1
|
Zhao X, Yu X, Gao J, Qu J, Borjigin Q, Meng T, Li D. Using Klebsiella sp. and Pseudomonas sp. to Study the Mechanism of Improving Maize Seedling Growth Under Saline Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:436. [PMID: 39942998 PMCID: PMC11820787 DOI: 10.3390/plants14030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
The increasing salinization of cultivated soil worldwide has led to a significant reduction in maize production. Using saline-alkaline-tolerant growth-promoting bacteria (PGPR) in the rhizosphere can significantly improve the saline tolerance of maize and ensure the stability of maize yields, which has become a global research hotspot. This study screened salt-tolerant microorganisms Klebsiella sp. (GF2) and Pseudomonas sp. (GF7) from saline soil to clarify the mechanism in improving the saline tolerance of maize. In this study, different application treatments (GF2, GF7, and GF2 + GF7) and no application (CK) were set up to explore the potential ecological relationships between the saline tolerance of maize seedlings, soil characteristics, and microorganisms. The results showed that co-occurrence network and Zi-Pi analysis identified Klebsiella and Pseudomonas as core microbial communities in the rhizosphere soil of maize seedlings grown in saline soil. The deterministic process of microbial assembly mainly controlled the bacterial community, whereas bacteria and fungi were governed by random processes. The application of saline-alkaline-resistant PGPR under saline stress significantly promoted maize seedling growth, increased the activity of soil growth-promoting enzymes, and enhanced total nitrogen, soil organic carbon, and microbial carbon and nitrogen contents. Additionally, it reduced soil salt and alkali ion concentrations [electrical conductivity (EC) and exchangeable Na+]. Among them, GF2 + GF7 treatment had the best effect, indicating that saline-alkaline-tolerant PGPR could directly or indirectly improve the saline tolerance of maize seedlings by improving the rhizosphere soil ecological environment. EC was the determining factor to promote maize seedling growth under saline-alkaline stress (5.56%; p < 0.01). The results provided an important theoretical reference that deciphers the role of soil factors and microecology in enhancing the saline tolerance of maize.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Hohhot 010010, China; (X.Z.)
- Institute of Maize Research, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Xiaofang Yu
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Hohhot 010010, China; (X.Z.)
| | - Julin Gao
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Hohhot 010010, China; (X.Z.)
| | - Jiawei Qu
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Hohhot 010010, China; (X.Z.)
| | - Qinggeer Borjigin
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Hohhot 010010, China; (X.Z.)
| | - Tiantian Meng
- College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Dongbo Li
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Hohhot 010010, China; (X.Z.)
| |
Collapse
|
2
|
He M, Shen C, Peng S, Wang Y, Sun J, Zhang J, Wang Y. The influence of soil salinization, induced by the backwater effect of the Yellow River, on microbial community dynamics and ecosystem functioning in arid regions. ENVIRONMENTAL RESEARCH 2024; 262:119854. [PMID: 39197488 DOI: 10.1016/j.envres.2024.119854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
Irrigation practices and groundwater levels are critical factors contributing to soil salinization in arid and semi-arid regions. However, the impact of soil salinization resulting from Yellow River water irrigation and recharge on microbial communities and their functions in the Huinong District has not been thoroughly documented. In this study, high-throughput sequencing technology was employed to analyze the diversity, composition, and structure of bacterial and fungal communities across a gradient of salinized soils. The results indicated that the alpha diversity of bacterial communities was significantly higher in slightly saline soils compared to highly saline soils. Soil salinization notably influenced the composition of both bacterial and fungal communities. Highly salinized soils were enriched with bacterial taxa such as Halomonas, Salinimicrobium, Pseudomonas, Solibacillus, and Kocuria, as well as fungal taxa including Emericellopsis, Alternaria, and Podospora. In these highly saline soils, bacterial taxa associated with iron respiration, sulfur respiration, and hydrocarbon degradation were more prevalent, whereas fungal taxa linked to functions such as soil animal pathogens, arbuscular mycorrhizal symbiosis, endophytes, dung saprotrophy, leaf saprotrophy, soil saprotrophy, fungal parasitism, and plant pathogenicity were less abundant. Random forest analysis identified nine bacterial and eighteen fungal taxa as potential biomarkers for salinity discrimination in saline soils. Symbiotic network analysis further revealed that soil salinization pressure reduced the overall complexity and stability of bacterial and fungal communities. Additionally, bacterial community assembly showed a tendency shift from stochastic to deterministic processes in response to increasing salinity, while fungal community assembly remained dominated by deterministic processes. provide robust evidence that soil salinity is a major inhibitor of soil biogeochemical processes in the Huinong District and plays a critical role in shaping bacterial and fungal communities, their symbiotic networks, and their assembly processes.
Collapse
Affiliation(s)
- Mengyuan He
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Cong Shen
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuanduo Wang
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Jianbin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Junhua Zhang
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan, 750021, China; Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Yinchuan, 750021, China.
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
3
|
Zhao XY, Gao JL, Yu XF, Borjigin QG, Qu J, Zhang BZ, Zhang SN, Li Q, Guo JA, Li DB. Evaluation of the microbial community in various saline alkaline-soils driven by soil factors of the Hetao Plain, Inner Mongolia. Sci Rep 2024; 14:28931. [PMID: 39572617 PMCID: PMC11582701 DOI: 10.1038/s41598-024-80328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Soil microbial communities play a crucial role in maintaining diverse ecosystem functions within the saline-alkali soil ecosystems. Therefore, in this study, we collected various saline-alkaline soils from across the Inner Mongolia Hetao irrigation area. The soil chemical properties were analyzed, and the microbial diversity of bacteria and fungi was measured using 16 S rRNA and ITS rRNA amplicon sequencing. The dynamic relationship between the soil microbial community and soil factors was analyzed using the ABT (Aggregate Enhanced tree) model, the co-occurrence network, and the structural equation model. The results indicated that electrical conductivity (EC) was the biggest driving force of various saline-alkaline soils, affecting the community structure of bacteria (22.80%) and fungi (21.30%). The soil samples were categorized into three treatment levels based on their EC values: the low-salinity group (L, EC: 0-1 ms/cm, n = 10), the medium-salinity group (M, EC: 1-2 ms/cm, n = 8), and the high-salinity group (H, EC > 2 ms/cm, n = 6). The results demonstrated a negative correlation between microbial abundance and salinity-alkalinity, while revealing an enhanced interrelationship among species. The alterations in bacterial (12.36%) and fungal (22.92%) communities in various saline-alkali soils were primarily driven by saline-alkali ions, which served as the principal direct factors. The negative correlation between EC and SOM exhibited the highest magnitude, whereas the positive correlation between soil organic carbon and EC demonstrated the greatest strength. Therefore, it was further substantiated that EC played a pivotal role in shaping the distinct microbial communities in saline-alkali soils.
Collapse
Affiliation(s)
- Xiao-Yu Zhao
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Huhehaote, China
- Institute of Maize Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhehaote, China
| | - Ju-Lin Gao
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Huhehaote, China.
| | - Xiao-Fang Yu
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Huhehaote, China.
| | - Qing-Geer Borjigin
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Huhehaote, China
| | - Jiawei Qu
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Huhehaote, China
| | - Bi-Zhou Zhang
- Institute of Maize Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhehaote, China
| | - Sai-Nan Zhang
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Huhehaote, China
- Institute of Maize Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhehaote, China
| | - Qiang Li
- Institute of Maize Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhehaote, China
| | - Jiang-An Guo
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Huhehaote, China
- Institute of Maize Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhehaote, China
| | - Dong-Bo Li
- Inner Mongolia Autonomous Region Engineering Research Center for In-Situ Maize Stalk Returning Microbiology, Inner Mongolia Agricultural University, Huhehaote, China
| |
Collapse
|
4
|
Wei TJ, Li G, Cui YR, Xie J, Teng X, Wang YJ, Li ZH, Guan FC, Liang ZW. Compost mediates the recruitment of core bacterial communities in alfalfa roots to enhance their productivity potential in saline-sodic soils. Front Microbiol 2024; 15:1502536. [PMID: 39651351 PMCID: PMC11622699 DOI: 10.3389/fmicb.2024.1502536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Composting is one of the effective environmental protection and sustainable measures for improving soil quality and increasing crop yield. However, due to the special physical and chemical properties of saline-sodic soil and the complex rhizosphere microecological environment, the potential mechanism of regulating plant growth after applying compost in saline-sodic soil remains elusive. Methods Here, we investigated the effects of different compost addition rates (0, 5, 15, 25%) on plant growth traits, soil chemical properties, and rhizosphere bacterial community structure. Results The results showed that compost promoted the accumulation of plant biomass and root growth, increased soil nutrients, and enhanced the diversity and complexity of the rhizosphere bacterial communities. Moreover, the enriched core bacterial ASVs (Amplicon Sequence Variants) in compost treatment could be reshaped, mainly including dominant genera, such as Pseudomonas, Devosia, Novosphingobium, Flavobacterium, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium. The functions of these ASVs were energy resources and nitrogen cycle functions, suggesting the roles of these ASVs in improving plant root nutrient resource acquisition for alfalfa growth. The contents of available potassium, available phosphorus, total nitrogen, and organic carbon of the soil surrounding the roots, the root length, root surface area, root volume, and root tips affected the abundance of the core bacterial ASVs, and the soil chemical properties contributed more to the effect of plant biomass. Discussion Overall, our study strengthens the understanding of the potentially important taxa structure and function of plant rhizosphere bacteria communities, and provides an important reference for developing agricultural microbiome engineering techniques to improve root nutrient uptake and increase plant productivity in saline-sodic soils.
