1
|
Guo C, Wang L, Chen N, Zhang M, Jia J, Lv L, Li M. Advances in research and utilization of botanical pesticides for agricultural pest management in Inner Mongolia, China. CHINESE HERBAL MEDICINES 2024; 16:248-262. [PMID: 38706822 PMCID: PMC11064588 DOI: 10.1016/j.chmed.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/26/2022] [Accepted: 04/11/2023] [Indexed: 05/07/2024] Open
Abstract
Traditional Chinese herbal medicines not only cure human diseases, but also play an important role as insecticides. Compared with conventional chemical agents, traditional Chinese herbal medicines are characterized by low toxicity, low residues, and being eco-friendly, and they have become a research hotspot. Traditional Chinese herbal medicines have tremendous flexibility and indefinite potential. Therefore, this paper reviewed the types of insecticides belonging to traditional Chinese herbal medicines in Inner Mongolia, China, including their traditional uses, secondary metabolites, biological activities, action mechanisms, application methods, and development status. In addition, the most relevant issues involved in the development of traditional Chinese herbal medicines was discussed. We believe that traditional Chinese herbal medicines can be better implemented and developed; such that its other advantages, such as an insect repellent, can be promoted. Moreover, this study lays a solid foundation for further research on traditional Chinese herbal medicines in Inner Mongolia, China.
Collapse
Affiliation(s)
- Chunyan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161000, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010110, China
- Inner Mongolia Academy of Chinese and Mongolian Medicine, Hohhot 010010, China
| | - Lingfei Wang
- Naiman Banner Medicinal Materials Research and Development Center, Tongliao 028300, China
| | - Namuhan Chen
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010110, China
| | | | - Junying Jia
- University Engineering Research Center of Chinese (Mongolia) Ecological Planting Medicinal Materials (Nurture) in Inner Mongolia Autonomous Region, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Lijuan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Minhui Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161000, China
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010110, China
- Inner Mongolia Academy of Chinese and Mongolian Medicine, Hohhot 010010, China
- Baotou Medical College, Baotou 014060, China
| |
Collapse
|
2
|
Cui K, Zhou L, Jiang C, Yang S, Zou N, Liu F, He L, Mu W. Residue behavior and efficacy of benzothiazole in grains under different fumigation conditions. PEST MANAGEMENT SCIENCE 2023; 79:3622-3630. [PMID: 37166082 DOI: 10.1002/ps.7536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/30/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Benzothiazole is a potential grain fumigant for Tribolium castaneum. However, its safety profile and suitable fumigation conditions remain unknown. We therefore investigated the insecticidal efficacy, accumulation and dissipation of benzothiazole in grains (wheat, corn and rice) under different temperatures. RESULTS We established a universal detection method (modified QuEChERS coupled with GC-MS/MS) of benzothiazole residues in three grains, which provided high linearity (R2 > 0.999), sensitivity (limits of detection = 0.001 mg/kg, limits of quantification = 0.002-0.005 mg/kg), accuracy (recoveries = 88.18-118.75%) and precision (relative standard deviations < 4.78%). The insecticidal efficacy order of benzothiazole was 30 ≥ 10 > 20 °C and corn > wheat > rice. Temperature positively affected the accumulation/dissipation rate of benzothiazole. Rice was the most easily accumulated and dissipated grain for benzothiazole residues, while corn accumulated benzothiazole more than wheat but less than rice, with dissipation slower than wheat and rice. CONCLUSION Our results provide important references for the application of benzothiazole and other fumigants. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaidi Cui
- Henan Key Laboratory of Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- Henan Key Laboratory of Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chaofan Jiang
- Henan Key Laboratory of Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Song Yang
- Jiangsu Product Quality Testing & Inspection Institute, Nanjing, China
| | - Nan Zou
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Leiming He
- Henan Key Laboratory of Creation and Application of New Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
3
|
Zhu G, Ding W, Zhao H, Xue M, Chu P, Jiang L. Effects of the Entomopathogenic Fungus Mucor hiemalis BO-1 on the Physical Functions and Transcriptional Signatures of Bradysia odoriphaga Larvae. INSECTS 2023; 14:162. [PMID: 36835731 PMCID: PMC9964685 DOI: 10.3390/insects14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Mucor hiemalis BO-1 is an entomopathogenic fungus that infects Bradysia odoriphaga, a destructive root maggot. M. hiemalis BO-1 possesses stronger pathogenicity to the larvae than to other stages of B. odoriphaga, and provides satisfactory field control. However, the physiological response of B. odoriphaga larvae to infection and the infection mechanism of M. hiemalis are unknown. We detected some physiological indicators of diseased B. odoriphaga larvae infected by M. hiemalis BO-1. These included changes in consumption, nutrient contents, and digestive and antioxidant enzymes. We performed transcriptome analysis of diseased B. odoriphaga larvae, and found that M. hiemalis BO-1 showed acute toxicity to B. odoriphaga larvae and was as toxic as some chemical pesticides. The food consumption of diseased B. odoriphaga after inoculation with M. hiemalis spores decreased significantly, and there was a significant decrease in total protein, lipid, and carbohydrates in diseased larvae. Key digestive enzymes (protease, α-amylase, lipase, and cellulase) were significantly inhibited during infection. Peroxidase maintained high activity, and the activity of other antioxidant enzymes (catalase, superoxide dismutase, and glutathione S-transferases) first increased and then decreased. Combined with the transcriptional signatures of diseased B. odoriphaga larvae, M. hiemalis BO-1 infection resulted in decreased food consumption, reduced digestive enzyme activity, and altered energy metabolism and material accumulation. Infection was also accompanied by fluctuations in immune function, such as cytochrome P450 and the Toll pathway. Therefore, our results laid a basis for the further study of the interactions between M. hiemalis BO-1 and B. odoriphaga and promoted the genetic improvement of entomopathogenic fungi.
