, pathogenesis, and current treatment options for COVID-19. This study addresses nanotechnology and its applications in diagnosis, prevention, treatment, and targeted vaccine delivery, laying the groundwork for a successful pandemic fight.
Collapse
Affiliation(s)
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar 799022, Tripura (W), India;
| | - Ram Kumar Sahu
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, Assam, India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (B.B.); (T.P.); (B.D.)
| | - Tirna Paul
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (B.B.); (T.P.); (B.D.)
| | - Bhargab Deka
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (B.B.); (T.P.); (B.D.)
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam 40100, Selangor, Malaysia
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Joshi Vijaya
- Department of Pharmaceutics, Government College of Pharmacy, Bangalore 560027, Karnataka, India;
| | - Mohammed Al mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Alahsa 31982, Saudi Arabia;
- King Abdullah International Medical Research Center, Alahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Sreeharsha Nagaraja
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
13
|
Hemida MG. The next-generation coronavirus diagnostic techniques with particular emphasis on the SARS-CoV-2. J Med Virol 2021; 93:4219-4241. [PMID: 33751621 PMCID: PMC8207115 DOI: 10.1002/jmv.26926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022]
Abstract
The potential zoonotic coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2) are of global health concerns. Early diagnosis is the milestone in their mitigation, control, and eradication. Many diagnostic techniques are showing great success and have many advantages, such as the rapid turnover of the results, high accuracy, and high specificity and sensitivity. However, some of these techniques have several pitfalls if samples were not collected, processed, and transported in the standard ways and if these techniques were not practiced with extreme caution and precision. This may lead to false-negative/positive results. This may affect the downstream management of the affected cases. These techniques require regular fine-tuning, upgrading, and optimization. The continuous evolution of new strains and viruses belong to the coronaviruses is hampering the success of many classical techniques. There are urgent needs for next generations of coronaviruses diagnostic assays that overcome these pitfalls. This new generation of diagnostic tests should be able to do simultaneous, multiplex, and high-throughput detection of various coronavirus in one reaction. Furthermore, the development of novel assays and techniques that enable the in situ detection of the virus on the environmental samples, especially air, water, and surfaces, should be given considerable attention in the future. These approaches will have a substantial positive impact on the mitigation and eradication of coronaviruses, including the current SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Maged G. Hemida
- Department of Microbiology, College of Veterinary MedicineKing Faisal UniversityAl AhsaSaudi Arabia
- Department of Virology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafr ElsheikhEgypt
| |
Collapse
|
14
|
Application of Nanoscale Materials and Nanotechnology Against Viral Infection: A Special Focus on Coronaviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1352:173-193. [DOI: 10.1007/978-3-030-85109-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Alpdagtas S, Ilhan E, Uysal E, Sengor M, Ustundag CB, Gunduz O. Evaluation of current diagnostic methods for COVID-19. APL Bioeng 2020; 4:041506. [PMID: 33305162 PMCID: PMC7710383 DOI: 10.1063/5.0021554] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent responsible for the coronavirus disease of 2019 (COVID-19), which triggers lung failure, pneumonia, and multi-organ dysfunction. This enveloped, positive sense and single-stranded RNA virus can be transmitted through aerosol droplets, direct and indirect contacts. Thus, SARS-CoV-2 is highly contagious and has reached a pandemic level in a few months. Since COVID-19 has caused numerous human casualties and severe economic loss posing a global threat, the development of readily available, accurate, fast, and cost-effective diagnostic techniques in hospitals and in any places where humans spread the virus is urgently required. COVID-19 can be diagnosed by clinical findings and several laboratory tests. These tests may include virus isolation, nucleic acid-based molecular assays like real-time polymerase chain reactions, antigen or antibody-based immunological assays such as rapid immunochromatographic tests, enzyme-linked immunosorbent assays, immunofluorescence techniques, and indirect fluorescent antibody techniques, electrochemical sensors, etc. However, current methods should be developed by novel approaches for sensitive, specific, and accurate diagnosis of COVID-19 cases to control and prevent this outbreak. Thus, this review will cover an overview and comparison of multiple reports and commercially available kits that include molecular tests, immunoassays, and sensor-based diagnostic methods for diagnosis of COVID-19. The pros and cons of these methods and future perspectives will be thoroughly evaluated and discussed.
