1
|
Mba IE, Mba TO, Uwazie CK, Aina FA, Kemisola AO, Uwazie IJ. New insights and perspectives on the virulence of hypervirulent Klebsiella pneumoniae. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01261-9. [PMID: 40198504 DOI: 10.1007/s12223-025-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 03/16/2025] [Indexed: 04/10/2025]
Abstract
Klebsiella pneumoniae, a Gram-negative bacterium, comprises strains with diverse virulence potentials, ranging from classical to hypervirulent variants. Understanding the genetic basis underlying the virulence disparities between hypervirulent (hvKp) and classical K. pneumoniae (cKp) strains is crucial. hvKp strains are characterized by hypermucoviscosity, attributed to the presence of specific virulence genes and the production of molecules that aid in their ability to survive, evade host immune defenses, and cause infection. In contrast, classical strains exhibit a broader array of antimicrobial resistance determinants, conferring resistance to multiple antibiotics. Although current definitions of hvKp incorporate clinical features, phenotypes, and genotypes, identifying hvKp strains in clinical settings remains challenging. Genomic studies have been pivotal and have helped to identify distinct genetic profiles in hvKp strains, including unique virulence plasmids and chromosomal variations, underscoring the genetic diversity within K. pneumoniae populations. This review examines the virulence and genetic determinants associated with hvKp. The presence of genes defining hypervirulence, alongside considerations of their utility as biomarkers and targets for therapeutic strategies, is discussed, while also providing insight into biofilm formation by hvKp and key questions that need urgent responses in understanding hvKp.
Collapse
Affiliation(s)
- Ifeanyi Elibe Mba
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, 200005, Nigeria.
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Enugu, 410001, Nigeria.
| | - Toluwalase Odunayo Mba
- Department of Public Health, Faculty of Basic Medical and Health Sciences, Lead City University, Ibadan, 200255, Nigeria
- Medical Institute, Sumy State University, Sumy, 40007, Ukraine
| | | | - Fetuata Aminat Aina
- Department of Microbiology, College of Natural Sciences, Federal University of Agriculture, Abeokuta, 111101, Nigeria
| | | | | |
Collapse
|
2
|
Tu Y, Gao H, Wang F, Zhao R, Chen S, Chang Y, Li H. Genomic and molecular characterization of a ceftazidime-avibactam resistant Klebsiella pneumoniae strain isolated from a Chinese tertiary hospital. BMC Microbiol 2025; 25:199. [PMID: 40200176 PMCID: PMC11978194 DOI: 10.1186/s12866-025-03929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE This study aims to investigate the molecular biological characteristics of a ceftazidime-avibactam resistant Klebsiella pneumoniae strain isolated from a tertiary care hospital in China. METHODS The K. pneumoniae strain KP217360, isolated from a urine specimen at Li Huili Hospital affiliated with Ningbo University, was analyzed for antimicrobial susceptibility using the VITEK-2 Compact automated system. Antimicrobial susceptibility testing for polymyxin, tigecycline, and ceftazidime-avibactam was performed using broth microdilution according to CLSI guidelines. Whole genome sequencing was conducted using the Illumina platform, followed by comprehensive genomic analysis to characterize resistance determinants and virulence-associated genes. Experiments on conjugation were conducted to evaluate the transmissibility of the resistance plasmids. The virulence potential was evaluated through in vivo experiments using Galleria mellonella larvae as an infection model. RESULTS The K. pneumoniae KP217360 strain demonstrated extensive antimicrobial resistance, showing non-susceptibility to imipenem, ertapenem and ceftazidime-avibactam. Genomic characterization revealed the strain belonged to capsular type KL16 and harbored multiple resistance determinants, including blaCTX-M-65, blaSHV-103 and blaTEM-1, along with iron acquisition-associated virulence factors (iutA, entABCDEF, and iroN). Plasmid analysis identified three distinct plasmids, among which an IncX3-type plasmid carrying blaNDM-5 was confirmed, while the functional characteristics of the remaining two plasmids require further investigation. In the Galleria mellonella infection model, the 72-hour post-infection survival rates significantly differed among groups (P < 0.001), with NTUH-K2044, KP217360 and ATCC700603 showing survival rates of 26.7%, 56.7% and 80%, respectively. Subsequent analysis using the Pathogen Host Interactions (PHI) database identified 1,349 genes in the KP217360 strain were expressed for reduced virulence. CONCLUSION This study reports the first identification of a ceftazidime-avibactam resistant K. pneumoniae ST685 strain carrying blaNDM-5 in Ningbo, Zhejiang Province, China. The findings underscore the urgent need for implementing comprehensive antimicrobial resistance surveillance programs and strengthening infection control measures to mitigate the dissemination of IncX3-type plasmids harboring blaNDM-5 in healthcare settings. Furthermore, our results emphasize the critical importance of establishing rapid enzymatic detection platforms in clinical microbiology laboratories to facilitate timely and precise therapeutic decision-making, thereby optimizing antimicrobial stewardship and improving patient outcomes.