Collapse
Affiliation(s)
- Tian-Jiao Wei
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, China
| | - Guang Li
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, China
| | - Yan-Ru Cui
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, China
| | - Jiao Xie
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, China
| | - Xing Teng
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, China
| | - Yan-Jing Wang
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, China
| | - Zhong-He Li
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, China
| | - Fa-Chun Guan
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, China
| | - Zheng-Wei Liang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
Zhang L, Yang J, Ge AH, Xie W, Yao R, Wang X. Salinity drives niche differentiation of soil bacteria and archaea in Hetao Plain, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122977. [PMID: 39437693 DOI: 10.1016/j.jenvman.2024.122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Soil salinization is a critical environmental issue that limits plant productivity and disrupts ecosystem functions. As important indicators of soil environment, soil microbes play essential roles in driving nutrient cycling and sustaining ecosystem services. Therefore, understanding how microbial communities and their functional potentials respond to varying levels of soil salinization across different land use types is crucial for the restoration and management of salt-affected ecosystems. In this study, we randomly selected 63 sites across the Hetao Plain, covering an area of ∼2500 km2. Our results showed that both salinity- and fertility-related soil parameters were significantly correlated with bacterial and archaeal diversities, with soil salinity emerging as the stronger predictor of prokaryotic diversity. Intriguingly, bacterial and archaeal communities were tightly interlinked but displayed opposite trends in response to environmental factors, indicating a clear microbial niche differentiation driven by soil salinity. Moreover, the generalist functions of bacteria and archaea (e.g., chemoheterotrophy) exhibited contrasting responses to environmental parameters, while their specialist functions (e.g., nitrification) responded consistently. These findings highlight the pivotal role of soil salinity in shaping the niche differentiation of bacterial and archaeal communities in saline soils, providing insights to guide salinity-centered restoration strategies for effective marginal land management.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
| | - Jingsong Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - An-Hui Ge
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenping Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Rongjiang Yao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiangping Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
6
|
Gangwar RK, Táncsics A, Makádi M, Farkas M, Cserháti M, Michéli E, Fuchs M, Szegi T. Bacterial community composition of Hungarian salt-affected soils under different land uses. Biol Futur 2024; 75:339-350. [PMID: 39030426 DOI: 10.1007/s42977-024-00235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Salinization and sodification are serious and worldwide growing threats to healthy soil functions. Although plants developed a plethora of traits to cope with high salinity, soil bacteria are also essential players of the adaptation process. However, there is still lack of knowledge on how other biotic and abiotic factors, such as land use or different soil properties, affect the bacterial community structure of these soils. Therefore, besides soil chemical and physical investigations, bacterial communities of differently managed salt-affected soils were analysed through 16S rRNA gene Illumina amplicon sequencing and compared. Results have shown that land use and soil texture were the main drivers in shaping the bacterial community structure of the Hungarian salt-affected soils. It was observed that at undisturbed pasture and meadow sites, soil texture and the ratio of vegetation cover were the determinative factors shaping the bacterial community structures, mainly at the level of phylum Acidobacteriota. Sandy soil texture promoted the high abundance of members of the class Blastocatellia, while at the slightly disturbed meadow soil showing high clay content was dominated by members of the class Acidobacteriia. The OTUs belonging to the class Ktedonobacteria, which were reported mostly in geothermal sediments, reached a relatively high abundance in the meadow soil.
Collapse
Affiliation(s)
- Ravi Kumar Gangwar
- Department of Soil Science, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2100, Hungary.
| | - Marianna Makádi
- Research Institute of Nyíregyháza, IAREF, University of Debrecen, Westsik Vilmos utca 4-6, Nyíregyháza, 4400, Hungary
| | - Milán Farkas
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Mátyás Cserháti
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Erika Michéli
- Department of Soil Science, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Márta Fuchs
- Department of Soil Science, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Tamás Szegi
- Department of Soil Science, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2100, Hungary
| |
Collapse
|
7
|
Liu X, Zhang Z, Lu M, Wang Y, Ren J. Research on Ground-Based Remote-Sensing Inversion Method for Soil Salinity Information Based on Crack Characteristics and Spectral Response. AGRONOMY 2024; 14:1837. [DOI: 10.3390/agronomy14081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The precise quantification of soil salinity and the spatial distribution are paramount for proficiently managing and remediating salinized soils. This study aims to explore a pioneering methodology for forecasting soil salinity by combining the spectroscopy of soda saline–alkali soil with crack characteristics, thereby facilitating the ground-based remote-sensing inversion of soil salinity. To attain this objective, a surface cracking experiment was meticulously conducted under controlled indoor conditions for 57 soda saline–alkali soil samples from the Songnen Plain of China. The quantitative parameters for crack characterization, encompassing the length and area of desiccation cracks, together with the contrast texture feature were methodically derived. Furthermore, spectral reflectance of the cracked soil surface was measured. A structural equation model (SEM) was then employed for the estimation of soil salt parameters, including electrical conductivity (EC1:5), Na+, pH, HCO3−, CO32−, and the total salinity. The investigation unveiled notable associations between different salt parameters and crack attributes, alongside spectral reflectance measurements (r = 0.52–0.95), yet both clay content and mineralogy had little effect on the cracking process due to its low activity index. In addition, the presence of desiccation cracks accentuated the overall spectral contrast of salt-affected soil samples. The application of SEMs facilitated the concurrent prediction of multiple soil salt parameters alongside the regression analysis for individual salt parameters. Nonetheless, this study confers the advantage of the swift synchronous observation of multiple salt parameters whilst furnishing lucid interpretation and pragmatic utility. This study helps us to explore the mechanism of soil salinity on the surface cracking of soda saline–alkali soil in the Songnen Plain of China, and it also provides an effective solution for quickly and accurately predicting soil salt content using crack characteristics, which also provides a new perspective for the hyperspectral measurement of saline–alkali soils.
Collapse
Affiliation(s)
- Xiaozhen Liu
- College of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Zhuopeng Zhang
- College of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Mingxuan Lu
- College of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Yifan Wang
- College of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Jianhua Ren
- College of Geographical Science, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
8
|
Mariano DC, Dias GM, Castro MR, Tschoeke DA, de Oliveira FJ, Sérvulo EFC, Neves BC. Exploring the diversity and functional profile of microbial communities of Brazilian soils with high salinity and oil contamination. Heliyon 2024; 10:e34336. [PMID: 39082007 PMCID: PMC11284384 DOI: 10.1016/j.heliyon.2024.e34336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Environmental pollution associated with the petroleum industry is a major problem worldwide. Microbial degradation is extremely important whether in the extractive process or in bioremediation of contaminants. Assessing the local microbiota and its potential for degradation is crucial for implementing effective bioremediation strategies. Herein, contaminated soil samples of onshore oil fields from a semiarid region in the Northeast of Brazil were investigated using metagenomics and metataxonomics. These soils exhibited hydrocarbon contamination and high salinity indices, while a control sample was collected from an uncontaminated area. The shotgun analysis revealed the predominance of Actinomycetota and Pseudomonadota, while 16S rRNA gene amplicon analysis of the samples showed Actinomycetota, Bacillota, and Pseudomonadota as the most abundant. The Archaea domain phylotypes were assigned to Thermoproteota and Methanobacteriota. Functional analysis and metabolic profile of the soil microbiomes exhibited a broader metabolic repertoire in the uncontaminated soil, while degradation pathways and surfactant biosynthesis presented higher values in the contaminated soils, where degradation pathways of xenobiotic and aromatic compounds were also present. Biosurfactant synthetic pathways were abundant, with predominance of lipopeptides. The present work uncovers several microbial drivers of oil degradation and mechanisms of adaptation to high salinity, which are pivotal traits for sustainable soil recovery strategies.
Collapse
Affiliation(s)
- Danielly C.O. Mariano
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Graciela Maria Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Michele Rocha Castro
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Departamento de Biologia, Instituto Federal do Rio de Janeiro (IFRJ), Brazil
| | - Diogo Antonio Tschoeke
- Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Bianca Cruz Neves
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| |
Collapse
|
9
|
Zhao D, Ma H, Li S, Qi W. Seed germination demonstrates inter-annual variations in alkaline tolerance: a case study in perennial Leymus chinensis. BMC PLANT BIOLOGY 2024; 24:397. [PMID: 38745144 PMCID: PMC11092131 DOI: 10.1186/s12870-024-05112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND AIMS The escalating issue of soil saline-alkalization poses a growing global challenge. Leymus chinensis is a perennial grass species commonly used in the establishment and renewal of artificial grasslands that is relatively tolerant of saline, alkaline, and drought conditions. Nonetheless, reduced seed setting rates limit its propagation, especially on alkali-degraded grassland. Inter-annual variations have an important effect on seed yield and germination under abiotic stress, and we therefore examined the effect of planting year on seed yield components of L. chinensis. METHODS We grew transplanted L. chinensis seedlings in pots for two (Y2), three (Y3), or four (Y4) years and collected spikes for measurement of seed yield components, including spike length, seed setting rate, grain number per spike, and thousand seed weight. We then collected seeds produced by plants from different planting years and subjected them to alkaline stress (25 mM Na2CO3) for measurement of germination percentage and seedling growth. RESULTS The seed setting rate of L. chinensis decreased with an increasing number of years in pot cultivation, but seed weight increased. Y2 plants had a higher seed setting rate and more grains per spike, whereas Y4 plants had a higher thousand seed weight. The effects of alkaline stress (25 mM Na2CO3) on seed germination were less pronounced for the heavier seeds produced by Y4 plants. Na2CO3 caused a 9.2% reduction in shoot length for seedlings derived from Y4 seeds but a 22.3% increase in shoot length for seedlings derived from Y3 seeds. CONCLUSIONS Our findings demonstrate significant differences in seed yield components among three planting years of L. chinensis under pot cultivation in a finite space. Inter-annual variation in seed set may provide advantages to plants. Increased alkalinity tolerance of seed germination was observed for seeds produced in successive planting years.