Collapse
|
16
|
Application of carbon nanomaterials in human virus detection. JOURNAL OF SCIENCE: ADVANCED MATERIALS AND DEVICES 2020; 5. [PMCID: PMC7509950 DOI: 10.1016/j.jsamd.2020.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human-pathogenic viruses are still a chief reason for illness and death on the globe, as epitomized by the COVID-19 pandemic instigated by a coronavirus in 2020. Multiple novel sensors have been invented because diseases must be detected and diagnosed as early as possible, and recognition methods have to be carried out with minimal invasivity. Sensors have been particularly developed focusing on miniaturization by the use of nanomaterials for fabricating nanosensors. The nano-sized nature of nanomaterials and their exclusive optical, electronical, magnetical, and mechanical attributes can enhance patient care through the use of sensors with minimal invasivity and extreme sensitivity. Amongst the nanomaterials utilized for fabricating nano-sensors, carbon-based nanomaterials are promising as these sensors respond better to signals in various sensing settings. This review provides an overview of the recent developments in carbon nanomaterial-based biosensors for viral recognition based on the biomarkers that arise from the infection, the nucleic acids from the viruses, and the entire virus. The role of carbon nanomaterials is highlighted by the improvement of sensor and recognition functionality. The Dengue virus, Ebola virus, Hepatits virus, human immunodeficiency virus (HIV), influenza virus, Zika virus and Adenovirus are the virus types reviewed to illustrate the implementation of the techniques. Finally, the drawbacks and advantages of carbon nanomaterial-based biosensors for viral recognition are identified and discussed.
Collapse
|
17
|
Islam KU, Iqbal J. An Update on Molecular Diagnostics for COVID-19. Front Cell Infect Microbiol 2020; 10:560616. [PMID: 33244462 PMCID: PMC7683783 DOI: 10.3389/fcimb.2020.560616] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
A novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been recently identified as an infectious disease affecting the respiratory system of humans. This disease is caused by SARS-CoV-2 that was identified in Chinese patients having severe pneumonia and flu-like symptoms. COVID-19 is a contagious disease that spreads rapidly via droplet particles arising through sneezing and coughing action of an infected person. The reports of asymptomatic carriers changed the scenario of symptom based-diagnosis in COVID-19 and intensified the need for proper diagnosis of the majority of the population to combat the rapid transmission of virus. The diagnosis of positive cases is necessary to ensure prompt care to affected people and also to curb further spread of infection in the population. Collecting samples at the right time and from the exact anatomical site is crucial for proper molecular diagnosis. After the complete genome sequence was available, China formulated RT-PCR as a primary diagnostic procedure for detecting SARS-CoV-2. Many in-house and commercial diagnostic kits have been developed or are under development that have a potential to lower the burden of diagnosis on the primary diagnostic techniques like RT-PCR. Serological based diagnosis is another broad category of testing that can detect different serum antibodies like IgG, IgM, and IgA in an infected patient. PCR-based diagnostic procedures that are commonly used for pathogen detection need sophisticated machines and assistance of a technical expert. Despite their reliable accuracy, they are not cost-effective tests, which a common man can afford, so it becomes imperative to look for other diagnostic approaches, which could be cost effective, rapid, and sensitive with consistent accuracy. To make such diagnostics available to the common man, many techniques can be exploited among, which are Point of Care (POC), also known as bed side testing, which is developing as a portable and promising tool in pathogen diagnosis. Other lateral flow assay (LFA)-based techniques like SHERLOCK, CRISPR-Cas12a (AIOD-CRISPR), and FNCAS9 editor-limited uniform detection assay (FELUDA), etc. have shown promising results in rapid detection of pathogens. Diagnosis holds a critical importance in the pandemic situation when there is no potential drug for the pathogen available in the market. This review sums up the different diagnostic approaches designed or proposed to combat the crisis of widespread diagnosis due to the sudden outbreak of a novel pathogen, SARS-CoV-2 in 2019.
