1
|
Villegas M, Bayat F, Kramer T, Schwarz E, Wilson D, Hosseinidoust Z, Didar TF. Emerging Strategies to Prevent Bacterial Infections on Titanium-Based Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404351. [PMID: 39161205 DOI: 10.1002/smll.202404351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.
Collapse
Affiliation(s)
- Martin Villegas
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Taylor Kramer
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Elise Schwarz
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - David Wilson
- Division of Orthopedic Surgery, Halifax Infirmary, Halifax, NS, B3H3A6, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
2
|
Kaspiris A, Vasiliadis E, Pantazaka E, Lianou I, Melissaridou D, Savvidis M, Panagopoulos F, Tsalimas G, Vavourakis M, Kolovos I, Savvidou OD, Pneumaticos SG. Current Progress and Future Perspectives in Contact and Releasing-Type Antimicrobial Coatings of Orthopaedic Implants: A Systematic Review Analysis Emanated from In Vitro and In Vivo Models. Infect Dis Rep 2024; 16:298-316. [PMID: 38667751 PMCID: PMC11050497 DOI: 10.3390/idr16020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Despite the expanding use of orthopedic devices and the application of strict pre- and postoperative protocols, the elimination of postoperative implant-related infections remains a challenge. Objectives: To identify and assess the in vitro and in vivo properties of antimicrobial-, silver- and iodine-based implants, as well as to present novel approaches to surface modifications of orthopedic implants. Methods: A systematic computer-based review on the development of these implants, on PubMed and Web of Science databases, was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: Overall, 31 in vitro and 40 in vivo entries were evaluated. Regarding the in vitro studies, antimicrobial-based coatings were assessed in 12 entries, silver-based coatings in 10, iodine-based in 1, and novel-applied coating technologies in 8 entries. Regarding the in vivo studies, antimicrobial coatings were evaluated in 23 entries, silver-coated implants in 12, and iodine-coated in 1 entry, respectively. The application of novel coatings was studied in the rest of the cases (4). Antimicrobial efficacy was examined using different bacterial strains, and osseointegration ability and biocompatibility were examined in eukaryotic cells and different animal models, including rats, rabbits, and sheep. Conclusions: Assessment of both in vivo and in vitro studies revealed a wide antimicrobial spectrum of the coated implants, related to reduced bacterial growth, inhibition of biofilm formation, and unaffected or enhanced osseointegration, emphasizing the importance of the application of surface modification techniques as an alternative for the treatment of orthopedic implant infections in the clinical settings.
Collapse
Affiliation(s)
- Angelos Kaspiris
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Elias Vasiliadis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Evangelia Pantazaka
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Ioanna Lianou
- Department of Orthopedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Dimitra Melissaridou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Matthaios Savvidis
- Second Orthopedic Department, 424 General Military Hospital, 56429 Thessaloniki, Greece;
| | - Fotios Panagopoulos
- Department of Orthopedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Georgios Tsalimas
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Michail Vavourakis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Ioannis Kolovos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Olga D. Savvidou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Spiros G. Pneumaticos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| |
Collapse
|
3
|
Aguilera-Correa JJ, Salinas B, González-Arjona M, de Pablo D, Muñoz P, Bouza E, Fernández Aceñero MJ, Esteban J, Desco M, Cussó L. Positron Emission Tomography-Computed Tomography and Magnetic Resonance Imaging Assessments in a Mouse Model of Implant-Related Bone and Joint Staphylococcus aureus Infection. Microbiol Spectr 2023; 11:e0454022. [PMID: 37010409 PMCID: PMC10269916 DOI: 10.1128/spectrum.04540-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/04/2023] [Indexed: 04/04/2023] Open
Abstract
Osteomyelitis is an infection of the bone, associated with an inflammatory process. Imaging plays an important role in establishing the diagnosis and the most appropriate patient management. However, data are lacking regarding the use of preclinical molecular imaging techniques to assess osteomyelitis progression in experimental models. This study aimed to compare structural and molecular imaging to assess disease progression in a mouse model of implant-related bone and joint infections caused by Staphylococcus aureus. In SWISS mice, the right femur was implanted with a resorbable filament impregnated with S. aureus (infected group, n = 10) or sterile culture medium (uninfected group, n = 6). Eight animals (5 infected, 3 uninfected) were analyzed with magnetic resonance imaging (MRI) at 1, 2, and 3 weeks postintervention, and 8 mice were analyzed with [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET)-computed tomography (CT) at 48 h and at 1, 2, and 3 weeks postintervention. In infected animals, CT showed bone lesion progression, mainly in the distal epiphysis, although some uninfected animals presented evident bone sequestra at 3 weeks. MRI showed a lesion in the articular area that persisted for 3 weeks in infected animals. This lesion was smaller and less evident in the uninfected group. At 48 h postintervention, FDG-PET showed higher joint uptake in the infected group than in the uninfected group (P = 0.025). Over time, the difference between groups increased. These results indicate that FDG-PET imaging was much more sensitive than MRI and CT for differentiating between infection and inflammation at early stages. FDG-PET clearly distinguished between infection and postsurgical bone healing (in uninfected animals) from 48 h to 3 weeks after implantation. IMPORTANCE Our results encourage future investigations on the utility of the model for testing different therapeutic procedures for osteomyelitis.