Collapse
Affiliation(s)
- Yanye Tu
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China
| | - Hui Gao
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China.
| | - Feng Wang
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China
| | - Rongqing Zhao
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China
| | - Shiyong Chen
- Department of Hospital-acquired Infection Control, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China
| | - Yanzi Chang
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China
| | - Hong Li
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
3
|
Unverdorben LV, Pirani A, Gontjes K, Moricz B, Holmes CL, Snitkin ES, Bachman MA. Klebsiella pneumoniae evolution in the gut leads to spontaneous capsule loss and decreased virulence potential. mBio 2025:e0236224. [PMID: 40162782 DOI: 10.1128/mbio.02362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Klebsiella pneumoniae (Kp) is an opportunistic pathogen that poses a major threat in healthcare settings. The gut is a primary Kp reservoir in hospitalized patients, and colonization is a major risk factor for Kp infection. The stability of virulence determinants such as capsule and lipopolysaccharide during gut colonization is largely unexplored. In a murine gut colonization model, we demonstrated that spontaneous capsule loss occurs rapidly but varies by Kp pathotype. A classical Kp strain and a carbapenem-resistant strain of the epidemic sequence type 258 lineage had significant levels (median of 25% and 9.5%, respectively) of capsule loss. In contrast, a hypervirulent strain did not lose capsule to a significant degree (median 0.1%), despite readily losing capsule during in vitro passage. Insertion sequences (ISs) or mutations were found disrupting capsule operon genes of all isolates and in O-antigen encoding genes in a subset of isolates. Mouse-derived acapsular isolates from two pathotypes had significant fitness defects in a murine pneumonia model. Removal of the IS in the capsule operon in a mouse-derived acapsular classical isolate restored capsule production to wild-type levels. Genomic analysis of Klebsiella rectal isolates from hospitalized patients found that 18 of 245 strains (7%) had at least one IS disrupting the capsule operon. Combined, these data indicate that Kp capsule loss can occur during gut colonization in a strain-dependent manner, not only impacting strain virulence but also potentially altering patient infection risk. IMPORTANCE In hospitalized patients, gut colonization by the bacterial pathogen Klebsiella pneumoniae (Kp) is a major risk factor for the development of infections. The genome of Kp varies across isolates, and the presence of certain virulence genes is associated with the ability to progress from colonization to infection. Here, we identified that virulence genes encoding capsule and lipopolysaccharide, which normally protect bacteria from the immune system, are disrupted by mutations during murine gut colonization. These mutations occurred frequently in some isolates of Kp but not others, and these virulence gene mutants from the gut were defective in causing infections. An analysis of 245 human gut isolates demonstrated that this capsule loss also occurred in patients. This work highlights that mutations that decrease virulence occur during gut colonization, the propensity for these mutations differs by isolate, and that stability of virulence genes is important to consider when assessing infection risk in patients.
Collapse
Affiliation(s)
- Lavinia V Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ali Pirani
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kyle Gontjes
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bridget Moricz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Caitlyn L Holmes
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Lin TH, Wang CY, Wu CC, Lin CT. Impacts of Pta-AckA pathway on CPS biosynthesis and type 3 fimbriae expression in Klebsiella pneumoniae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:48-55. [PMID: 39472242 DOI: 10.1016/j.jmii.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 02/08/2025]
Abstract
BACKGROUND Klebsiella pneumoniae is a Gram-negative bacterium that can cause infections, especially in individuals with diabetes. Recently, more hypervirulent strains have emerged, posing a threat even to healthy individuals. Understanding how K. pneumoniae regulates its virulence factors is crucial. Acetyl-phosphate (AcP) is essential for bacterial metabolism and can affect virulence factor expression. However, the role of the Pta-AckA pathway, which regulates AcP levels, in K. pneumoniae pathogenesis remains unclear. METHODS Deletion mutants lacking the pta and ackA, involved in AcP production and hydrolysis, were generated in K. pneumoniae CG43S3. Their effects on AcP levels, the patterns of global acetylated protein, capsular polysaccharide (CPS) amount, serum resistance, type 3 fimbriae expression, biofilm formation, and virulence in G. mellonella larva were assessed. RESULTS Deletion of ackA in K. pneumoniae CG43S3 led to AcP accumulation, while pta deletion abolished AcP synthesis when grown in TB7+1 % glucose. This pathway influenced global protein acetylation, with pta deletion decreasing acetylation and ackA deletion increasing it. Additionally, pta deletion decreased the CPS amount, serum resistance, and type 3 fimbriae expression, while ackA deletion increased these factors. Furthermore, deleting pta and ackA attenuated the infected larva's virulence and death rate. CONCLUSION Our findings highlight the critical role of the Pta-AckA pathway in K. pneumoniae pathogenesis. This pathway regulates AcP levels, global protein acetylation, CPS production, serum resistance, and type 3 fimbriae expression, ultimately impacting virulence. The information provides insights into potential therapeutic targets for combating K. pneumoniae infection.