Collapse
Affiliation(s)
| | - Jawed Iqbal
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
18
|
Orooji Y, Sohrabi H, Hemmat N, Oroojalian F, Baradaran B, Mokhtarzadeh A, Mohaghegh M, Karimi-Maleh H. An Overview on SARS-CoV-2 (COVID-19) and Other Human Coronaviruses and Their Detection Capability via Amplification Assay, Chemical Sensing, Biosensing, Immunosensing, and Clinical Assays. NANO-MICRO LETTERS 2020; 13:18. [PMID: 33163530 PMCID: PMC7604542 DOI: 10.1007/s40820-020-00533-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/06/2020] [Indexed: 05/03/2023]
Abstract
A novel coronavirus of zoonotic origin (SARS-CoV-2) has recently been recognized in patients with acute respiratory disease. COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses. The drastic increase in the number of coronavirus and its genome sequence have given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses. Clinical tests like PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients. However, these techniques are expensive and not readily available for point-of-care (POC) applications. Currently, lack of any rapid, available, and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem. To solve the negative features of clinical investigation, we provide a brief introduction of the general features of coronaviruses and describe various amplification assays, sensing, biosensing, immunosensing, and aptasensing for the determination of various groups of coronaviruses applied as a template for the detection of SARS-CoV-2. All sensing and biosensing techniques developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus, i.e., SARS-CoV-2. Also, the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system to detect the virus at the early stage of infection to tranquilize the speed and vastity of spreading. Among other approaches investigated among molecular approaches and PCR or recognition of viral diseases, LAMP-based methods and LFAs are of great importance for their numerous benefits, which can be helpful to design a universal platform for detection of future emerging pathogenic viruses.
Collapse
Affiliation(s)
- Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471 Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Mohaghegh
- Department of Nanobiotechnology, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Islamic Republic of Iran
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731 People’s Republic of China
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, PO Box 17011, Johannesburg, 2028 South Africa
| |
Collapse
|
19
|
Ansari F, Pashazadeh F, Nourollahi E, Hajebrahimi S, Munn Z, Pourjafar H. A Systematic Review and Meta-Analysis: The Effectiveness of Probiotics for Viral Gastroenteritis. Curr Pharm Biotechnol 2020; 21:1042-1051. [PMID: 32297578 DOI: 10.2174/1389201021666200416123931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/22/2020] [Accepted: 03/07/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Probiotics can be used for the treatment of viral gastroenteritis. OBJECTIVE This systematic review is to evaluate the evidence regarding the effect of probiotics on human cases of viral gastroenteritis. METHODS The objective of this review is to evaluate the effectiveness of probiotics against placebo or standard treatment for viral gastroenteritis. A comprehensive search of Cochrane Library, EMBASE, MEDLINE via PubMed and Ovid databases, and unpublished studies (till 27 January 2018) was conducted followed by a process of study selection and critical appraisal by two independent reviewers. Randomized controlled trials assessing probiotic administration in human subjects infected with any species of gastroenteritis viruses were considered for inclusion. Only studies with a confirmed viral cause of infection were included. This study was developed using the JBI methodology for systematic reviews, which is in accordance with the PRISMA guideline. Meta-analysis was conducted where feasible. Data were pooled using the inverse variance method with random effects models and expressed as Mean Differences (MDs) with 95% Confidence Intervals (CIs). Heterogeneity was assessed by Cochran Q statistic and quantified by the I2 statistic. We included 17 RCTs, containing 3,082 patients. RESULTS Probiotics can improve symptoms of viral gastroenteritis, including the duration of diarrhea (mean difference 0.7 days, 95% CI 0.31 to 1.09 days, n = 740, ten trials) and duration of hospitalization (mean difference 0.76 days, 95% CI 0.61 to 0.92 days, n = 329, four trials). CONCLUSION The results of this review show that the administration of probiotics in patients with viral gastroenteritis should be considered.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Nourollahi
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakineh Hajebrahimi
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zachary Munn
- The Joanna Briggs Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hadi Pourjafar
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
20
|