Collapse
Affiliation(s)
- J. J. Aguilera-Correa
- Departamento de Química en Ciencias Farmacéuticas. Universidad Complutense de Madrid, Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - B. Salinas
- Unidad de Medicina y Cirugía Experimenta, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III. Madrid, Spain
| | - M. González-Arjona
- Unidad de Medicina y Cirugía Experimenta, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - D. de Pablo
- Servicio de Anatomía Patológica Hospital Clínico San Carlos, Fundación para la Investigación Biomédica HCSC, Madrid, Spain
| | - P. Muñoz
- Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - E. Bouza
- Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - M. J. Fernández Aceñero
- Servicio de Anatomía Patológica Hospital Clínico San Carlos, Fundación para la Investigación Biomédica HCSC, Madrid, Spain
| | - J. Esteban
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Microbiology Department, IIS-Fundacion Jimenez Diaz, UAM, Madrid, Spain
| | - M. Desco
- Unidad de Medicina y Cirugía Experimenta, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III. Madrid, Spain
| | - L. Cussó
- Unidad de Medicina y Cirugía Experimenta, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III. Madrid, Spain
| |
Collapse
|
4
|
Toirac B, Aguilera-Correa JJ, Mediero A, Esteban J, Jiménez-Morales A. The Antimicrobial Activity of Micron-Thin Sol-Gel Films Loaded with Linezolid and Cefoxitin for Local Prevention of Orthopedic Prosthesis-Related Infections. Gels 2023; 9:gels9030176. [PMID: 36975625 PMCID: PMC10048042 DOI: 10.3390/gels9030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Orthopedic prosthesis-related infections (OPRI) are an essential health concern. OPRI prevention is a priority and a preferred option over dealing with poor prognosis and high-cost treatments. Micron-thin sol-gel films have been noted for a continuous and effective local delivery system. This study aimed to perform a comprehensive in vitro evaluation of a novel hybrid organic-inorganic sol-gel coating developed from a mixture of organopolysiloxanes and organophosphite and loaded with different concentrations of linezolid and/or cefoxitin. The kinetics of degradation and antibiotics release from the coatings were measured. The inhibition of biofilm formation of the coatings against Staphylococcus aureus, S. epidermidis, and Escherichia coli strains was studied, as well as the cell viability and proliferation of MC3T3-E1 osteoblasts. The microbiological assays demonstrated that sol-gel coatings inhibited the biofilm formation of the evaluated Staphylococcus species; however, no inhibition of the E. coli strain was achieved. A synergistic effect of the coating loaded with both antibiotics was observed against S. aureus. The cell studies showed that the sol-gels did not compromise cell viability and proliferation. In conclusion, these coatings represent an innovative therapeutic strategy with potential clinical use to prevent staphylococcal OPRI.
Collapse
Affiliation(s)
- Beatriz Toirac
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Aranzazu Mediero
- Bone and Joint Unit, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Antonia Jiménez-Morales
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- Alvaro Alonso Barba Technological Institute of Chemistry and Materials, Carlos III University of Madrid, 28911 Madrid, Spain
| |
Collapse
|
5
|
Sun S, Cui Y, Yuan B, Dou M, Wang G, Xu H, Wang J, Yin W, Wu D, Peng C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol 2023; 11:1117647. [PMID: 36793443 PMCID: PMC9923112 DOI: 10.3389/fbioe.2023.1117647] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dankai Wu
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Poilvache H, Van Bambeke F, Cornu O. Development of an innovative in vivo model of PJI treated with DAIR. Front Med (Lausanne) 2022; 9:984814. [PMID: 36314026 PMCID: PMC9606572 DOI: 10.3389/fmed.2022.984814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Prosthetic Joint Infection (PJI) are catastrophic complications of joint replacement. Debridement, implant retention, and antibiotic therapy (DAIR) is the usual strategy in acute infections but fails in 45% of MRSA infections. We describe the development of a model of infected arthroplasty in rabbits, treated with debridement and a course of vancomycin with clinically relevant dosage. Materials and methods A total of 15 rabbits were assigned to three groups: vancomycin pharmacokinetics (A), infection (B), and DAIR (C). All groups received a tibial arthroplasty using a Ti-6Al-4V implant. Groups B and C were infected per-operatively with a 5.5 log10 MRSA inoculum. After 1 week, groups C infected knees were surgically debrided. Groups A and C received 1 week of vancomycin. Pharmacokinetic profiles were obtained in group A following 1st and 5th injections. Animals were euthanized 2 weeks after the arthroplasty. Implants and tissue samples were processed for bacterial counts and histology. Results Average vancomycin AUC0–12 h were 213.0 mg*h/L (1st injection) and 207.8 mg*h/L (5th injection), reaching clinical targets. All inoculated animals were infected. CFUs were reproducible in groups B. A sharp decrease in CFU was observed in groups C. Serum markers and leukocytes counts increased significantly in infected groups. Conclusion We developed a reproducible rabbit model of PJI treated with DAIR, using vancomycin at clinically relevant concentrations.