Collapse
Affiliation(s)
- Tien-Huang Lin
- Department of Urology, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Chen-Yu Wang
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| | - Chien-Chen Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ching-Ting Lin
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Chen TA, Chuang YT, Lin CH. A Decade-Long Review of the Virulence, Resistance, and Epidemiological Risks of Klebsiella pneumoniae in ICUs. Microorganisms 2024; 12:2548. [PMID: 39770751 PMCID: PMC11678397 DOI: 10.3390/microorganisms12122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Klebsiella pneumoniae, a major opportunistic pathogen, causes severe infections in both community and healthcare settings, especially in intensive care units (ICUs), where multidrug-resistant (MDR) strains, such as carbapenem-resistant K. pneumoniae (CRKP), pose significant treatment challenges. The rise in hypervirulent K. pneumoniae (hvKP) with enhanced virulence factors complicates management further. The ST11 clone, prevalent in China, exhibits both resistance and virulence traits, contributing to hospital outbreaks. ICU patients, particularly those with comorbidities or prior antibiotic exposure, are at higher risk. Treatment is complicated by limited antibiotic options and the increasing prevalence of polymicrobial infections, which involve resistant pathogens like Pseudomonas aeruginosa and Acinetobacter baumannii. Combination therapies offer some promise, but mortality rates remain high, and resistance to last-resort antibiotics is growing. Infection control measures and personalized treatment plans are critical, alongside the urgent need for vaccine development to combat the rising threat of K. pneumoniae, particularly in vulnerable populations. Effective management requires improved diagnostic tools, antimicrobial stewardship, and innovative treatment strategies to reduce the burden of this pathogen, especially in resource-limited settings. This review aims to provide a comprehensive analysis of the virulence, resistance, and epidemiological risks of K. pneumoniae in ICUs over the past decade, highlighting the ongoing challenges and the need for continued efforts to combat this growing threat.
Collapse
Affiliation(s)
- Tao-An Chen
- Division of Respiratory Therapy, Department of Chest Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Ya-Ting Chuang
- Surgical Intensive Care Unit, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Chieh-Hui Lin
- Department of Chest Medicine, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| |
Collapse
|
6
|
Lei TY, Liao BB, Yang LR, Wang Y, Chen XB. Hypervirulent and carbapenem-resistant Klebsiella pneumoniae: A global public health threat. Microbiol Res 2024; 288:127839. [PMID: 39141971 DOI: 10.1016/j.micres.2024.127839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/16/2024]
Abstract
The evolution of hypervirulent and carbapenem-resistant Klebsiella pneumoniae can be categorized into three main patterns: the evolution of KL1/KL2-hvKp strains into CR-hvKp, the evolution of carbapenem-resistant K. pneumoniae (CRKp) strains into hv-CRKp, and the acquisition of hybrid plasmids carrying carbapenem resistance and virulence genes by classical K. pneumoniae (cKp). These strains are characterized by multi-drug resistance, high virulence, and high infectivity. Currently, there are no effective methods for treating and surveillance this pathogen. In addition, the continuous horizontal transfer and clonal spread of these bacteria under the pressure of hospital antibiotics have led to the emergence of more drug-resistant strains. This review discusses the evolution and distribution characteristics of hypervirulent and carbapenem-resistant K. pneumoniae, the mechanisms of carbapenem resistance and hypervirulence, risk factors for susceptibility, infection syndromes, treatment regimens, real-time surveillance and preventive control measures. It also outlines the resistance mechanisms of antimicrobial drugs used to treat this pathogen, providing insights for developing new drugs, combination therapies, and a "One Health" approach. Narrowing the scope of surveillance but intensifying implementation efforts is a viable solution. Monitoring of strains can be focused primarily on hospitals and urban wastewater treatment plants.