Collapse
Affiliation(s)
- Dandan Zhao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, 256603, China
| | - Hongyuan Ma
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China.
| | - Shaoyang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
| | - Wenwen Qi
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
| |
Collapse
|
10
|
Xing J, Li X, Li Z, Wang X, Hou N, Li D. Remediation of soda-saline-alkali soil through soil amendments: Microbially mediated carbon and nitrogen cycles and remediation mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171641. [PMID: 38471593 DOI: 10.1016/j.scitotenv.2024.171641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Due to the high salt content and pH value, the structure of saline-sodic soil was deteriorated, resulting in decreased soil fertility and inhibited soil element cycling. This, in turn, caused significant negative impacts on crop growth, posing a major challenge to global agriculture and food security. Despite numerous studies aimed at reducing the loss of plant productivity in saline-sodic soils, the knowledge regarding shifts in soil microbial communities and carbon/nitrogen cycling during saline-sodic soil improvement remains incomplete. Consequently, we developed a composite soil amendment to explore its potential to alleviate salt stress and enhance soil quality. Our findings demonstrated that the application of this composite soil amendment effectively enhanced microbial salinity resistance, promotes soil carbon fixation and nitrogen cycling, thereby reducing HCO3- concentration and greenhouse gas emissions while improving physicochemical properties and enzyme activity in the soil. Additionally, the presence of CaSO4 contributed to a decrease in water-soluble Na+ content, resulting in reduced soil ESP and pH by 14.64 % and 7.42, respectively. Our research presents an innovative approach to rehabilitate saline-sodic soil and promote ecological restoration through the perspective of elements cycles.
Collapse
Affiliation(s)
- Jie Xing
- Heilongjiang Academy of Environmental Sciences, Harbin, Heilongjiang 150056, PR China
| | - Xianyue Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Zhaoquan Li
- Heilongjiang Academy of Environmental Sciences, Harbin, Heilongjiang 150056, PR China
| | - Xiaotong Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| |
Collapse
|
11
|
Jin PJ, Sun L, Liu YH, Wang KK, Narsing Rao MP, Mohamad OAA, Fang BZ, Li L, Gao L, Li WJ, Wang S. Two Novel Alkaliphilic Species Isolated from Saline-Alkali Soil in China: Halalkalibacter flavus sp. nov., and Halalkalibacter lacteus sp. nov. Microorganisms 2024; 12:950. [PMID: 38792780 PMCID: PMC11123755 DOI: 10.3390/microorganisms12050950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The degradation of farmland in China underscores the need for developing and utilizing saline-alkali soil. Soil health relies on microbial activity, which aids in the restoration of the land's ecosystem, and hence it is important to understand microbial diversity. In the present study, two Gram-stain-positive strains HR 1-10T and J-A-003T were isolated from saline-alkali soil. Preliminary analysis suggested that these strains could be a novel species. Therefore, the taxonomic positions of these strains were evaluated using polyphasic analysis. Phylogenetic and 16S rRNA gene sequence analysis indicated that these strains should be assigned to the genus Halalkalibacter. Cell wall contained meso-2,6-diaminopimelic acid. The polar lipids present in both strains were diphosphatidyl-glycerol, phosphatidylglycerol, and an unidentified phospholipid. The major fatty acids (>10%) were anteiso-C15:0, C16:0 and iso-C15:0. Average nucleotide identity and digital DNA#x2013;DNA hybridization values were below the threshold values (95% and 70%, respectively) for species delineation. Based on the above results, the strains represent two novel species of the genus Halalkalibacter, for which the names Halalkalibacter flavus sp. nov., and Halalkalibacter lacteus sp. nov., are proposed. The type strains are HR 1-10T (=GDMCC 1.2946T = MCCC 1K08312T = JCM 36285T), and J-A-003T (=GDMCC 1.2949T = MCCC 1K08417T = JCM 36286T).
Collapse
Affiliation(s)
- Pin-Jiao Jin
- Heilongjiang Academy of Black Soil Conservation and Utilization, Postdoctoral Station of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (P.-J.J.); (L.S.); (K.-K.W.)
| | - Lei Sun
- Heilongjiang Academy of Black Soil Conservation and Utilization, Postdoctoral Station of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (P.-J.J.); (L.S.); (K.-K.W.)
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
| | - Kang-Kang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Postdoctoral Station of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (P.-J.J.); (L.S.); (K.-K.W.)
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca 3460000, Chile;
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Postdoctoral Station of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (P.-J.J.); (L.S.); (K.-K.W.)
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.-H.L.); (O.A.A.M.); (B.-Z.F.); (L.L.); (L.G.)
| |
Collapse
|
12
|
Mucsi M, Borsodi AK, Megyes M, Szili-Kovács T. Response of the metabolic activity and taxonomic composition of bacterial communities to mosaically varying soil salinity and alkalinity. Sci Rep 2024; 14:7460. [PMID: 38553497 PMCID: PMC10980690 DOI: 10.1038/s41598-024-57430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Soil salinity and sodicity is a worldwide problem that affects the composition and activity of bacterial communities and results from elevated salt and sodium contents. Depending on the degree of environmental pressure and the combined effect of other factors, haloalkalitolerant and haloalkaliphilic bacterial communities will be selected. These bacteria play a potential role in the maintenance and restoration of salt-affected soils; however, until recently, only a limited number of studies have simultaneously studied the bacterial diversity and activity of saline-sodic soils. Soil samples were collected to analyse and compare the taxonomic composition and metabolic activity of bacteria from four distinct natural plant communities at three soil depths corresponding to a salinity‒sodicity gradient. Bacterial diversity was detected using 16S rRNA gene Illumina MiSeq amplicon sequencing. Community-level physiological profiles (CLPPs) were analysed using the MicroResp™ method. The genus-level bacterial composition and CLPPs differed significantly in soils with different alkaline vegetation. The surface soil samples also significantly differed from the intermediate and deep soil samples. The results showed that the pH, salt content, and Na+ content of the soils were the main edaphic factors influencing both bacterial diversity and activity. With salinity and pH, the proportion of the phylum Gemmatimonadota increased, while the proportions of Actinobacteriota and Acidobacteriota decreased.
Collapse
Affiliation(s)
- Márton Mucsi
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány P. sétány 1/AC, Budapest, 1117, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary.
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.
| | - Melinda Megyes
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány P. sétány 1/AC, Budapest, 1117, Hungary
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Tibor Szili-Kovács
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.
| |
Collapse
|
13
|
Raj A, Kumar A, Khare PK. The looming threat of profenofos organophosphate and microbes in action for their sustainable degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14367-14387. [PMID: 38291208 DOI: 10.1007/s11356-024-32159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Organophosphates are the most extensively used class of pesticides to deal with increasing pest diversity and produce more on limited terrestrial areas to feed the ever-expanding global population. Profenofos, an organophosphate group of non-systematic insecticides and acaricides, is used to combat aphids, cotton bollworms, tobacco budworms, beet armyworms, spider mites, and lygus bugs. Profenofos was inducted into the system as a replacement for chlorpyrifos due to its lower toxicity and half-life. It has become a significant environmental concern due to its widespread presence. It accumulates in various environmental components, contaminating food, water, and air. As a neurotoxic poison, it inhibits acetylcholinesterase receptor activity, leading to dizziness, paralysis, and pest death. It also affects other eukaryotes, such as pollinators, birds, mammals, and invertebrates, affecting ecosystem functioning. Microbes directly expose themselves to profenofos and adapt to these toxic compounds over time. Microbes use these toxic compounds as carbon and energy sources and it is a sustainable and economical method to eliminate profenofos from the environment. This article explores the studies and developments in the bioremediation of profenofos, its impact on plants, pollinators, and humans, and the policies and laws related to pesticide regulation. The goal is to raise awareness about the global threat of profenofos and the role of policymakers in managing pesticide mismanagement.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, (M.P), -470003, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, (M.P), -470003, India.
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, (UP), -211002, India.
| | - Pramod Kumar Khare
- Ecology Laboratory, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Madhya Pradesh, Sagar, -470003, India
| |
Collapse
|
14
|
Xu H, Zhu M, Chen X. Fungal epiphytes differentially regulate salt tolerance of invasive Ipomoea cairica according to salt stress levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4797-4807. [PMID: 38105332 DOI: 10.1007/s11356-023-31540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Fungal symbionts can improve plant tolerance to salt stress. However, the interaction of epiphytic Fusarium oxysporum and Fusarium fujikuroi with the tolerance of the invasive plant Ipomoea cairica against saline coastal habitats is largely unknown. This study aimed to investigate the interaction of the mixture of the two epiphytic fungi with salt tolerance of I. cairica. Surface-sterilized I. cairica cuttings inoculated (E+) and non-inoculated (E-) with the fungal mixture were cultivated with 2, 3, and 5 parts per thousand (PPT) of NaCl solutions to simulate mild, moderate, and severe salt stress, respectively. The hydroponic experiment showed that the growth inhibition and peroxidation damages of E+ and E- cuttings were aggravated with salinity. Noteworthily, E+ cuttings had higher peroxidase (POD) and catalase (CAT) activities, chlorophyll content, total biomass, aboveground biomass, total shoot length and secondary shoot number, but lower root-to-shoot ratio than E- cuttings under 2 and 3 PPT NaCl conditions. Moreover, E+ had higher superoxide dismutase (SOD) activity and proline content but lower belowground biomass and malondialdehyde (MDA) content than E- cuttings under 3 PPT NaCl condition. However, lower SOD, POD, and CAT activities, and chlorophyll content, but higher MDA content occurred in E+ cuttings than in E- cuttings under 5 PPT NaCl condition. These findings suggested that the mixture of the two epiphytic fungi increased salt tolerance of I. cairica mainly through increasing its antioxidation ability and chlorophyll stability under mildly and moderately saline conditions, but decreased salt tolerance of this plant in an opposite way under severely saline conditions.