Collapse
Affiliation(s)
- Hervé Poilvache
- Neuro Musculo-Skeletal Laboratory, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium,Cellular and Molecular Pharmacology Laboratory, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Orthopedic Surgery and Traumatology Department, Cliniques universitaires Saint-Luc, Brussels, Belgium,*Correspondence: Hervé Poilvache,
| | - Françoise Van Bambeke
- Cellular and Molecular Pharmacology Laboratory, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Cornu
- Neuro Musculo-Skeletal Laboratory, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium,Orthopedic Surgery and Traumatology Department, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
7
|
Allogeneic Bone Impregnated with Biodegradable Depot Delivery Systems for the Local Treatment of Joint Replacement Infections: An In Vitro Study. Molecules 2022; 27:molecules27196487. [PMID: 36235024 PMCID: PMC9571001 DOI: 10.3390/molecules27196487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Although progress is evident in the effective treatment of joint replacement-related infections, it still remains a serious issue in orthopedics. As an example, the local application of antibiotics-impregnated bone grafts supplies the high drug levels without systemic side effects. However, antibiotics in the powder or solution form could be a risk for local toxicity and do not allow sustained drug release. The present study evaluated the use of an antibiotic gel, a water-in-oil emulsion, and a PLGA microparticulate solid dispersion as depot delivery systems impregnating bone grafts for the treatment of joint replacement-related infections. The results of rheological and bioadhesive tests revealed the suitability of these formulations for the impregnation of bone grafts. Moreover, no negative effect on proliferation and viability of bone marrow mesenchymal stem cells was detected. An ex vivo dissolution test of vancomycin hydrochloride and gentamicin sulphate from the impregnated bone grafts showed a reduced burst and prolonged drug release. The PLGA-based formulation proved to be particularly promising, as one-day burst release drugs was only 15% followed with sustained antibiotics release with zero-order kinetics. The results of this study will be the basis for the development of a new product in the Tissue Section of the University Hospital for the treatment of bone defects and infections of joint replacements.
Collapse
|
8
|
Toirac B, Garcia-Casas A, Monclús MA, Aguilera-Correa JJ, Esteban J, Jiménez-Morales A. Influence of Addition of Antibiotics on Chemical and Surface Properties of Sol-Gel Coatings. MATERIALS 2022; 15:ma15144752. [PMID: 35888219 PMCID: PMC9317242 DOI: 10.3390/ma15144752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 01/30/2023]
Abstract
Infection is one of the most common causes that leads to joint prosthesis failure. In the present work, biodegradable sol-gel coatings were investigated as a promising controlled release of antibiotics for the local prevention of infection in joint prostheses. Accordingly, a sol-gel formulation was designed to be tested as a carrier for 8 different individually loaded antimicrobials. Sols were prepared from a mixture of MAPTMS and TMOS silanes, tris(tri-methylsilyl)phosphite, and the corresponding antimicrobial. In order to study the cross-linking and surface of the coatings, a battery of examinations (Fourier-transform infrared spectroscopy, solid-state 29Si-NMR spectroscopy, thermogravimetric analysis, SEM, EDS, AFM, and water contact angle, thickness, and roughness measurements) were conducted on the formulations loaded with Cefoxitin and Linezolid. A formulation loaded with both antibiotics was also explored. Results showed that the coatings had a microscale roughness attributed to the accumulation of antibiotics and organophosphites in the surface protrusions and that the existence of chemical bonds between antibiotics and the siloxane network was not evidenced.
Collapse
Affiliation(s)
- Beatriz Toirac
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain; (A.G.-C.); (A.J.-M.)
- Correspondence:
| | - Amaya Garcia-Casas
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain; (A.G.-C.); (A.J.-M.)