Collapse
Affiliation(s)
- Ting-Yu Lei
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Bin-Bin Liao
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Liang-Rui Yang
- First Affiliated Hospital of Dali University, Yunnan 671000, China.
| | - Ying Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Xu-Bing Chen
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
7
|
Tu Y, Gao H, Zhao R, Yan J, Wu X. Molecular characteristics and pathogenic mechanisms of KPC-3 producing hypervirulent carbapenem-resistant Klebsiella pneumoniae (ST23-K1). Front Cell Infect Microbiol 2024; 14:1407219. [PMID: 39211794 PMCID: PMC11358127 DOI: 10.3389/fcimb.2024.1407219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study aimed to comprehensively investigate hypervirulent carbapenem-resistant Klebsiella pneumoniae (CR-hvKP) in the Ningbo region. Importantly, we sought to elucidate its molecular characteristics and pathogenic mechanisms. This information will provide evidence-based insights for preventing and controlling nosocomial infections and facilitate improved clinical diagnosis and treatment in this region. Methods 96 carbapenem-resistant Klebsiella pneumoniae strains were collected from the Ningbo region between January 2021 and December 2022. Whole genome sequencing and bioinformatic methods were employed to identify and characterize CR-hvKP strains at the molecular level. The minimum inhibitory concentrations (MICs) of common clinical antibiotics were determined using the VITEK-2 Compact automatic microbiological analyzer. Plasmid conjugation experiments evaluated the transferability of resistance plasmids. Finally, mouse virulence assays were conducted to explore the pathogenic mechanisms. Results Among the 96 strains, a single CR-hvKP strain, designated CR-hvKP57, was identified, with an isolation frequency of 1.04%. Whole-genome sequencing revealed the strain to be ST23 serotype with a K1 capsule. This strain harbored three plasmids. Plasmid 1, a pLVPK-like virulence plasmid, carried multiple virulence genes, including rmpA, rmpA2, iroB, iucA, and terB. Plasmid 2 contained transposable element sequences such as IS15 and IS26. Plasmid 3, classified as a resistance plasmid, harbored the bla KPC-3 carbapenem resistance gene. Mouse virulence assays demonstrated a high mortality rate associated with CR-hvKP57 infection. Additionally, there was a significant increase in IL-1β, IL-6, and TNF-α levels in response to CR-hvKP57 infection, indicating varying degrees of inflammatory response. Western blot experiments further suggested that the pathogenic mechanism involves activation of the NF-κB signaling pathway. Conclusion This study confirms the emergence of hypervirulent CR-hvKP in the Ningbo region, which likely resulted from the acquisition of a pLVPK-like virulence plasmid and a bla KPC-3 resistance plasmid by the ST23-K1 type Klebsiella pneumoniae. Our findings highlight the urgent need for more judicious use of antibiotics to limit the emergence of resistance. Additionally, strengthening infection prevention and control measures is crucial to minimize the spread of virulence and resistance plasmids.
Collapse
|
8
|
Pu D, Zhao J, Chang K, Zhuo X, Cao B. "Superbugs" with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China. Sci Bull (Beijing) 2023; 68:2658-2670. [PMID: 37821268 DOI: 10.1016/j.scib.2023.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Although hypervirulent Klebsiella pneumoniae (hvKP) can produce community-acquired infections that are fatal in young and adult hosts, such as pyogenic liver abscess, endophthalmitis, and meningitis, it has historically been susceptible to antibiotics. Carbapenem-resistant K. pneumoniae (CRKP) is usually associated with urinary tract infections acquired in hospitals, pneumonia, septicemias, and soft tissue infections. Outbreaks and quick spread of CRKP in hospitals have become a major challenge in public health due to the lack of effective antibacterial treatments. In the early stages of K. pneumoniae development, HvKP and CRKP first appear as distinct routes. However, the lines dividing the two pathotypes are vanishing currently, and the advent of carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) is devastating as it is simultaneously multidrug-resistant, hypervirulent, and highly transmissible. Most CR-hvKP cases have been reported in Asian clinical settings, particularly in China. Typically, CR-hvKP develops when hvKP or CRKP acquires plasmids that carry either the carbapenem-resistance gene or the virulence gene. Alternatively, classic K. pneumoniae (cKP) may acquire a hybrid plasmid carrying both genes. In this review, we provide an overview of the key antimicrobial resistance mechanisms, virulence factors, clinical presentations, and outcomes associated with CR-hvKP infection. Additionally, we discuss the possible evolutionary processes and prevalence of CR-hvKP in China. Given the wide occurrence of CR-hvKP, continued surveillance and control measures of such organisms should be assigned a higher priority.