Collapse
Affiliation(s)
- Hua Xu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430048, China
| | - Minjie Zhu
- Hunan Polytechnic of Environment and Biology, Hengyang, 421005, China
| | - Xuhui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
15
|
Wang YC, Ni JJ, Guo HW, Kravchenko E. Influences of phosphorus-modified biochar on bacterial community and diversity in rhizosphere soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1681-1691. [PMID: 38147244 DOI: 10.1007/s11356-023-31556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Root-associated bacteria play a vital role in the soil ecosystem and plant productivity. Previous studies have reported the decline of bacterial community and rhizosphere soil quality in the cultivation of some medicinal plants (i.e., Pseudostellaria heterophylla). Phosphorus (P)-modified biochar has the potential to improve soil health and quality. However, its influence on the bacterial community and diversity in the rhizosphere of medicinal plants is not well understood. Therefore, this study aims to investigate the effects of P-modified biochar on the bacterial community and diversity in the rhizosphere of P. heterophylla. Soil samples were collected from the rhizosphere of 4-month P. heterophylla under control (no biochar), 3% unmodified and 3% P-modified biochar treatments, respectively. Compared with control and unmodified biochar treatment, P-modified biochar significantly increased the relative abundance of plant-beneficial bacteria (P < 0.05), particularly Firmicutes, Nitrospirae and Acidobacteria. The relative abundance of Bacillus, belonging to Firmicutes, was dramatically raised from 0.032% in control group to 1.723% in P-modified biochar-treated group (P < 0.05). These results indicate the potential enhancement of soil quality for the growth of medicinal plants. The application of biochar significantly increased bacterial richness and bacterial diversity (P < 0.05). P modification of biochar did not have significant effects on soil bacterial richness (P > 0.05), while it reduced Shannon and increased Simpson diversity index of soil bacterial communities significantly (P < 0.05). It indicates a decrease in bacterial diversity. This research provides a new perspective for understanding the role of P-modified biochar in the rhizosphere ecosystem.
Collapse
Affiliation(s)
- Yu Chen Wang
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Jun Jun Ni
- School of Transportation, Southeast University, Nanjing, China.
| | - Hao Wen Guo
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ekaterina Kravchenko
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
16
|
Hao C, Du P, Ren J, Hu L, Zhang Z. Halophyte Elymus dahuricus colonization regulates microbial community succession by mediating saline-alkaline and biogenic organic matter in bauxite residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167140. [PMID: 37722424 DOI: 10.1016/j.scitotenv.2023.167140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Alkalinity regulation and nutrient accumulation are critical factors in the construction of plant and microbial communities and soil formation in bauxite residue, and are extremely important for sustainable vegetation restoration in bauxite residue disposal areas. However, the establishment and succession of microbial communities driven by plant colonization-mediated improvements in the physicochemical properties of bauxite residues remain poorly understood. Thus, in this study, we determined the saline-alkali properties and dissolved organic matter (DOM) components under plant growth conditions and explored the microbial community diversity and structure using Illumina high-throughput sequencing. The planting of Elymus dahuricus (E. dahuricus) in the bauxite residue resulted in a significant decrease in total alkalinity (TA), exchangeable Na, and electrical conductivity (EC) as well as the release of more tryptophan-like protein compounds and low-molecular-weight humic substances associated with biological activities into the bauxite residue substrate. Taxonomical analysis revealed an initial-stage bacterial and fungal community dominated by alkaline-tolerant Actinobacteriota, Firmicutes, and Ascomycota, and an increase in the relative abundances of the phyla Bacteroidota, Cyanobacteria, Chloroflexi, and Gemmatimonadota. The biological activities of phylum Actinobacteriota, Bacteroidota, and Gemmatimonadota were significantly associated with protein-like and UVA-like humic substances. As eutrophic bacteria, Proteobacteria participate in the transformation of humic substances and can not only utilize small molecules of organic matter and convert them into humic substances but also promote the gradual conversion of humic acids into simple molecular compounds. Our results suggest that plant roots secrete organic matter and microbial metabolites as the main biogenic organic matter that participates in the establishment and succession of the microbial community in bauxite residues. Root length affects bacterial and fungal diversity by mediating the production of protein-like substances.
Collapse
Affiliation(s)
- Chongkai Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ping Du
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jie Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Lijuan Hu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zongpeng Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
17
|
Shao K, Qin B, Chao J, Gao G. Sediment Bacteria in the Alpine Lake Sayram: Vertical Patterns in Community Composition. Microorganisms 2023; 11:2669. [PMID: 38004681 PMCID: PMC10673033 DOI: 10.3390/microorganisms11112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial communities inhabiting alpine lakes are essential to our understanding of ecosystem processes in a changing climate, but little has been reported about the vertical patterns of sediment bacterial communities in alpine lakes. To address this knowledge gap, we collected the 100 cm long sediment core from the center of Lake Sayram, the largest alpine lake in Xinjiang Uygur autonomous area, China, and used 16S rRNA gene-targeted amplicon sequencing to examine the bacterial populations. The results showed that bacterial diversity, as estimated by the Shannon index, was highest at the surface (6.9849 at 0-4 cm) and gradually decreased with depth up to 3.9983 at 68-72 cm, and then increased to 5.0927 at 96-100 cm. A total of 56 different phyla and 1204 distinct genera were observed in the sediment core of Lake Sayram. The bacterial community structure in the sediment samples from the various layers was dissimilar. The most abundant phyla in alpine Lake Sayram were Proteobacteria, Firmicutes, and Planctomycetes, accounting for 73%, 6%, and 4% of the total reads, respectively; the most abundant genera were Acinetobacter, Hydrogenophaga, and Pseudomonas, accounting for 18%, 12%, and 8% of the total reads, respectively. Furthermore, the relative abundance of Acinetobacter increased with sediment depth, while the relative abundance of Hydrogenophaga and Pseudomonas decreased with sediment depth. Our findings indicated that the nitrate-reducing bacteria (Acinetobacter, Hydrogenophaga, and Pseudomonas) may be prevalent in the sediment core of Lake Sayram. Canonical correspondence analysis showed that carbonate and total organic carbon (TOC) may be the main environmental factors affecting the vertical patterns of bacterial community composition (BCC) in the sediment of Lake Sayram. This work significantly contributes to our understanding of the BCC of sediments from alpine lakes in arid and semiarid regions.
Collapse
Affiliation(s)
- Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (K.S.); (B.Q.)
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (K.S.); (B.Q.)
| | - Jianying Chao
- Ministry of Environmental Protection, Nanjing Institute of Environmental Sciences, Nanjing 210042, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (K.S.); (B.Q.)
| |
Collapse
|
18
|
Xu D, Yu X, Chen J, Li X, Chen J, Li J. Effects of compost as a soil amendment on bacterial community diversity in saline-alkali soil. Front Microbiol 2023; 14:1253415. [PMID: 37829448 PMCID: PMC10565496 DOI: 10.3389/fmicb.2023.1253415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Soil salinization poses a worldwide challenge that hampers agricultural productivity. Methods Employing high-throughput sequencing technology, we conducted an investigation to examine the impact of compost on the diversity of bacterial communities in saline soils. Our study focused on exploring the diversity of bacterial communities in the inter-root soil of plants following composting and the subsequent addition of compost to saline soils. Results Compared to the initial composting stage, Alpha diversity results showed a greater diversity of bacteria during the rot stage. The germination index reaches 90% and the compost reaches maturity. The main bacterial genera in compost maturation stage are Flavobacterium, Saccharomonospora, Luteimonas and Streptomyces. Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla in the soil after the addition of compost. The application of compost has increased the abundance of Actinobacteria and Chloroflexi by 7.6 and 6.6%, respectively, but decreased the abundance of Firmicutes from 25.12 to 18.77%. Redundancy analysis revealed that soil factors pH, solid urease, organic matter, and total nitrogen were closely related to bacterial communities. Discussion The addition of compost effectively reduced soil pH and increased soil enzyme activity and organic matter content. An analysis of this study provides theoretical support for compost's use as a saline soil amendment.