- CIDETEC, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Miguel A. Monclús
- Micro- and Nano-Mechanics Department, Madrid Institutes for Advanced Studies (IMDEA)—Materials, 28906 Madrid, Spain;
| | - John J. Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (J.J.A.-C.); (J.E.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto Carlos III, 28029 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (J.J.A.-C.); (J.E.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto Carlos III, 28029 Madrid, Spain
| | - Antonia Jiménez-Morales
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain; (A.G.-C.); (A.J.-M.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto Carlos III, 28029 Madrid, Spain
- Alvaro Alonso Barba Technological Institute of Chemistry and Materials, Carlos III University of Madrid, 28911 Madrid, Spain
| |
Collapse
|
9
|
Bohara S, Suthakorn J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: a review. Biomater Res 2022; 26:26. [PMID: 35725501 PMCID: PMC9208209 DOI: 10.1186/s40824-022-00269-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022] Open
Abstract
The use of orthopedic implants in surgical technology has fostered restoration of physiological functions. Along with successful treatment, orthopedic implants suffer from various complications and fail to offer functions correspondent to native physiology. The major problems include aseptic and septic loosening due to bone nonunion and implant site infection due to bacterial colonization. Crucial advances in material selection in the design and development of coating matrixes an opportunity for the prevention of implant failure. However, many coating materials are limited in in-vitro testing and few of them thrive in clinical tests. The rate of implant failure has surged with the increasing rates of revision surgery creating physical and sensitive discomfort as well as economic burdens. To overcome critical pathogenic activities several systematic coating techniques have been developed offering excellent results that combat infection and enhance bone integration. This review article includes some more common implant coating matrixes with excellent in vitro and in vivo results focusing on infection rates, causes, complications, coating materials, host immune responses and significant research gaps. This study provides a comprehensive overview of potential coating technology, with functional combination coatings which are focused on ultimate clinical practice with substantial improvement on in-vivo tests. This includes the development of rapidly growing hydrogel coating techniques with the potential to generate several accurate and precise coating procedures.
Collapse
Affiliation(s)
- Smriti Bohara
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| | - Jackrit Suthakorn
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| |
Collapse
|
10
|
Aguilera-Correa J, Gisbert-Garzarán M, Mediero A, Carias-Cálix R, Jiménez-Jiménez C, Esteban J, Vallet-Regí M. Arabic gum plus colistin coated moxifloxacin-loaded nanoparticles for the treatment of bone infection caused by Escherichia coli. Acta Biomater 2022; 137:218-237. [PMID: 34653694 DOI: 10.1016/j.actbio.2021.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/20/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022]
Abstract
Osteomyelitis is an inflammatory process of bone and bone marrow that may even lead to patient death. Even though this disease is mainly caused by Gram-positive organisms, the proportion of bone infections caused by Gram-negative bacteria, such as Escherichia coli, has significantly increased in recent years. In this work, mesoporous silica nanoparticles have been employed as platform to engineer a nanomedicine able to eradicate E. coli- related bone infections. For that purpose, the nanoparticles have been loaded with moxifloxacin and further functionalized with Arabic gum and colistin (AG+CO-coated MX-loaded MSNs). The nanosystem demonstrated high affinity toward E. coli biofilm matrix, thanks to AG coating, and marked antibacterial effect because of the bactericidal effect of moxifloxacin and the disaggregating effect of colistin. AG+CO-coated MX-loaded MSNs were able to eradicate the infection developed on a trabecular bone in vitro and showed pronounced antibacterial efficacy in vivo against an osteomyelitis provoked by E. coli. Furthermore, AG+CO-coated MX-loaded MSNs were shown to be essentially non-cytotoxic with only slight effect on cell proliferation and mild hepatotoxicity, which might be attributed to the nature of both antibiotics. In view of these results, these nanoparticles may be considered as a promising treatment for bone infections caused by enterobacteria, such as E. coli, and introduce a general strategy against bone infections based on the implementation of antibiotics with different but complementary activity into a single nanocarrier. STATEMENT OF SIGNIFICANCE: In this work, we propose a methodology to address E.coli bone infections by using moxifloxacin-loaded mesoporous silica nanoparticles coated with Arabic gum containing colistin (AG+CO-coated MX-loaded MSNs). The in vitro evaluation of this nanosystem demonstrated high affinity toward E. coli biofilm matrix thanks to the Arabic gum coating, a disaggregating and antibacterial effect of colistin, and a remarkable antibiofilm action because of the bactericidal ability of moxifloxacin and colistin. This anti-E. coli capacity of AG+CO-coated MX-loaded MSNs was brought out in an in vivo rabbit model of osteomyelitis where the nanosystem was able to eradicate more than 90% of the bacterial load within the infected bone.