Collapse
Affiliation(s)
- Danni Pu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Kang Chang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Xianxia Zhuo
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
9
|
Clonal transmission of polymyxin B-resistant hypervirulent Klebsiella pneumoniae isolates coharboring bla NDM-1 and bla KPC-2 in a tertiary hospital in China. BMC Microbiol 2023; 23:64. [PMID: 36882683 PMCID: PMC9990273 DOI: 10.1186/s12866-023-02808-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The prevalence of multidrug-resistant hypervirulent K. pneumoniae (MDR-hvKP) has gradually increased. It poses a severe threat to human health. However, polymyxin-resistant hvKP is rare. Here, we collected eight polymyxin B-resistant K. pneumoniae isolates from a Chinese teaching hospital as a suspected outbreak. RESULTS The minimum inhibitory concentrations (MICs) were determined by the broth microdilution method. HvKP was identified by detecting virulence-related genes and using a Galleria mellonella infection model. Their resistance to serum, growth, biofilm formation, and plasmid conjugation were analyzed in this study. Molecular characteristics were analyzed using whole-genome sequencing (WGS) and mutations of chromosome-mediated two-component systems pmrAB and phoPQ, and the negative phoPQ regulator mgrB to cause polymyxin B (PB) resistance were screened. All isolates were resistant to polymyxin B and sensitive to tigecycline; four were resistant to ceftazidime/avibactam. Except for KP16 (a newly discovered ST5254), all were of the K64 capsular serotype and belonged to ST11. Four strains co-harbored blaKPC-2, blaNDM-1, and the virulence-related genes prmpA, prmpA2, iucA, and peg344, and were confirmed to be hypervirulent by the G. mellonella infection model. According to WGS analysis, three hvKP strains showed evidence of clonal transmission (8-20 single nucleotide polymorphisms) and had a highly transferable pKOX_NDM1-like plasmid. KP25 had multiple plasmids carrying blaKPC-2, blaNDM-1, blaSHV-12, blaLAP-2, tet(A), fosA5, and a pLVPK-like virulence plasmid. Tn1722 and multiple additional insert sequence-mediated transpositions were observed. Mutations in chromosomal genes phoQ and pmrB, and insertion mutations in mgrB were major causes of PB resistance. CONCLUSIONS Polymyxin-resistant hvKP has become an essential new superbug prevalent in China, posing a serious challenge to public health. Its epidemic transmission characteristics and mechanisms of resistance and virulence deserve attention.
Collapse
|
10
|
Lin TH, Wu CC, Tseng CY, Fang JH, Lin CT. Effects of gallic acid on capsular polysaccharide biosynthesis in Klebsiella pneumoniae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1255-1262. [PMID: 34326026 DOI: 10.1016/j.jmii.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Klebsiella pneumoniae is a gram-negative opportunistic pathogen that causes diseases mostly in immunocompromised individuals. Recently, hypervirulent K. pneumoniae strains also cause severe disease in healthy individuals. Capsular polysaccharide (CPS) is the major virulence determinant in hypervirulent K. pneumoniae and protects the cell against the bactericidal activity of the immune system. Gallic acid (GA), a natural phenolic compound, is known to exhibit wide spectrum antibacterial activity; however, its effect on hypervirulent K. pneumoniae remains largely unresolved. We aimed to identify the effects of GA on CPS biosynthesis in hypervirulent K. pneumoniae. METHODS Antibacterial activity of GA was evaluated by counting colonies. CPS amount was determined by glucuronic acid content. The transcriptions of cps gene cluster were measured by quantitative real time PCR (qRT-PCR) and the β-galactosidase activity. The effect of GA on the resistance of K. pneumoniae to streptonigrin (SNG), an iron-activated antibiotic, was evaluated. The effect of GA on the resistance of K. pneumoniae to serum killing and phagocytosis by macrophages was observed. RESULTS GA inhibited the growth and CPS biosynthesis in K. pneumoniae. GA may affect the iron availability in K. pneumoniae, thus possibly repressing the cps transcription. In addition, GA reduced the resistance of K. pneumoniae to serum killing and enhanced its susceptibility to phagocytosis. CONCLUSION GA possesses bactericidal activity and inhibits the CPS biosynthesis in hypervirulent K. pneumoniae, thereby facilitating pathogen clearance by the host immune system. Therefore, GA may represent a promising strategy for the prevention or treatment of patients with hypervirulent K. pneumoniae infections.