Qin Z, Peng R, Baravik IK, Liu X. Fighting COVID-19: Integrated Micro- and Nanosystems for Viral Infection Diagnostics. MATTER 2020; 3:628-651. [PMID: 32838297 PMCID: PMC7346839 DOI: 10.1016/j.matt.2020.06.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) highlights the importance of rapid and sensitive diagnostics of viral infection that enables the efficient tracing of cases and the implementation of public health measures for disease containment. The immediate actions from both academia and industry have led to the development of many COVID-19 diagnostic systems that have secured fast-track regulatory approvals and have been serving our healthcare frontlines since the early stage of the pandemic. On diagnostic technologies, many of these clinically validated systems have significantly benefited from the recent advances in micro- and nanotechnologies in terms of platform design, analytical method, and system integration and miniaturization. The continued development of new diagnostic platforms integrating micro- and nanocomponents will address some of the shortcomings we have witnessed in the existing COVID-19 diagnostic systems. This Perspective reviews the previous and ongoing research efforts on developing integrated micro- and nanosystems for nucleic acid-based virus detection, and highlights promising technologies that could provide better solutions for the diagnosis of COVID-19 and other viral infectious diseases. With the summary and outlook of this rapidly evolving research field, we hope to inspire more research and development activities to better prepare our society for future public health crises.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Ran Peng
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Ilina Kolker Baravik
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
21
|
Tang Girdwood SC, Morrison JM, Forster CS. Cell-Free DNA Sequencing, Pathogen Detection, and the Journey to Value. Hosp Pediatr 2020; 10:806-809. [PMID: 32859603 DOI: 10.1542/hpeds.2020-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sonya C Tang Girdwood
- Divisions of Hospital Medicine and Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; .,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - John M Morrison
- Division of Hospital Medicine, Johns Hopkins All Children's Hospital, St Petersburg, Florida.,Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Catherine S Forster
- Division of Hospital Medicine, Children's National Medical Center, Washington DC; and.,Department of Pediatrics, School of Medicine, George Washington University, Washington DC
| |
Collapse
|
22
|
Zaraket R, Salami A, Bahmad M, El Roz A, Khalaf B, Ghssein G, Bahmad HF. Prevalence, risk factors, and clinical characteristics of rotavirus and adenovirus among Lebanese hospitalized children with acute gastroenteritis. Heliyon 2020; 6:e04248. [PMID: 32613122 PMCID: PMC7322251 DOI: 10.1016/j.heliyon.2020.e04248] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute gastroenteritis is a very common infectious disease facing all age groups worldwide, especially the pediatric population. Viruses, bacteria, and parasites are all possible causes of infectious gastroenteritis; however, viruses have become more frequently identified with the advances in the ability to diagnose viral infections, particularly rotavirus and adenovirus. We aimed in our study to compare between the prevalence, risk factors, and clinical characteristics of rotavirus and adenovirus among children with viral gastroenteritis in Lebanon. MATERIALS AND METHODS A 12-months retrospective study was performed between January 1st and December 31st, 2018 including 308 children aged 1 month to 12 years, who were admitted to three tertiary healthcare centers in South Lebanon. Medical data were retrieved from patients' files, including clinical and laboratory information. RESULTS Rotavirus was found in stool of 204 patients (66.23 %), followed by adenovirus in 78 cases (25.32 %), and mixed group (rotavirus and adenovirus) in 26 cases (8.44%). The highest prevalence of rotavirus in our present study was seen among children between 12 and 23 months old, whereas patients infected with adenovirus were mainly aged between 24-35 months or 4-11 months. Majority of patients in the adenovirus and mixed groups had high-grade fever compared to the rotavirus group. Laboratory findings presented significantly higher average of white blood cells (WBCs), absolute neutrophil count (ANC), and C-reactive protein (CRP) in the mixed group compared to the two other groups. Monthly distribution of rotavirus and adenovirus infection revealed a biennial pattern of rotavirus incidence during January and July-August while frequency of adenovirus infection was highest during July-August. CONCLUSION Due to the high prevalence of viral diarrhea among the pediatric age group in our region, particularly rotavirus and adenovirus, along with the associated non-specific signs and symptoms, we highly recommend that medical laboratories be equipped for virus detection. Also, vaccination against rotavirus should be considered as a prevention strategy.
Collapse
Affiliation(s)
- Rasha Zaraket
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Ali Salami
- Rammal Hassan Rammal Research Laboratory, Physio-toxicity (PhyTox) Research Group, Lebanese University, Faculty of Sciences (V), Nabatieh, Lebanon
| | - Marwan Bahmad
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Ali El Roz
- Rammal Hassan Rammal Research Laboratory, Physio-toxicity (PhyTox) Research Group, Lebanese University, Faculty of Sciences (V), Nabatieh, Lebanon
| | - Batoul Khalaf
- Rammal Hassan Rammal Research Laboratory, Physio-toxicity (PhyTox) Research Group, Lebanese University, Faculty of Sciences (V), Nabatieh, Lebanon
| | - Ghassan Ghssein
- Rammal Hassan Rammal Research Laboratory, Physio-toxicity (PhyTox) Research Group, Lebanese University, Faculty of Sciences (V), Nabatieh, Lebanon
- Department of Laboratory Sciences, Faculty of Nursing and Health Sciences, Islamic University of Lebanon, Khalde, Lebanon
| | - Hisham F. Bahmad
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|