Collapse
|
11
|
Iqbal N, Anastasiou A, Aslam Z, Raif EM, Do T, Giannoudis PV, Jha A. Interrelationships between the structural, spectroscopic, and antibacterial properties of nanoscale (< 50 nm) cerium oxides. Sci Rep 2021; 11:20875. [PMID: 34686704 PMCID: PMC8536756 DOI: 10.1038/s41598-021-00222-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Bone healing is a complex process, and if not managed successfully, it can lead to non-union, metal-work failure, bacterial infections, physical and psychological patient impairment. Due to the growing urgency to minimise antibiotic dependency, alternative treatment strategies, including the use of nanoparticles, have attracted significant attention. In the present study, cerium oxide nanoparticles (Ce4+, Ce3+) have been selected due to their unique antibacterial redox capability. We found the processing routes affected the agglomeration tendency, particle size distribution, antibacterial potential, and ratio of Ce3+:Ce4+ valence states of the cerium oxide nanoparticles. The antibacterial efficacy of the nanoparticles in the concentration range of 50-200 µg/ml is demonstrated against Escherichia coli, Staphylococcus epidermis, and Pseudomonas aeruginosa by determining the half-maximal inhibitory concentration (IC50). Cerium oxide nanoparticles containing a more significant amount of Ce3+ ions, i.e., FRNP, exhibited 8.5 ± 1.2%, 10.5 ± 4.4%, and 13.8 ± 5.8% increased antibacterial efficacy compared with nanoparticles consisting mainly of Ce4+ ions, i.e., nanoparticles calcined at 815 °C.
Collapse
Affiliation(s)
- Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK.
| | - Antonios Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK
| | - Zabeada Aslam
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - El Mostafa Raif
- School of Dentistry, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Thuy Do
- School of Dentistry, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds, UK
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK.
| |
Collapse
|
12
|
Esteban J, Vallet-Regí M, Aguilera-Correa JJ. Antibiotics- and Heavy Metals-Based Titanium Alloy Surface Modifications for Local Prosthetic Joint Infections. Antibiotics (Basel) 2021; 10:1270. [PMID: 34680850 PMCID: PMC8532710 DOI: 10.3390/antibiotics10101270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Prosthetic joint infection (PJI) is the second most common cause of arthroplasty failure. Though infrequent, it is one of the most devastating complications since it is associated with great personal cost for the patient and a high economic burden for health systems. Due to the high number of patients that will eventually receive a prosthesis, PJI incidence is increasing exponentially. As these infections are provoked by microorganisms, mainly bacteria, and as such can develop a biofilm, which is in turn resistant to both antibiotics and the immune system, prevention is the ideal approach. However, conventional preventative strategies seem to have reached their limit. Novel prevention strategies fall within two broad categories: (1) antibiotic- and (2) heavy metal-based surface modifications of titanium alloy prostheses. This review examines research on the most relevant titanium alloy surface modifications that use antibiotics to locally prevent primary PJI.
Collapse
Affiliation(s)
- Jaime Esteban
- Clinical Microbiology Department, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, Av. Reyes Católicos 2, 28040 Madrid, Spain
- Networking Research Centre on Infectious Diseases (CIBER-ID), 28029 Madrid, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Research Institute Hospital 12 de Octubre (i+12), School of Pharmacy, Complutense University of Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - John J Aguilera-Correa
- Networking Research Centre on Infectious Diseases (CIBER-ID), 28029 Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, Research Institute Hospital 12 de Octubre (i+12), School of Pharmacy, Complutense University of Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
13
|
A New Antifungal-Loaded Sol-Gel Can Prevent Candida albicans Prosthetic Joint Infection. Antibiotics (Basel) 2021; 10:antibiotics10060711. [PMID: 34204833 PMCID: PMC8231561 DOI: 10.3390/antibiotics10060711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Fungal PJI is one of the most feared complications after arthroplasty. Although a rare finding, its high associated morbidity and mortality makes it an important object of study. The most frequent species causing fungal PJI is C. albicans. New technology to treat this type of PJI involves organic-inorganic sol-gels loaded with antifungals, as proposed in this study, in which anidulafungin is associated with organophosphates. This study aimed to evaluate the efficacy of an anidulafungin-loaded organic-inorganic sol-gel in preventing prosthetic joint infection (PJI), caused by Candida albicans using an in vivo murine model that evaluates many different variables. Fifty percent (3/6) of mice in the C. albicans-infected, non-coated, chemical-polished (CP)-implant group had positive culture and 100% of the animals in the C. albicans-infected, anidulafungin-loaded, sol-gel coated (CP + A)-implant group had a negative culture (0/6) (p = 0.023). Taking the microbiology and pathology results into account, 54.5% (6/11) of C. albicans-infected CP-implant mice were diagnosed with a PJI, whilst only 9.1% (1/11) of C. albicans-infected CP + A-implant mice were PJI-positive (p = 0.011). No differences were observed between the bone mineral content and bone mineral density of noninfected CP and noninfected CP + A (p = 0.835, and p = 0.181, respectively). No histological or histochemical differences were found in the tissue area occupied by the implant among CP and CP + A. Only 2 of the 6 behavioural variables evaluated exhibited changes during the study: limping and piloerection. In conclusion, the anidulafungin-loaded sol-gel coating showed an excellent antifungal response in vivo and can prevent PJI due to C. albicans in this experimental model.