Collapse
Affiliation(s)
- Tien-Huang Lin
- Division of Urology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Chien-Chen Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.
| | - Cheng-Yin Tseng
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; Section of Infectious Disease, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan.
| | - Jing-Han Fang
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan.
| | - Ching-Ting Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
11
|
Mao LC, Li SH, Peng XX, Li H. Global transcriptional regulator FNR regulates the pyruvate cycle and proton motive force to play a role in aminoglycosides resistance of Edwardsiella tarda. Front Microbiol 2022; 13:1003586. [PMID: 36160231 PMCID: PMC9490114 DOI: 10.3389/fmicb.2022.1003586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial metabolism is related to resistance and susceptibility to antibiotics. Fumarate and nitrate reduction regulatory protein (FNR) is a global transcriptional regulator that regulates metabolism. However, the role of FNR in antibiotic resistance is elusive. Here, fnr deletion mutant was constructed and used to test the role in Edwardsiella tarda EIB202 (EIB202). Δfnr exhibited elevated sensitivity to aminoglycosides. The mutant had a globally enhanced metabolome, with activated alanine, aspartate, and glutamate metabolism and increased abundance of glutamic acid as the most impacted pathway and crucial biomarker, respectively. Glutamate provides a source for the pyruvate cycle (the P cycle) and thereby relationship between exogenous glutamate-activated P cycle and gentamicin-mediated killing was investigated. The activated P cycle elevated proton motive force (PMF). Consistently, exogenous glutamate potentiated gentamicin-mediated killing to EIB202 as the similarity as the loss of FNR did. These findings reveal a previously unknown regulation by which FNR downregulates glutamate and in turn inactivates the P cycle, which inhibits PMF and thereby exhibits the resistance to aminoglycosides.
Collapse
Affiliation(s)
- Li-Chun Mao
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Shao-Hua Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Hui Li,
| |
Collapse
|
12
|
Xu C, Dong N, Chen K, Yang X, Zeng P, Hou C, Chi Chan EW, Yao X, Chen S. Bactericidal, anti-biofilm, and anti-virulence activity of vitamin C against carbapenem-resistant hypervirulent Klebsiella pneumoniae. iScience 2022; 25:103894. [PMID: 35243252 PMCID: PMC8873610 DOI: 10.1016/j.isci.2022.103894] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Affiliation(s)
- Chen Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ping Zeng
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Corresponding author
| |
Collapse
|
13
|
Wang B, Pan F, Han D, Zhao W, Shi Y, Sun Y, Wang C, Zhang T, Zhang H. Genetic Characteristics and Microbiological Profile of Hypermucoviscous Multidrug-Resistant Klebsiella variicola Coproducing IMP-4 and NDM-1 Carbapenemases. Microbiol Spectr 2022; 10:e0158121. [PMID: 35019673 PMCID: PMC8823660 DOI: 10.1128/spectrum.01581-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
We report here a hypermucoviscous, New Delhi metallo-β-lactamase 1 (NDM-1) and imipenemase 4 (IMP-4) carbapenemases-coproducing Klebsiella variicola isolate obtained from a pediatric patient. This strain was resistant to carbapenems and most other β-lactams. Although hypermucoviscous, this strain possessed attenuated virulence according to serum killing assay and Galleria mellonella infection model. Notably, two copies of blaNDM-1 were contained on two tandem ISCR1 elements and coexisted with blaIMP-4 in a novel hybrid multidrug resistance plasmid. This is the first description of the coexistence of blaNDM-1 and blaIMP-4 in a single plasmid of hypermucoviscous K. variicola. IMPORTANCE As an important member of the Klebsiella pneumoniae complex, Klebsiella variicola is poorly studied as an emerging human pathogen. We, for the first time, report a unique K. variicola isolated from a pediatric patient in China. This isolate exhibited hypermucoviscosity, a classic hypervirulence characteristic of K. pneumoniae, and contained multiple carbapenem-resistant genes, including blaIMP-1 and blaNDM-1. Interestingly, these antimicrobial resistance genes were located on a novel hybrid plasmid, and our results suggested that this plasmid might have been introduced from K. pneumoniae and undergone a series of integration and recombination evolutionary events. Overall, our study provides more insight into K. variicola and highlights its superior capability to acquire and maintain foreign resistance genes.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wantong Zhao
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yingying Shi
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yan Sun
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chun Wang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tiandong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
14
|