Collapse
Affiliation(s)
- Daolong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowen Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Minister of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jin Chen
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiufen Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - JiangHua Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Guo L, Tóth T, Yang F, Wang Z. Effects of different types of vegetation cover on soil microorganisms and humus characteristics of soda-saline land in the Songnen Plain. Front Microbiol 2023; 14:1163444. [PMID: 37808294 PMCID: PMC10551454 DOI: 10.3389/fmicb.2023.1163444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction In the soda-saline grasslands of the Songnen Plain, Jilin Province, China, the prohibition of grazing has led to significant changes in plant communities and soil properties. However, the intricate interplay between soil physical and chemical attributes, the soil microbial community, and their combined influence on soil humus composition remains poorly understood. Methods Our study aimed to evaluate the impact of natural vegetation restoration on soil properties, microbial community diversity, and composition in the soda-saline soil region of the Songnen Plain. We conducted assessments of soil physical and chemical properties, analyzed community diversity, and composition at a soil depth range of 0-20 cm. The study covered soils with dominant soda-saline vegetation species, including Suaeda glauca Bunge, Puccinellia chinampoensis Ohwi, Chloris virgata Swarta, Phragmites australis (Clay.), Leymus chinensis (Trin.), and Tzvelev. We compared these vegetated soils to bare land devoid of any plants. Results We found that soil organic content (SOC) in vegetation restoration areas was higher than in bare land, with SOC content varying between 3.64 and 11.15 g/kg in different vegetated areas. Notably, soil pH emerged as a pivotal factor, explaining 11.4% and 12.2% of the variance in soil bacteria and fungi, respectively. There were correlations between SOC content and the relative abundance of specific microbial groups, with Acidobacteria and Mortierella showing a positive correlation, while Actinobacteria, Gemmatimonadetes, and Ascomycota exhibited significant negative correlations with SOC. Discussion The disparities in SOC composition and content among the soda-saline vegetation types were primarily attributed to variations in pH. Consequently, reducing soil pH is identified as a critical step in the process of vegetation restoration in soda-saline land. Prohibiting grazing has the potential to increase soda-saline SOC content and enhance microbial diversity, with Leymus chinensis and Phragmites australis showing particularly promising results in terms of higher SOC carbon content and microbial diversity.
Collapse
Affiliation(s)
- Liangliang Guo
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tibor Tóth
- Centre for Agricultural Research, Institute for Soil Sciences, Budapest, Hungary
| | - Fan Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhichun Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
20
|
Estrada R, Cosme R, Porras T, Reynoso A, Calderon C, Arbizu CI, Arone GJ. Changes in Bulk and Rhizosphere Soil Microbial Diversity Communities of Native Quinoa Due to the Monocropping in the Peruvian Central Andes. Microorganisms 2023; 11:1926. [PMID: 37630486 PMCID: PMC10458079 DOI: 10.3390/microorganisms11081926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Quinoa (Chenopodium quinoa) is a highly nutritious crop that is resistant to adverse conditions. Due to the considerable increase in its commercial production in Andean soils, the plant is suffering the negative effects of monocropping, which reduces its yield. We used for the first time a high-throughput Illumina MiSeq sequencing approach to explore the composition, diversity, and functions of fungal and bacterial communities of the bulk and rhizosphere in soils of native C. quinoa affected by monocropping in the central Andes of Peru. The results showed that the bacterial and fungal community structure among the treatments was significantly changed by the monocropping and the types of soil (rhizosphere and bulk). Also, in soils subjected to monocropping, there was an increase in Actinobacteria and a decrease in Proteobacteria, and the reduction in the presence of Ascomycota and the increase in Basidiomycota. By alpha-diversity indices, lower values of bacteria and fungi were observed in the monoculture option compared to the soil not affected by monocropping, and sometimes significant differences were found between both. We detected differentially abundant phytopathogenic fungi and bacteria with growth-stimulating effects on plants. Also, we denoted a decrease in the abundance of the functional predictions in bacteria in the monocropped soils. This research will serve as a starting point to explore the importance and effects of microorganisms in degraded soils and their impact on the growth and quality of quinoa crops.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru; (R.E.); (T.P.); (A.R.)
| | - Roberto Cosme
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru; (R.E.); (T.P.); (A.R.)
| | - Tatiana Porras
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru; (R.E.); (T.P.); (A.R.)
| | - Auristela Reynoso
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru; (R.E.); (T.P.); (A.R.)
| | - Constatino Calderon
- Facultad de Agronomía, Universidad Nacional Agraria la Molina (UNALM), Av. La Molina s/n, Lima 15024, Peru
| | - Carlos I. Arbizu
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru; (R.E.); (T.P.); (A.R.)
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru
| | - Gregorio J. Arone
- Facultad de Ingeniería, Universidad Nacional de Barranca (UNAB), Av. Toribio Luzuriaga 376, Lima 15169, Peru;
| |
Collapse
|
21
|
Khan MA, Salman AZ, Khan ST. Indigenously produced biochar retains fertility in sandy soil through unique microbial diversity sustenance: a step toward the circular economy. Front Microbiol 2023; 14:1158784. [PMID: 37440878 PMCID: PMC10335804 DOI: 10.3389/fmicb.2023.1158784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Agricultural productivity in the arid hot desert climate of UAE is limited by the unavailability of water, high temperature, and salt stresses. Growing enough food under abiotic stresses and decreasing reliance on imports in an era of global warming are a challenge. Biochar with high water and nutrient retention capacity and acid neutralization activity is an attractive soil conditioner. This study investigates the microbial community in the arid soil of Dubai under shade house conditions irrigated with saline water and the shift in the microbial community, following 1 year of amendment with indigenously prepared biochar from date palm waste. Methods Amplicon sequencing was used to elucidate changes in bacterial, archaeal, and fungal community structures in response to long-term biochar amendment. Samples were collected from quinoa fields receiving standard NPK doses and from fields receiving 20 and 30 tons ha-1 of biochar, in addition to NPK for 1 year. Water holding capacity, pH, electrical conductivity, calcium, magnesium, chloride, potassium, sodium, phosphorus, total carbon, organic matter, and total nitrogen in the soil from biochar-treated and untreated controls were determined. Results and discussion The results show that soil amendment with biochar helps retain archaeal and bacterial diversity. Analysis of differentially abundant bacterial and fungal genera indicates enrichment of plant growth-promoting microorganisms. Interestingly, many of the abundant genera are known to tolerate salt stress, and some observed genera were of marine origin. Biochar application improved the mineral status and organic matter content of the soil. Various physicochemical properties of soil receiving 30 tons ha-1 of biochar improved significantly over the control soil. This study strongly suggests that biochar helps retain soil fertility through the enrichment of plant growth-promoting microorganisms.
Collapse
Affiliation(s)
- Munawwar Ali Khan
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Alsayeda Zahra Salman
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Shams Tabrez Khan
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
22
|
Bai Z, Jia A, Li H, Wang M, Qu S. Explore the soil factors driving soil microbial community and structure in Songnen alkaline salt degraded grassland. FRONTIERS IN PLANT SCIENCE 2023; 14:1110685. [PMID: 37229114 PMCID: PMC10203596 DOI: 10.3389/fpls.2023.1110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
Introduction Saline-alkali degradation in grassland significantly affects plant community composition and soil physical and chemical properties. However, it remains unclear whether different degradation gradients affect soil microbial community and the main soil driving factors. Therefore, it is important to elucidate the effects of saline-alkali degradation on soil microbial community and the soil factors affecting soil microbial community in order to develop effective solutions to restore the degraded grassland ecosystem. Methods In this study, Illumina high-throughput sequencing technology was used to study the effects of different saline-alkali degradation gradients on soil microbial diversity and composition. Three different gradients were qualitatively selected, which were the light degradation gradient (LD), the moderate degradation gradient (MD) and the severe degradation gradient (SD). Results The results showed that salt and alkali degradation decreased the diversity of soil bacterial and fungal communities, and changed the composition of bacterial and fungal communities. Different degradation gradients had different adaptability and tolerance species. With the deterioration of salinity in grassland, the relative abundance of Actinobacteriota and Chytridiomycota showed a decreasing trend. EC, pH and AP were the main drivers of soil bacterial community composition, while EC, pH and SOC were the main drivers of soil fungal community composition. Different microorganisms are affected by different soil properties. The changes of plant community and soil environment are the main factors limiting the diversity and composition of soil microbial community. Discussion The results show that saline-alkali degradation of grassland has a negative effect on microbial biodiversity, so it is important to develop effective solutions to restore degraded grassland to maintain biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Zhenyin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Aomei Jia
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Haixian Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mingjun Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shanmin Qu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
23
|
Han Q, Fu Y, Qiu R, Ning H, Liu H, Li C, Gao Y. Carbon Amendments Shape the Bacterial Community Structure in Salinized Farmland Soil. Microbiol Spectr 2023; 11:e0101222. [PMID: 36625648 PMCID: PMC9927309 DOI: 10.1128/spectrum.01012-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Practical, effective, and economically feasible salt reclamation and amelioration methods are in great demand in arid and semiarid areas. Energy amendments may be more appropriate than alternatives for improving salinized farmland soil because of their effects on soil microbes. We investigated the effects of biochar (Carbon) addition and desulfurization (noncarbon) on the soil bacterial community associated with Zea mays seedlings. Proteobacteria, Firmicutes, and Actinobacteriota were the dominant soil bacterial phyla. Biochar significantly increased soil bacterial biodiversity but desulfurization did not. The application of both amendments stimulated a soil bacterial community shift, and biochar amendments relieved selection pressure and increased the stochasticity of community assembly of bacterial communities. We concluded that biochar amendment can improve plant salt resistance by increasing the abundance of bacteria associated with photosynthetic processes and alter bacterial species involved in carbon cycle functions to reduce the toxicity of soil salinity to plants. IMPORTANCE Farmland application of soil amendments is a usual method to mitigate soil salinization. Most studies have concluded that soil properties can be improved by soil amendment, which indirectly affects the soil microbial community structures. In this study, we applied carbon and noncarbon soil amendments and analyzed the differences between them on the soil microbial community. We found that carbon soil amendment distinctly altered the soil microbial community. This finding provides key theoretical and technical support for using soil amendments in the future.