Collapse
Affiliation(s)
- Guodong Zhu
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Wenjuan Ding
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Haipeng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Ming Xue
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Pengfei Chu
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Liwei Jiang
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
4
|
Chen C, Wang C, Liu Y, Shan T, Shi X, Gao X. Integration analysis of PacBio SMRT- and Illumina RNA-seq reveals P450 genes involved in thiamethoxam detoxification in Bradysia odoriphaga. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105176. [PMID: 35973766 DOI: 10.1016/j.pestbp.2022.105176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The sciarid fly Bradysia odoriphaga is a serious pest of Chinese chive (Liliaceae). Neonicotinoid insecticides including thiamethoxam have been used for B. odoriphaga control. However, thiamethoxam resistance in B. odoriphaga has developed in recent years. To identify potential genes involved in detoxification metabolism of thiamethoxam in B. odoriphaga, a PacBio single-molecule real-time (SMRT) transcriptome sequencing and Illumina RNA-seq analysis on thiamethoxam treated B. odoriphaga were performed to explore differentially expressed genes in B. odoriphaga. After SMRT sequencing, analysis of Illumina RNA-Seq data showed a total of 172 differentially expressed genes (DEGs) after thiamethoxam treatment, among which eight upregulated DEGs were P450 genes that may be related to thiamethoxam metabolism. The qRT-PCR results of the eight up-regulated P450 unigenes after thiamethoxam treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of the eight upregulated P450 transcripts followed by insecticide bioassay was conducted, and three P450 unigenes were verified to be related to thiamethoxam detoxification in B. odoriphaga. This study provides new information about the P450 genes involved in thiamethoxam detoxification in B. odoriphaga.
Collapse
Affiliation(s)
- Chengyu Chen
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huai'an, Jiangsu Province 223001, China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Cuicui Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Institute of Agricultural Resources and Environment, Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Tisheng Shan
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
He L, Wang M, Wang H, Zhao T, Cui K, Zhou L. iTRAQ proteomic analysis of the inhibitory effect of 1,6-O,O-diacetylbritannilactone on the plant pathogenic oomycete Phytophthora capsici. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105125. [PMID: 35715063 DOI: 10.1016/j.pestbp.2022.105125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora capsici is a highly destructive oomycete of vegetables; its management is challenging due to its broad host range, rapid dispersion, resilient spores and severe fungicide resistance. Identifying an effective alternative fungicide is important for the control of P. capsici. 1,6-O,O-diacetylbritannilactone (ABLOO), one of the secondary metabolites of Inula Britannica, showed a favorable inhibitory activity against P. capsici at different developmental stages, with a sensitivity order as follows: sporangia formation (30.45 mg/L) > zoospore discharge (77.69 mg/L) > mycelial growth (93.18 mg/L) > cystospore germination (591.48 mg/L). To investigate the mode of action of ABLOO in P. capsici, iTRAQ-based quantitative proteomic analysis was performed by comparing the expression levels of proteins in the control and ABLOO-treated (400 mg/L, inhibition rate of 80%) mycelial groups. A total of 65 downregulated and 75 upregulated proteins were identified in the proteomic analysis. Functional enrichment analyses showed that proteins with transmembrane transport activity were significantly inhibited, while proteins involved in energy production were significantly increased, including proteins involved in ubiquinone and other terpenoid-quinone biosynthesis, oxidative phosphorylation, and glycolysis/gluconeogenesis. The morphological results indicated that ABLOO treatment could decrease the thickness of the cell walls of P. capsici mycelia. Correspondingly, biochemical results showed that ABLOO treatment reduced the β-1,3-glucan contents (the key component of the cell wall of P. capsici) and increased the cell membrane permeability of P. capsici. ABLOO may exhibit antioomycete activity by destroying the cell membrane of P. capsici. This study provides new evidence regarding the inhibitory mechanisms of ABLOO against P. capsici.