Collapse
|
14
|
Perdigão Neto LV, Medeiros M, Ferreira SC, Nishiya AS, de Assis DB, Boszczowski Ĺ, Costa SF, Levin AS. Polymerase chain reaction targeting 16S ribosomal RNA for the diagnosis of bacterial meningitis after neurosurgery. Clinics (Sao Paulo) 2021; 76:e2284. [PMID: 33503188 PMCID: PMC7811837 DOI: 10.6061/clinics/2021/e2284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Bacterial and aseptic meningitis after neurosurgery can present similar clinical signs and symptoms. The aims of this study were to develop and test a molecular method to diagnose bacterial meningitis (BM) after neurosurgery. METHODS A 16S ribosomal RNA gene PCR-based strategy was developed using artificially inoculated cerebrospinal fluid (CSF) followed by sequencing. The method was tested using CSF samples from 43 patients who had undergone neurosurgery and were suspected to suffer from meningitis, and from 8 patients without neurosurgery or meningitis. Patients were classified into five groups, confirmed BM, probable BM, possible BM, unlikely BM, and no meningitis. RESULTS Among the samples from the 51 patients, 21 samples (41%) were culture-negative and PCR-positive. Of these, 3 (14%) were probable BM, 4 (19%) were possible BM, 13 (62%) were unlikely BM, and 1 (5%) was meningitis negative. Enterobacterales, non-fermenters (Pseudomonas aeruginosa and Acinetobacter baumannii), Staphylococcus haemolyticus, Granulicatella, Variovorax, and Enterococcus cecorum could be identified. In the group of patients with meningitis, a good agreement (3 of 4) was observed with the results of cultures, including the identification of species. CONCLUSION Molecular methods may complement the diagnosis, guide treatment, and identify non-cultivable microorganisms. We suggest the association of methods for suspected cases of BM after neurosurgery, especially for instances in which the culture is negative.
Collapse
Affiliation(s)
- Lauro Vieira Perdigão Neto
- Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, BR
- Laboratorio de Investigacao Medica 49, Bacteriologia, Sao Paulo SP, BR
- Departamento de Controle de Infeccao, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Micheli Medeiros
- Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, BR
- Laboratorio de Investigacao Medica 49, Bacteriologia, Sao Paulo SP, BR
| | - Suzete Cleusa Ferreira
- Departamento de Biologia Molecular, Fundacao Pro-Sangue / Hemocentro de Sao Paulo, Sao Paulo, SP, BR
- Laboratorio de Investigacao Medica em Patogenese e Terapia dirigida em Onco-Imuno-Hematologia (LIM-31), Departamento de Hematologia, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, SP, BR
| | - Anna Shoko Nishiya
- Departamento de Biologia Molecular, Fundacao Pro-Sangue / Hemocentro de Sao Paulo, Sao Paulo, SP, BR
- Laboratorio de Investigacao Medica em Patogenese e Terapia dirigida em Onco-Imuno-Hematologia (LIM-31), Departamento de Hematologia, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, SP, BR
| | - Denise Brandão de Assis
- Departamento de Controle de Infeccao, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, SP, BR
| | - ĺcaro Boszczowski
- Departamento de Controle de Infeccao, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, SP, BR
| | - Silvia Figueiredo Costa
- Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, BR
- Laboratorio de Investigacao Medica 49, Bacteriologia, Sao Paulo SP, BR
- Departamento de Controle de Infeccao, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, SP, BR
| | - Anna S. Levin
- Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, BR
- Laboratorio de Investigacao Medica 49, Bacteriologia, Sao Paulo SP, BR
- Departamento de Controle de Infeccao, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, SP, BR
| |
Collapse
|
15
|
Wang L, Tkhilaishvili T, Bernal Andres B, Trampuz A, Gonzalez Moreno M. Bacteriophage-antibiotic combinations against ciprofloxacin/ceftriaxone-resistant Escherichia coli in vitro and in an experimental Galleria mellonella model. Int J Antimicrob Agents 2020; 56:106200. [PMID: 33075514 DOI: 10.1016/j.ijantimicag.2020.106200] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/07/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023]
Abstract
Escherichia coli is the most common cause of Gram-negative prosthetic joint infections (PJIs) and ciprofloxacin is the first-line antibiofilm antibiotic. Due to the emergence of fluoroquinolone resistance, management of E. coli PJIs has become challenging and is associated with high treatment failure rates. We evaluated the efficacy of a newly isolated bacteriophage ɸWL-3 as a therapeutic agent in combination with ciprofloxacin, fosfomycin, gentamicin, meropenem or ceftriaxone against biofilm of a ciprofloxacin/ceftriaxone-resistant E. coli strain and the ATCC 25922 reference strain. ɸWL-3 was first characterised in terms of virion morphology, absorption rate, burst size and killing kinetics against both E. coli strains. The tested antibiotics presented high inhibitory concentrations (ranging from 16 to >1024 μg/mL) when tested alone against biofilms. Co-administration of ɸWL-3 with antibiotics improved the antibiotic efficacy against biofilm, especially after staggered exposure, reducing the minimum biofilm bactericidal concentration (MBBC) up to 512 times. The in vivo antimicrobial activity of ɸWL-3/fosfomycin combination against both E. coli strains was assessed in a Galleria mellonella invertebrate infection model. Treatment of infected larvae after lethal doses of E. coli resulted in enhanced survival rates when combinatorial therapy with ɸWL-3/fosfomycin was applied on E. coli ATCC 25922-infected larvae compared with monotherapy, but not for EC1-infected larvae, which we speculated could be due to higher release of endotoxins in a shorter period in EC1-infected larvae exposed to ɸWL-3. Our study provides new insights into the use of bacteriophages and antibiotics in the treatment of biofilm-associated infections caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Lei Wang
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Tamta Tkhilaishvili
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Beatriz Bernal Andres
- Centre for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrej Trampuz
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin; Augustenburger Platz 1 (Südstraße 2), 13353 Berlin, Germany
| | - Mercedes Gonzalez Moreno
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin; Augustenburger Platz 1 (Südstraße 2), 13353 Berlin, Germany.