Collapse
Affiliation(s)
- Qisheng Han
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Yuanyuan Fu
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- College of Agriculture of Tarim University, Aral, China
| | - Rangjian Qiu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Huifeng Ning
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Hao Liu
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Caixia Li
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Yang Gao
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| |
Collapse
|
24
|
Abdelmoneim TK, Mohamed MSM, Abdelhamid IA, Wahdan SFM, Atia MAM. Development of rapid and precise approach for quantification of bacterial taxa correlated with soil health. Front Microbiol 2023; 13:1095045. [PMID: 36713193 PMCID: PMC9878287 DOI: 10.3389/fmicb.2022.1095045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The structure and dynamic of soil bacterial community play a crucial role in soil health and plant productivity. However, there is a gap in studying the un-/or reclaimed soil bacteriome and its impact on future plant performance. The 16S metagenomic analysis is expensive and utilize sophisticated pipelines, making it unfavorable for researchers. Here, we aim to perform (1) in silico and in vitro validation of taxon-specific qPCR primer-panel in the detection of the beneficial soil bacterial community, to ensure its specificity and precision, and (2) multidimensional analysis of three soils/locations in Egypt ('Q', 'B', and 'G' soils) in terms of their physicochemical properties, bacteriome composition, and wheat productivity as a model crop. The in silico results disclosed that almost all tested primers showed high specificity and precision toward the target taxa. Among 17 measured soil properties, the electrical conductivity (EC) value (up to 5 dS/m) of 'Q' soil provided an efficient indicator for soil health among the tested soils. The 16S NGS analysis showed that the soil bacteriome significantly drives future plant performance, especially the abundance of Proteobacteria and Actinobacteria as key indicators. The functional prediction analysis results disclosed a high percentage of N-fixing bacterial taxa in 'Q' soil compared to other soils, which reflects their positive impact on wheat productivity. The taxon-specific qPCR primer-panel results revealed a precise quantification of the targeted taxa compared to the 16S NGS analysis. Moreover, 12 agro-morphological parameters were determined for grown wheat plants, and their results showed a high yield in the 'Q' soil compared to other soils; this could be attributed to the increased abundance of Proteobacteria and Actinobacteria, high enrichment in nutrients (N and K), or increased EC/nutrient availability. Ultimately, the potential use of a taxon-specific qPCR primer-panel as an alternative approach to NGS provides a cheaper, user-friendly setup with high accuracy.
Collapse
Affiliation(s)
- Taghreed Khaled Abdelmoneim
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt,Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud S. M. Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Mohamed A. M. Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt,*Correspondence: Mohamed A. M. Atia, ✉
| |
Collapse
|
25
|
Sun N, Wang L, Sun Y, Li H, Liao S, Ding J, Wang G, Suo L, Li Y, Zou G, Huang S. Positive Effects of Organic Substitution in Reduced-Fertilizer Regimes on Bacterial Diversity and N-Cycling Functionality in Greenhouse Ecosystem. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16954. [PMID: 36554835 PMCID: PMC9779496 DOI: 10.3390/ijerph192416954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Conventional fertilization in the greenhouses of North China used excessive amounts of chemical and organic fertilizer, resulting in soil degradation and severe agricultural non-point source pollution. A nine-year study was conducted on a loamy clay soil in Shijiazhuang, Hebei province, to investigate the effects of reduced-fertilizer input regimes on soil property, bacterial diversity, nitrogen (N) cycling and their interactions. There were four treatments, including high organic + chemical fertilizer application rate and three reduced-fertilizer treatments with swine manure, maize straw or no substitution of 50% chemical N. Treatments with reduced-fertilizer input prevented soil salinization and acidification as in local conventional fertilization after being treated for nine years. In comparison to chemical fertilizer only, swine manure or maize straw substitution maintained higher nutrient availability and soil organic C contents. Fertilizer input reduction significantly increased bacterial richness and shifted bacterial community after nine years, with decisive factors of EC, Olsen P and C/N ratio of applied fertilizer. Soil chemical characteristics (EC, pH and nutrients), aggregation and C/N ratio of applied fertilizer selected certain bacterial groups, as well as N-cycling functions. Reduced-fertilizer input decreased the potential nitrification and denitrification functioning of bacterial community, but only in organic substitution treatments. The results of this study suggested that fertilizer input reduction combined with organic C input has potential in reducing non-point source pollution and increasing N-use efficiency in greenhouse vegetable production in North China.
Collapse
Affiliation(s)
- Na Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Liying Wang
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Yanxin Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hong Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shangqiang Liao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianli Ding
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guoliang Wang
- Institute of Biotechnology, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Linna Suo
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanmei Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaowen Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Yang D, Tang L, Cui Y, Chen J, Liu L, Guo C. Saline-alkali stress reduces soil bacterial community diversity and soil enzyme activities. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1356-1368. [PMID: 36208367 DOI: 10.1007/s10646-022-02595-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Saline-alkalisation of the soil environment and microorganism is a global challenge. However, relevant studies on the effects of saline-alkali stress on soil bacterial communities are limited. In this study, we investigated the effects of saline-alkali stress on the carbon source metabolic utilisation of the microbial community, bacterial diversity, and composition in soil using Biolog Ecoplate and 16S rRNA gene amplicon sequencing. Biolog Ecoplate results showed that saline-alkali stress decreased the metabolic activity and functional diversity, and changed the utilisation characteristics of carbon sources in soil microorganisms. Particularly, high level of saline-alkali stress significantly decreased the utilisation of carbohydrates and amino acids carbon sources. The results of 16S rRNA gene amplicon sequencing showed that high level of saline-alkali stress significantly reduced the diversity of soil bacterial communities. In addition, high level of saline-alkali stress significantly decreased the relative abundances of some key bacterial taxa, such as Gemmatimonas, Sphingomonas, and Bradyrhizobium. Furthermore, as saline-alkali content increased, the soil catalase, protease, urease, and sucrase activities also significantly decreased. Collectively, these results provide new insight for studies on the changes in the soil bacterial community and soil enzyme activity under saline-alkali stress.
Collapse
Affiliation(s)
- Dihe Yang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China
| | - Lu Tang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China
| | - Ying Cui
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China
| | - Jiaxin Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China
| | - Lei Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 Shida Road, Limin Development Zone, Harbin, 150025, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
27
|
Li H, Luo N, Ji C, Li J, Zhang L, Xiao L, She X, Liu Z, Li Y, Liu C, Guo Q, Lai H. Liquid Organic Fertilizer Amendment Alters Rhizosphere Microbial Community Structure and Co-occurrence Patterns and Improves Sunflower Yield Under Salinity-Alkalinity Stress. MICROBIAL ECOLOGY 2022; 84:423-438. [PMID: 34535834 DOI: 10.1007/s00248-021-01870-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Response of rhizosphere microbial community structure and co-occurrence patterns to liquid organic fertilizer in sunflower cropland was investigated. Moderate and severe saline-alkaline soils were treated with liquid organic fertilizer containing mainly small molecular organic compounds (450 g L-1) at a rate of 4500 L ha-1 year-1 over 2 years. Compared with the untreated soils, organic fertilizer treatment increased soil nutrient concentrations by 13.8-137.1% while reducing soil pH and salinity by 5.6% and 54.7%, respectively. Organic fertilizer treatment also improved sunflower yield, plant number, and plant height by 28.6-67.3%. Following organic fertilizer treatment, fungal α-diversity was increased, and the effects of salinity-alkalinity stress on rhizosphere microbial communities were alleviated. The relative abundances of some halotolerant microbes and phytopathogenic fungi were reduced in organic fertilizer-treated soils, in contrast to increases in the relative abundances of plant growth-promoting microbes and organic matter decomposers, such as Nocardioides, Rhizophagus, and Stachybotrys. Network analysis revealed that severe salinity-alkalinity stress stimulated cooperation among bacteria, while organic fertilizer treatment tended to stimulate the ecosystem functions of fungi with higher proportions of fungi-bacteria and fungi-fungi links. More keystone taxa (e.g., Amycolatopsis, Variovorax, and Gemmatimonas) were positively correlated with soil nutrient concentrations and crop yield-related traits in organic fertilizer-treated soils. Overall, liquid organic fertilizer amendment could attenuate the adverse effects of salinity-alkalinity stress on sunflower yield by improving soil quality and optimizing rhizosphere microbial community structure and co-occurrence patterns.
Collapse
Affiliation(s)
- Haiyang Li
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Nanyan Luo
- Tongchuan Institute of Agricultural Sciences, Tongchuan, 727000, China
| | - Chenglong Ji
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Jin Li
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Lan Zhang
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Li Xiao
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Xiaolin She
- Tongchuan Institute of Agricultural Sciences, Tongchuan, 727000, China
| | - Zhe Liu
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Yulong Li
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Cunshou Liu
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
28
|
Effects of Land Use Conversion on the Soil Microbial Community Composition and Functionality in the Urban Wetlands of North-Eastern China. FORESTS 2022. [DOI: 10.3390/f13071148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Urban wetlands are undergoing intensive conversion from natural wetlands to farmlands, woodlands, and even alkaline land. This study aimed to determine the effects of land conversion on soil microbial communities of urban wetlands in the hinterland of Songnen Plain, Northeastern China. Soil samples were collected from various sites of Longfeng wetland, including swamp wetland (SW), meadow wetland (MW), woodland (WL), farmland (FL), and alkaline land (AL). High-throughput sequencing followed by bioinformatic analysis was conducted to evaluate the structure, composition, and function of soil bacterial and fungal communities. The most dominant bacterial and fungal phylum among the land-use types were Proteobacteria and Ascomycota, respectively. In addition, the bacterial diversity and functions varied significantly across different land-use types. However, no remarkable differences in fungal communities were observed under various land-use types. Edaphic parameters, including exchange sodium percent (ESP) and total nitrogen (TN), remarkably influenced the abundance and diversity of soil microbial communities. These results show that land-use type shapes various aspects of soil microbial communities, including soil physicochemical properties, microbial taxa structure, potential functional genes, and correlation with environmental factors. This study provides reliable data to guide land use management and supervision by decision-makers in this region.