Shankar C, Basu S, Lal B, Shanmugam S, Vasudevan K, Mathur P, Ramaiah S, Anbarasu A, Veeraraghavan B. Aerobactin Seems To Be a Promising Marker Compared With Unstable RmpA2 for the Identification of Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae: In Silico and In Vitro Evidence. Front Cell Infect Microbiol 2021; 11:709681. [PMID: 34589442 PMCID: PMC8473682 DOI: 10.3389/fcimb.2021.709681] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background The incidence of hypervirulent (hv) carbapenem-resistant (CR) Klebsiella pneumoniae (Kp) is increasing globally among various clones and is also responsible for nosocomial infections. The CR-hvKp is formed by the uptake of a virulence plasmid by endemic high-risk clones or by the uptake of plasmids carrying antimicrobial resistance genes by the virulent clones. Here, we describe CR-hvKp from India belonging to high-risk clones that have acquired a virulence plasmid and are phenotypically unidentified due to lack of hypermucoviscosity. Methods Twenty-seven CRKp isolates were identified to possess rmpA2 by whole-genome sequencing; and resistance and virulence determinants were characterized. By in silico protein modeling (and validation), protein backbone stability analysis, and coarse dynamics study, the fitness of RmpA, RmpA2, and aerobactin-associated proteins-IucA and IutA, were determined to establish a reliable marker for clinical identification of CR-hvKp. Results The CR-hvKp belonged to multidrug-resistant (MDR) high-risk clones such as CG11, CG43, ST15, and ST231 and carried OXA-232 as the predominant carbapenemase followed by NDM. The virulence plasmid belonged to IncHI1B replicon type and carried frameshifted and truncated rmpA and rmpA2. This resulted in a lack of hypermucoviscous phenotype. However, functional aerobactin was expressed in all high-risk clones. In silico analysis portrayed that IucA and IutA were more stable than classical RmpA. Furthermore, IucA and IutA had lower conformational fluctuations in the functional domains than the non-functional RmpA2, which increases the fitness cost of the latter for its maintenance and expression among CR-hvKp. Hence, RmpA and RmpA2 are likely to be lost among CR-hvKp owing to the increased fitness cost while coding for essential antimicrobial resistance and virulence factors. Conclusion Increasing incidence of convergence of AMR and virulence is observed among K. pneumoniae globally, which warrants the need for reliable markers for identifying CR-hvKp. The presence of non-functional RmpA2 among high-risk clones highlights the significance of molecular identification of CR-hvKp. The negative string test due to non-functional RmpA2 among CR-hvKp isolates challenges phenotypic screening and faster identification of this pathotype. This can potentially be counteracted by projecting aerobactin as a stable, constitutively expressed, and functional marker for rapidly evolving CR-hvKp.
Collapse
Affiliation(s)
- Chaitra Shankar
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Soumya Basu
- Medical & Biological Computing Laboratory, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, India
| | - Binesh Lal
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Sathiya Shanmugam
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Purva Mathur
- Department of Laboratory Medicine, Jai Prakash Narayan Apex, Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| |
Collapse
|
15
|
Zhu J, Wang T, Chen L, Du H. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front Microbiol 2021; 12:642484. [PMID: 33897652 PMCID: PMC8060575 DOI: 10.3389/fmicb.2021.642484] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) has spread globally since first described in the Asian Pacific Rim. It is an invasive variant that differs from the classical K. pneumoniae (cKP), with hypermucoviscosity and hypervirulence, causing community-acquired infections, including pyogenic liver abscess, pneumonia, meningitis, and endophthalmitis. It utilizes a battery of virulence factors for survival and pathogenesis, such as capsule, siderophores, lipopolysaccharide, fimbriae, outer membrane proteins, and type 6 secretion system, of which the former two are dominant. This review summarizes these hvKP-associated virulence factors in order to understand its molecular pathogenesis and shed light on new strategies to improve the prevention, diagnosis, and treatment of hvKP-causing infection.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Hernández M, López-Urrutia L, Abad D, De Frutos Serna M, Ocampo-Sosa AA, Eiros JM. First Report of an Extensively Drug-Resistant ST23 Klebsiella pneumoniae of Capsular Serotype K1 Co-Producing CTX-M-15, OXA-48 and ArmA in Spain. Antibiotics (Basel) 2021; 10:antibiotics10020157. [PMID: 33557209 PMCID: PMC7913926 DOI: 10.3390/antibiotics10020157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
An extensively drug-resistant (XDR) Klebsiella pneumoniae isolate MS3802 from a tracheostomy exudate was whole-genome sequenced using MiSeq and Oxford Nanopore MinION platforms in order to identify the antimicrobial resistance and virulence determinates and their genomic context. Isolate MS3802 belonged to the clone ST23 and presented a capsular serotype K1, associated with hypervirulent K. pneumoniae (hvKp) isolates. The isolate harboured a chromosomally encoded blaCTX-M-15 gene and contained a large IncHI1B hybrid virulence/resistance plasmid carrying another copy of the blaCTX-M-15 and the virulence factors iucABCD-iutA, iroBCDN, rmpA and rmpA2. The carbapenemase gene blaOXA-48 was found in a Tn1999-like transposon and the 16S rRNA methylase armA gen located in the vicinity of other antibiotic-resistant genes on an IncM2 plasmid. This study represents, to the best of our knowledge, the first description of a blaCTX-M-15-, blaOXA-48- and armA-harbouring K. pneumoniae of ST23 and capsular serotype K1 in Spain. Our report emphasizes the importance of implementing new surveillance strategies to monitor the risk of emergence and spread of such XDR and hypervirulent K. pneumoniae isolates.