| |
Collapse
|
16
|
Shevtsov M, Gavrilov D, Yudintceva N, Zemtsova E, Arbenin A, Smirnov V, Voronkina I, Adamova P, Blinova M, Mikhailova N, Galibin O, Akkaoui M, Pitkin M. Protecting the skin-implant interface with transcutaneous silver-coated skin-and-bone-integrated pylon in pig and rabbit dorsum models. J Biomed Mater Res B Appl Biomater 2020; 109:584-595. [PMID: 32935912 DOI: 10.1002/jbm.b.34725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Implant-associated soft tissue infections at the skin-implant interface represent the most frequent complications in reconstructive surgery and lead to implant failures and revisions. Titanium implants with deep porosity, called skin-and-bone-integrated-pylons (SBIP), allow for skin ingrowth in the morphologically natural direction, thus restoring a reliable dermal barrier and reducing the risk of infection. Silver coating of the SBIP implant surface using physical vapor deposition technique offers the possibility of preventing biofilm formation and exerting a direct antimicrobial effect during the wound healing phase. In vivo studies employing pig and rabbit dorsum models for assessment of skin ingrowth into the pores of the pylon demonstrated the safety of transcutaneous implantation of the SBIP system. No postoperative complications were reported at the end of the follow-up period of 6 months. Histological analysis proved skin ingrowth in the minipig model without signs of silver toxicity. Analysis of silver release (using energy dispersive X-ray spectroscopy) in the model of intramedullary-inserted silver-coated SBIP in New Zealand rabbits demonstrated trace amounts of silver after 3 months of in-bone implantation. In conclusion, selected temporary silver coating of the SBIP implant surface is powerful at preventing the periprosthetic infections without imparing skin ingrowth and can be considered for clinical application.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Radiation Immuno-Oncology, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Munich, Germany.,Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.,Department of Biotechnology, First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia.,Department of Pediatric Neurosurgery, Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, St. Petersburg, Russia.,Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, Vladivostok, Russia
| | - Dmitriy Gavrilov
- Federal State Budgetary Institution "Federal Scientific Center of Rehabilitation of the Disabled named after G.A. Albrecht" of the Ministry of Labour and Social Protection of the Russian Federation, St. Petersburg, Russia
| | - Natalia Yudintceva
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Elena Zemtsova
- Department of Solid State Chemistry, Saint Petersburg State University, St. Petersburg, Russia
| | - Andrei Arbenin
- Department of Solid State Chemistry, Saint Petersburg State University, St. Petersburg, Russia
| | - Vladimir Smirnov
- Department of Solid State Chemistry, Saint Petersburg State University, St. Petersburg, Russia
| | | | - Polina Adamova
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - Miralda Blinova
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Nataliya Mikhailova
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Oleg Galibin
- Department of Biotechnology, First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia
| | | | - Mark Pitkin
- Tufts University, Boston, Massachusetts, USA.,Poly-Orth International, Sharon, Massachusetts, USA
| |
Collapse
|
17
|
A Biodegradable Antifungal-Loaded Sol-Gel Coating for the Prevention and Local Treatment of Yeast Prosthetic-Joint Infections. MATERIALS 2020; 13:ma13143144. [PMID: 32679668 PMCID: PMC7411966 DOI: 10.3390/ma13143144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
Abstract
Fungal prosthetic-joint infections are rare but devastating complications following arthroplasty. These infections are highly recurrent and expose the patient to the development of candidemia, which has high mortality rates. Patients with this condition are often immunocompromised and present several comorbidities, and thus pose a challenge for diagnosis and treatment. The most frequently isolated organisms in these infections are Candida albicans and Candida parapsilosis, pathogens that initiate the infection by developing a biofilm on the implant surface. In this study, a novel hybrid organo-inorganic sol-gel coating was developed from a mixture of organopolysiloxanes and organophosphite, to which different concentrations of fluconazole or anidulafungin were added. Then, the capacity of these coatings to prevent biofilm formation and treat mature biofilms produced by reference and clinical strains of C. albicans and C. Parapsilosis was evaluated. Anidulafungin-loaded sol-gel coatings were more effective in preventing C. albicans biofilm formation, while fluconazole-loaded sol-gel prevented C. parapsilosis biofilm formation more effectively. Treatment with unloaded sol-gel was sufficient to reduce C. albicans biofilms, and the sol-gels loaded with fluconazole or anidulafungin slightly enhanced this effect. In contrast, unloaded coatings stimulated C. parapsilosis biofilm formation, and loading with fluconazole reduced these biofilms by up to 99%. In conclusion, these coatings represent a novel therapeutic approach with potential clinical use to prevent and treat fungal prosthetic-joint infections.