Collapse
Affiliation(s)
- Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Mengke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Haijiao Wang
- Forest Diseases and Pests Control and Quarantine Station of Henan Province, Zhengzhou 450008, Henan, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Kaidi Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, Henan, China; Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
6
|
Ma D, Wang G, Zhu J, Mu W, Dou D, Liu F. Green Leaf Volatile Trans-2-Hexenal Inhibits the Growth of Fusarium graminearum by Inducing Membrane Damage, ROS Accumulation, and Cell Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5646-5657. [PMID: 35481379 DOI: 10.1021/acs.jafc.2c00942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium graminearum, the main agent of Fusarium head blight (FHB), can cause serious yield loss and secrete mycotoxins to contaminate grain. Here, the biological activity of trans-2-hexenal (T2H) against F. graminearum was determined and its mode of action (MOA) was investigated. Furthermore, surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS), bioinformatic analysis, and gene knockout technique were combined to identify the binding proteins of T2H in F. graminearum cells. T2H exhibited satisfactory inhibitory activity against F. graminearum in vitro. Good lipophilicity greatly enhanced the affinity of T2H to F. graminearum mycelia and further caused membrane damage. The FgTRR (thioredoxin reductase) gene negatively regulates the sensitivity of F. graminearum to T2H by reducing the generation of reactive oxygen species (ROS) induced by T2H. Two mutant strains with FgSLX1 (structure-specific endonuclease subunit) and FgCOPB (coatomer subunit β) genes knockout showed decreased sensitivity to T2H, suggesting that these two genes may be involved in the antimicrobial activity of T2H. Taken together, T2H can inhibit F. graminearum growth by multiple MOAs and can be used as a biofumigant to control the occurrence of FHB in the field.
Collapse
Affiliation(s)
- Dicheng Ma
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guoxian Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiamei Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
7
|
Ren H, Wang H, Yu Z, Zhang S, Qi X, Sun L, Wang Z, Zhang M, Ahmed T, Li B. Effect of Two Kinds of Fertilizers on Growth and Rhizosphere Soil Properties of Bayberry with Decline Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112386. [PMID: 34834750 PMCID: PMC8624721 DOI: 10.3390/plants10112386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
Decline disease causes severe damage to bayberry. However, the cause of this disease remains unclear. Interestingly, our previous studies found that the disease severity is related with the level of soil fertilizer. This study aims to explore the effect and mechanism of compound fertilizer (CF) and bio-organic fertilizer (OF) in this disease by investigating the vegetative growth, fruit characters, soil property, rhizosphere microflora and metabolites. Results indicated that compared with the disease control, CF and OF exhibited differential effect in plant healthy and soil quality, together with the increase in relative abundance of Burkholderia and Mortierella, and the reduction in that of Rhizomicrobium and Acidibacter, Trichoderma, and Cladophialophora reduced. The relative abundance of Geminibasidium were increased by CF (251.79%) but reduced by OF (13.99%). In general, the composition of bacterial and fungal communities in rhizosphere soil was affected significantly at genus level by exchangeable calcium, available phosphorus, and exchangeable magnesium, while the former two variables had a greater influence in bacterial communities than fungal communities. Analysis of GC-MS metabonomics indicated that compared to the disease control, CF and OF significantly changed the contents of 31 and 45 metabolites, respectively, while both fertilizers changed C5-branched dibasic acid, galactose, and pyrimidine metabolic pathway. Furthermore, a significant correlation was observed at the phylum, order and genus levels between microbial groups and secondary metabolites of bayberry rhizosphere soil. In summary, the results provide a new way for rejuvenation of this diseased bayberry trees.