Collapse
Affiliation(s)
- Marta Hernández
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León (ITACyL), 47071 Valladolid, Spain; (M.H.); (D.A.)
| | - Luis López-Urrutia
- Servicio de Microbiología, Hospital Universitario del Río Hortega, 47012 Valladolid, Spain; (L.L.-U.); (M.D.F.S.); (J.M.E.)
| | - David Abad
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León (ITACyL), 47071 Valladolid, Spain; (M.H.); (D.A.)
| | - Mónica De Frutos Serna
- Servicio de Microbiología, Hospital Universitario del Río Hortega, 47012 Valladolid, Spain; (L.L.-U.); (M.D.F.S.); (J.M.E.)
| | - Alain A. Ocampo-Sosa
- Laboratorio de Microbiología Clínica y Molecular, Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain
- Correspondence: ; Tel.: +34-942-944-382
| | - José María Eiros
- Servicio de Microbiología, Hospital Universitario del Río Hortega, 47012 Valladolid, Spain; (L.L.-U.); (M.D.F.S.); (J.M.E.)
| |
Collapse
|
17
|
Neill CJ, Harris S, Goldstone RJ, Lau ECHT, Henry TB, Yiu HHP, Smith DGE. Antibacterial Activities of Ga(III) against E. coli Are Substantially Impacted by Fe(III) Uptake Systems and Multidrug Resistance in Combination with Oxygen Levels. ACS Infect Dis 2020; 6:2959-2969. [PMID: 32960047 DOI: 10.1021/acsinfecdis.0c00425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The continued emergence and spread of antimicrobial resistance (AMR), particularly multidrug resistant (MDR) bacteria, are increasing threats driving the search for additional and alternative antimicrobial agents. The World Health Organization (WHO) has categorized bacterial risk levels and includes Escherichia coli among the highest priority, making this both a convenient model bacterium and a clinically highly relevant species on which to base investigations of antimicrobials. Among many compounds examined for use as antimicrobials, Ga(III) complexes have shown promise. Nonetheless, the spectrum of activities, susceptibility of bacterial species, mechanisms of antimicrobial action, and bacterial characteristics influencing antibacterial actions are far from being completely understood; these are important considerations for any implementation of an effective antibacterial agent. In this investigation, we show that an alteration in growth conditions to physiologically relevant lowered oxygen (anaerobic) conditions substantially increases the minimum inhibitory concentrations (MICs) of Ga(III) required to inhibit growth for 46 wild-type E. coli strains. Several studies have implicated a Trojan horse hypothesis wherein bacterial Fe uptake systems have been linked to the promotion of Ga(III) uptake and result in enhanced antibacterial activity. Our studies show that, conversely, the carriage of accessory Fe uptake systems (Fe_acc) significantly increased the concentrations of Ga(III) required for antibacterial action. Similarly, it is shown that MDR strains are more resistant to Ga(III). The increased tolerance of Fe_acc/MDR strains was apparent under anaerobic conditions. This phenomenon of heightened tolerance has not previously been shown although the mechanisms remain to be defined. Nonetheless, this further highlights the significant contributions of bacterial metabolism, fitness, and AMR characteristics and their implications in evaluating novel antimicrobials.
Collapse
Affiliation(s)
- Christopher J. Neill
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Susan Harris
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Robert J. Goldstone
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Elizabeth C. H. T. Lau
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Theodore B. Henry
- The Institute of Life and Earth Sciences (ILES), School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Humphrey H. P. Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - David G. E. Smith
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|