Collapse
|
29
|
Saha P, Bose D, Stebliankin V, Cickovski T, Seth RK, Porter DE, Brooks BW, Mathee K, Narasimhan G, Colwell R, Scott GI, Chatterjee S. Prior exposure to microcystin alters host gut resistome and is associated with dysregulated immune homeostasis in translatable mouse models. Sci Rep 2022; 12:11516. [PMID: 35799048 PMCID: PMC9262933 DOI: 10.1038/s41598-022-15708-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
A strong association between exposure to the common harmful algal bloom toxin microcystin and the altered host gut microbiome has been shown. We tested the hypothesis that prior exposure to the cyanotoxin microcystin-LR may alter the host resistome. We show that the mice exposed to microcystin-LR had an altered microbiome signature that harbored antibiotic resistance genes. Host resistome genotypes such as mefA, msrD, mel, ant6, and tet40 increased in diversity and relative abundance following microcystin-LR exposure. Interestingly, the increased abundance of these genes was traced to resistance to common antibiotics such as tetracycline, macrolides, glycopeptide, and aminoglycosides, crucial for modern-day treatment of several diseases. Increased abundance of these genes was positively associated with increased expression of PD1, a T-cell homeostasis marker, and pleiotropic inflammatory cytokine IL-6 with a concomitant negative association with immunosurveillance markers IL-7 and TLR2. Microcystin-LR exposure also caused decreased TLR2, TLR4, and REG3G expressions, increased immunosenescence, and higher systemic levels of IL-6 in both wild-type and humanized mice. In conclusion, the results show a first-ever characterization of the host resistome following microcystin-LR exposure and its connection to host immune status and antimicrobial resistance that can be crucial to understand treatment options with antibiotics in microcystin-exposed subjects in clinical settings.
Collapse
Affiliation(s)
- Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Vitalii Stebliankin
- Knight Foundation School of Computing & Information Sciences, Florida International University, Miami, FL, 33199, USA
| | - Trevor Cickovski
- Knight Foundation School of Computing & Information Sciences, Florida International University, Miami, FL, 33199, USA
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Dwayne E Porter
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Giri Narasimhan
- Knight Foundation School of Computing & Information Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Rita Colwell
- CosmosID Inc, Germantown, MD, 20874, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, 20742, USA
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Geoff I Scott
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.
- Columbia VA Medical Center, Columbia, SC, 29209, USA.
| |
Collapse
|
30
|
Ameliorating Effects of Soil Aggregate Promoter on the Physicochemical Properties of Solonetzes in the Songnen Plain of Northeast China. SUSTAINABILITY 2022. [DOI: 10.3390/su14105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Freeze–thaw cycles cause serious soil erosion, which makes the prevention, control and management of solonetzic lands in the Songnen Plain challenging. The use of soil-aggregate-promoter (SAP) is highly favoured because of its energy-saving and efficient characteristics; however, SAP is rarely used in the improvement of solonetzic soil in cold regions. To fill this gap, we studied the effects of different experimental conditions on the physicochemical properties of solonetzes; the investigated conditions included the number of laboratory-based freeze–thaw cycles (with 0, 1, 3, and 5 cycles), initial moisture content (0%, 18%, 24%, and 30%) and SAP application amount (0 g/m2, 0.75 g/m2, 1.125 g/m2, and 1.5 g/m2). The results showed the following: (1) The soil pH value decreased significantly as the SAP application rate increased, and the effect of the initial moisture content and number of freeze–thaw cycles on soil pH was not significant. (2) SAP effectively reduced the soil electrical conductivity (EC), but a certain threshold was apparent, and the factors studied had significant effects on EC. (3) SAP effectively optimised the soil macroaggregates content and inhibited the damage posed by freeze–thaw cycles to the soil structure. These results provide an important theoretical basis for the effective prevention and control of solonetzes in the Songnen Plain of Northeast China.
Collapse
|
31
|
Malla MA, Dubey A, Kumar A, Yadav S. Metagenomic analysis displays the potential predictive biodegradation pathways of the persistent pesticides in agricultural soil with a long record of pesticide usage. Microbiol Res 2022; 261:127081. [DOI: 10.1016/j.micres.2022.127081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022]
|
32
|
Microbial Community Composition and Activity in Saline Soils of Coastal Agro-Ecosystems. Microorganisms 2022; 10:microorganisms10040835. [PMID: 35456884 PMCID: PMC9027772 DOI: 10.3390/microorganisms10040835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 01/27/2023] Open
Abstract
Soil salinity is a serious problem for agriculture in coastal regions. Nevertheless, the effects of soil salinity on microbial community composition and their metabolic activities are far from clear. To improve such understanding, we studied microbial diversity, community composition, and potential metabolic activity of agricultural soils covering non–, mild–, and severe–salinity. The results showed that salinity had no significant effect on bacterial richness; however, it was the major driver of a shift in bacterial community composition and it significantly reduced microbial activity. Abundant and diverse of microbial communities were detected in the severe–salinity soils with an enriched population of salt–tolerant species. Co–occurrence network analysis revealed stronger dependencies between species associated with severe salinity soils. Results of microcalorimetric technology indicated that, after glucose amendment, there was no significant difference in microbial potential activity among soils with the three salinity levels. Although the salt prolonged the lag time of microbial communities, the activated microorganisms had a higher growth rate. In conclusion, salinity shapes soil microbial community composition and reduces microbial activity. An addition of labile organic amendments can greatly alleviate salt restrictions on microbial activity, which provides new insight for enhancing microbial ecological functions in salt–affected soils.
Collapse
|
33
|
Zhang C, Zhou X, Wang X, Ge J, Cai B. Elaeagnus angustifolia can improve salt-alkali soil and the health level of soil: Emphasizing the driving role of core microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114401. [PMID: 34974219 DOI: 10.1016/j.jenvman.2021.114401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Saline-alkali environments are widely distributed in China and significantly hinder the development of agriculture. This study characterizes the long-term effects of planting Elaeagnus angustifolia (E. angustifolia) on the physical and chemical properties, enzyme activities and microbial community characteristics of saline-alkali soil in the Songnen Plain (1, 2 and 3 years). The results showed that planting E. angustifolia reduced soil pH and electrical conductivity (EC) and increased soil total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (Nni), total potassium (TK), dissolved organic C (DOC), dissolved organic matter (DOM) and available potassium (AK) content and catalase, urease, polyphenol oxidase, phosphatase, sucrase and cellulase enzyme activities, and the results peaked in the 3 year. High-throughput sequencing showed that the bacterial abundance and diversity were as follows (from high to low) y3 > y2 > y1 > CK. E. angustifolia resulted in an increase in the relative abundance of the dominant bacteria. Proteobacteria and Pseudomonas were the major phylum and genus, respectively. Redundancy analysis showed that changes in the soil microbial community significantly affect the physical and chemical properties of the soil, with Proteobacteria members being the key microorganisms that reduce soil salinity. Network analysis showed that Pseudomonas (Proteobacteria) participated in the synthesis of key soil enzymes. 16S rRNA sequencing predicted that the expression of genes related to carbon (rbcL, acsA, acsB, Pcc and accA) and nitrogen (amoA/B, nxrA, hao, gdh, ureC and nosZ) transformation increased, and Pseudomonas members were key regulators of carbon and nitrogen dynamics. In conclusion, the planting of E. angustifolia could improve the physical and chemical properties of the soil by releasing root exudates into the soil and increasing the diversity and richness of soil microbial communities to improve saline-alkali soil, providing a theoretical basis for improving saline-alkali soil and promoting the sustainable development of modern agriculture.
Collapse
Affiliation(s)
- Chi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiaohang Zhou
- College of Basic Medicine, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Xiaoyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Baiyan Cai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
34
|
Nan L, Guo Q, Cao S, Zhan Z. Diversity of bacterium communities in saline-alkali soil in arid regions of Northwest China. BMC Microbiol 2022; 22:11. [PMID: 34991470 PMCID: PMC8734156 DOI: 10.1186/s12866-021-02424-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The saline-alkali soil area accounts for over 1/4-1/5 of the land area in Gansu Province of China, which are mainly distributed in the north of Hexi corridor and Jingtai basin. The unique ecological environment contains unique and diverse microbial resources. The investigation of microbial diversity in saline environment is vital to comprehend the biological mechanisms of saline adaption, develop and utilize microbial resources. RESULTS The Illumina MiSeq sequencing method was practiced to investigate the bacterial diversity and composition in the 5 subtypes and 13 genera of saline-alkali soil in Gansu Province, China. The results from this study show that Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Gemmatimonadetes were the dominant bacterial groups in 13 saline soil. Proteobacteria had the greatest abundance in sulfate-type meadow solonchaks and orthic solonchaks, chloride-type orthic solonchaks and bog solonchaks, sulfate-chloride-type, chloride-sulfate-type, and sulfate-type dry solonchaks. Halobacteria was the dominant bacterial class in soil samples except for sulfate-type meadow solonchaks and orthic solonchaks, chloride-type orthic solonchaks and bog solonchaks. The richness estimators of Ace and Chao 1 and the diversity indices of Shannon and Simpson revealed the least diversity in bacterial community in sulfate-chloride-type orthic solonchaks. CONCLUSIONS The sulfate anion was the most important driving force for bacterial composition (17.7%), and the second most influencing factor was pH value (11.7%).