Collapse
|
18
|
Aguilera-Correa JJ, Vidal-Laso R, Carias-Cálix RA, Toirac B, García-Casas A, Velasco-Rodríguez D, Llamas-Sillero P, Jiménez-Morales A, Esteban J. A New Antibiotic-Loaded Sol-Gel can Prevent Bacterial Intravenous Catheter-Related Infections. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2946. [PMID: 32630210 PMCID: PMC7372435 DOI: 10.3390/ma13132946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to evaluate the effectiveness of a moxifloxacin-loaded organic-inorganic sol-gel (A50) by locally preventing the catheter-related bloodstream infection (CRBSI) provoked by Staphylococcus epidermidis (S. epidermidis) and the effect resulting from its hydrolytic degradation on coagulation by using a rabbit in-vivo model. A50 coating can completely inhibit growth and would locally prevent CRBSI provoked by S. epidermidis. None of the coagulation blood parameters showed a significant difference constant over time between the control catheter group and the A50-coated catheter group, despite the visible silica release resulting from physiological A50 sol-gel degradation detected in serum at least during the first week. At pathological level, foreign body reaction was present in both of types of catheter, and it was characterized by the presence of macrophages and foreign body giant cell. However, this reaction was different in each group: the A50-coated catheter group showed a higher inflammation with histiocytes, which were forming granuloma-like aggregates with an amorphous crystalline material inside, accompanied by other inflammatory cells such as plasma cells, lymphocytes and mast cells. In conclusion, A50 coating a venous catheter showed excellent bactericidal anti-biofilm response since it completely inhibited S. epidermidis biofilm development and, far from showing procoagulant effects, showed slightly anticoagulant effects.
Collapse
Affiliation(s)
| | - Rosa Vidal-Laso
- Hematology and Hemotherapy, IIS- Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (R.V.-L.); (D.V.-R.); (P.L.-S.)
| | | | - Beatriz Toirac
- Materials Science and Engineering Department, University Carlos III, 28911 Madrid, Spain; (B.T.); (A.G.-C.); (A.J.-M.)
| | - Amaya García-Casas
- Materials Science and Engineering Department, University Carlos III, 28911 Madrid, Spain; (B.T.); (A.G.-C.); (A.J.-M.)
| | - Diego Velasco-Rodríguez
- Hematology and Hemotherapy, IIS- Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (R.V.-L.); (D.V.-R.); (P.L.-S.)
| | - Pilar Llamas-Sillero
- Hematology and Hemotherapy, IIS- Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (R.V.-L.); (D.V.-R.); (P.L.-S.)
| | - Antonia Jiménez-Morales
- Materials Science and Engineering Department, University Carlos III, 28911 Madrid, Spain; (B.T.); (A.G.-C.); (A.J.-M.)
- Álvaro Alonso Barba Technological Institute of Chemistry and Materials, Carlos III University, 28911 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain;
| |
Collapse
|
19
|
Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T, Pola J. Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Adv 2020; 10:33782-33835. [PMID: 35519068 PMCID: PMC9056785 DOI: 10.1039/d0ra04287k] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Sol–gel derived bioactive glasses have been extensively explored as a promising and highly porous scaffold materials for bone tissue regeneration applications owing to their exceptional osteoconductivity, osteostimulation and degradation rates.
Collapse
Affiliation(s)
- Kalim Deshmukh
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Tomáš Kovářík
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Tomáš Křenek
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| | - Denitsa Docheva
- Experimental Trauma Surgery
- Department of Trauma Surgery
- University Regensburg Medical Centre
- Regensburg
- Germany
| | - Theresia Stich
- Experimental Trauma Surgery
- Department of Trauma Surgery
- University Regensburg Medical Centre
- Regensburg
- Germany
| | - Josef Pola
- New Technologies – Research Center
- University of West Bohemia
- Plzeň
- Czech Republic
| |
Collapse
|