Collapse
Affiliation(s)
- Lili Nan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| | - Quanen Guo
- Institute of Soil, Fertilizer and Water-saving, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Shiyu Cao
- Institute of Soil, Fertilizer and Water-saving, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Zongbing Zhan
- Institute of Soil, Fertilizer and Water-saving, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| |
Collapse
|
35
|
Wang S, Sun L, Narsing Rao MP, Liu GH, Jin PJ, Dong ZY, Lian ZH, Hao XY, Zhang MY, Li WJ. Alteribacter salitolerans sp. nov., isolated from a saline-alkaline soil. Arch Microbiol 2021; 204:53. [PMID: 34936048 DOI: 10.1007/s00203-021-02640-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022]
Abstract
A Gram-positive strain APA H-16(1)T was isolated from a saline-alkali soil sample collected from Heilongjiang Province, China. Cells were rod shaped, non-motile, endospore forming, and aerobic. Growth occurred at 10-45 °C (optimum, 35 °C), pH 7.0-10.5 (optimum, pH 9.5), and could tolerate NaCl up to 15.0% (w/v). Strain showed low 16S rRNA gene sequence similarities with Alteribacter natronophilus (97.8%), Alteribacter aurantiacus (97.7%), and Alteribacter populi (97.1%). The cell wall peptidoglycan was meso-diaminopimelic acid. The predominant menaquinone was MK-7. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified aminophospholipids, unidentified phospholipid, and unidentified lipid. The major fatty acids were anteiso-C15:0, and iso-C15:0. The genomic G + C content was 45.1%. The average nucleotide identity and digital DNA-DNA hybridization values between strain APA H-16(1)T and the most closely related species were below the cut-off level (95-96%; 70%) for species delineation. Based on phenotypic, phylogenetic, chemotaxonomic, and genome comparison, strain APA H-16(1)T represents a novel species of the genus Alteribacter, for which the name Alteribacter salitolerans sp. nov. is proposed. The type strain is APA H-16(1)T (= KCTC 43228T = CICC 25092T).
Collapse
Affiliation(s)
- Shuang Wang
- Heilongjiang Acacemy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Lei Sun
- Heilongjiang Acacemy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China.
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Guo-Hong Liu
- Agricultural Bio-Resources Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, People's Republic of China
| | - Pin-Jiao Jin
- Heilongjiang Acacemy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhou-Yan Dong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao-Yu Hao
- Heilongjiang Acacemy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Ming-Yi Zhang
- Heilongjiang Acacemy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
36
|
Lach J, Jęcz P, Strapagiel D, Matera-Witkiewicz A, Stączek P. The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes (Basel) 2021; 12:1756. [PMID: 34828362 PMCID: PMC8619533 DOI: 10.3390/genes12111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Paulina Jęcz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| |
Collapse
|
37
|
Singh S, Singh UB, Trivdi M, Malviya D, Sahu PK, Roy M, Sharma PK, Singh HV, Manna MC, Saxena AK. Restructuring the Cellular Responses: Connecting Microbial Intervention With Ecological Fitness and Adaptiveness to the Maize ( Zea mays L.) Grown in Saline-Sodic Soil. Front Microbiol 2021; 11:568325. [PMID: 33643224 PMCID: PMC7907600 DOI: 10.3389/fmicb.2020.568325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Salt stress hampers plant growth and development. It is now becoming one of the most important threats to agricultural productivity. Rhizosphere microorganisms play key roles in modulating cellular responses and enable plant tolerant to salt stress, but the detailed mechanisms of how this occurs need in-depth investigation. The present study elucidated that the microbe-mediated restructuring of the cellular responses leads to ecological fitness and adaptiveness to the maize (Zea mays L.) grown in saline-sodic soil. In the present study, effects of seed biopriming with B. safensis MF-01, B. altitudinis MF-15, and B. velezensis MF-08 singly and in consortium on different growth parameters were recorded. Soil biochemical and enzymatic analyses were performed. The activity and gene expression of High-Affinity K+ Transporter (ZmHKT-1), Sodium/Hydrogen exchanger 1 (zmNHX1), and antioxidant enzymes (ZmAPX1.2, ZmBADH-1, ZmCAT, ZmMPK5, ZmMPK7, and ZmCPK11) were studied. The expression of genes related to lateral root development (ZmHO-1, ZmGSL-1, and ZmGSL-3) and root architecture were also carried out. Seeds bioprimed with consortium of all three strains have been shown to confer increased seed germination (23.34-26.31%) and vigor indices (vigor index I: 38.71-53.68% and vigor index II: 74.11-82.43%) as compared to untreated control plant grown in saline-sodic soil at 30 days of sowing. Results indicated that plants treated with consortium of three strains induced early production of adventitious roots (tips: 4889.29, forks: 7951.57, and crossings: 2296.45) in maize compared to plants primed with single strains and untreated control (tips: 2019.25, forks: 3021.45, and crossings: 388.36), which was further confirmed by assessing the transcript level of ZmHO-1 (7.20 folds), ZmGSL-1 (4.50 folds), and ZmGSL-3 (12.00 folds) genes using the qPCR approach. The uptake and translocation of Na+, K+, and Ca2+ significantly varied in the plants treated with bioagents alone or in consortium. qRT-PCR analysis also revealed that the ZmHKT-1 and zmNHX1 expression levels varied significantly in the maize root upon inoculation and showed a 6- to 11-fold increase in the plants bioprimed with all the three strains in combination. Further, the activity and gene expression levels of antioxidant enzymes were significantly higher in the leaves of maize subjected seed biopriming with bioagents individually or in combination (3.50- to 12.00-fold). Our research indicated that ZmHKT-1 and zmNHX1 expression could effectively enhance salt tolerance by maintaining an optimal Na+/K+ balance and increasing the antioxidant activity that keeps reactive oxygen species at a low accumulation level. Interestingly, up-regulation of ZmHKT-1, NHX1, ZmHO-1, ZmGSL-1, and ZmGSL-3 and genes encoding antioxidants regulates the cellular responses that could effectively enhance the adaptiveness and ultimately leads to better plant growth and grain production in the maize crop grown in saline-sodic soil.
Collapse
Affiliation(s)
- Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Mala Trivdi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Pramod K. Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Manish Roy
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Pawan K. Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - M. C. Manna
- Soil Biology Division, ICAR-Indian Institute of Soil Science, Bhopal, India
| | - Anil K. Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| |
Collapse
|
38
|
Soil Enzyme Activity and Microbial Metabolic Function Diversity in Soda Saline–Alkali Rice Paddy Fields of Northeast China. SUSTAINABILITY 2020. [DOI: 10.3390/su122310095] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Western Jilin province has the most serious area of soda salinization in Northeast China, which affects and restricts the sustainable development of agriculture. The effects of physico-chemical properties of rhizosphere and non-rhizosphere soil on soil microbial diversity and enzyme activities (polyphenol oxidase, catalase, invertase, amylase) were evaluated in typical soda saline-alkali paddy field. Community-level physiological profile (CLPP) based on Biolog-ECO plates was used to assess the functional diversity of soil microorganisms. Exchangeable sodium percentage (ESP) and pH were negative correlated with the microbial activity (AWCD), soil enzyme activities (amylase, sucrose, and catalase, except for polyphenol oxidase) in rice rhizosphere and non-rhizosphere soil (P < 0.05). The indexes of microbial diversity in rice rhizosphere soil were significantly higher than that of non-rhizosphere soil. The utilization of amino acids by rice rhizosphere microorganisms was relatively high, while non-rhizosphere soil had relatively high utilization of carboxylic acid, phenolic acid, and amine. Among the selected physico-chemical properties, soil organic carbon (SOC) and soil water content (SWC) had the greatest influence on the variation of microbial diversity indexes and enzyme activities in rhizosphere soil. ESP and pH showed a significant positive correlation with carbon source utilization, especially for amine (AM) and phenolic acid (PA) carbon source utilization (P < 0.05) by means of RDA, and the utilization rate of AM and PA carbon sources by rice rhizosphere and non-root soil microorganisms was P1 < P2 < P3.
Collapse
|
39
|
Plant-Growth-Promoting Bacteria Mitigating Soil Salinity Stress in Plants. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207326] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Soil deterioration has led to problems with the nutrition of the world’s population. As one of the most serious stressors, soil salinization has a negative effect on the quantity and quality of agricultural production, drawing attention to the need for environmentally friendly technologies to overcome the adverse effects. The use of plant-growth-promoting bacteria (PGPB) can be a key factor in reducing salinity stress in plants as they are already introduced in practice. Plants having halotolerant PGPB in their root surroundings improve in diverse morphological, physiological, and biochemical aspects due to their multiple plant-growth-promoting traits. These beneficial effects are related to the excretion of bacterial phytohormones and modulation of their expression, improvement of the availability of soil nutrients, and the release of organic compounds that modify plant rhizosphere and function as signaling molecules, thus contributing to the plant’s salinity tolerance. This review aims to elucidate mechanisms by which PGPB are able to increase plant tolerance under soil salinity.
Collapse
|