Collapse
Affiliation(s)
- Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Hongyan Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Li Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Zhenshuo Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (Z.W.); (B.L.)
| | - Muchen Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
- Correspondence: (Z.W.); (B.L.)
| |
Collapse
|
8
|
Sella L, Govind R, Caracciolo R, Quarantin A, Vu VV, Tundo S, Nguyen HM, Favaron F, Musetti R, De Zotti M. Transcriptomic and Ultrastructural Analyses of Pyricularia Oryzae Treated With Fungicidal Peptaibol Analogs of Trichoderma Trichogin. Front Microbiol 2021; 12:753202. [PMID: 34721357 PMCID: PMC8551967 DOI: 10.3389/fmicb.2021.753202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Eco-friendly analogs of Trichogin GA IV, a short peptaibol produced by Trichoderma longibrachiatum, were assayed against Pyricularia oryzae, the causal agent of rice blast disease. In vitro and in vivo screenings allowed us to identify six peptides able to reduce by about 70% rice blast symptoms. One of the most active peptides was selected for further studies. Microscopy analyses highlighted that the treated fungal spores could not germinate and the fluorescein-labeled peptide localized on the spore cell wall and in the agglutinated cytoplasm. Transcriptomic analysis was carried out on P. oryzae mycelium 3 h after the peptide treatment. We identified 1,410 differentially expressed genes, two-thirds of which upregulated. Among these, we found genes involved in oxidative stress response, detoxification, autophagic cell death, cell wall biogenesis, degradation and remodeling, melanin and fatty acid biosynthesis, and ion efflux transporters. Molecular data suggest that the trichogin analogs cause cell wall and membrane damages and induce autophagic cell death. Ultrastructure observations on treated conidia and hyphae confirmed the molecular data. In conclusion, these selected peptides seem to be promising alternative molecules for developing effective bio-pesticides able to control rice blast disease.
Collapse
Affiliation(s)
- Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Rakshita Govind
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Rocco Caracciolo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Alessandra Quarantin
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Hung Minh Nguyen
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, Italy
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Marta De Zotti
- Department of Chemistry (DISC), University of Padova, Padua, Italy
| |
Collapse
|
9
|
Peng X, Wu B, Zhang S, Li M, Jiang X. Transcriptome Dynamics Underlying Chlamydospore Formation in Trichoderma virens GV29-8. Front Microbiol 2021; 12:654855. [PMID: 34168625 PMCID: PMC8217873 DOI: 10.3389/fmicb.2021.654855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022] Open
Abstract
Trichoderma spp. are widely used biocontrol agents which are antagonistic to a variety of plant pathogens. Chlamydospores are a type of propagules produced by many fungi that have thick walls and are highly resistant to adverse environmental conditions. Chlamydospore preparations of Trichoderma spp. can withstand various storage conditions, have a longer shelf life than conidial preparations and have better application potential. However, large-scale production of chlamydospores has proven difficult. To understand the molecular mechanisms governing chlamydospore formation (CF) in Trichoderma fungi, we performed a comprehensive analysis of transcriptome dynamics during CF across 8 different developmental time points, which were divided into 4 stages according to PCA analysis: the mycelium growth stage (S1), early and middle stage of CF (S2), flourishing stage of CF (S3), and late stage of CF and mycelia initial autolysis (S4). 2864, 3206, and 3630 DEGs were screened from S2 vs S1, S3 vs S2, and S4 vs S3, respectively. We then identified the pathways and genes that play important roles in each stage of CF by GO, KEGG, STC and WGCNA analysis. The results showed that DEGs in the S2 vs S1 were mainly enriched in organonitrogen compound metabolism, those in S3 vs S2 were mainly involved in secondary metabolite, cell cycle, and N-glycan biosynthesis, and DEGs in S4 vs S3 were mainly involved in lipid, glycogen, and chitin metabolic processes. We speculated that mycelial assimilation and absorption of exogenous nitrogen in the early growth stage (S1), resulted in subsequent nitrogen deficiency (S2). At the same time, secondary metabolites and active oxygen free radicals released during mycelial growth produced an adverse growth environment. The resulting nitrogen-deficient and toxin enriched medium may stimulate cell differentiation by initiating cell cycle regulation to induce morphological transformation of mycelia into chlamydospores. High expression of genes relating to glycogen, lipid, mannan, and chitin synthetic metabolic pathways during the flourishing (S3) and late stages (S4) of CF may be conducive to energy storage and cell wall construction in chlamydospores. For further verifying the functions of the amino sugar and nucleotide sugar metabolism (tre00520) pathway in the CF of T. virens GV29-8 strain, the chitin synthase gene (TRIVIDRAFT_90152), one key gene of the pathway, was deleted and resulted in the dysplasia of mycelia and an incapability to form normal chlamydospores, which illustrated the pathway affecting the CF of T. virens GV29-8 strain. Our results provide a new perspective for understanding the genetics of biochemical pathways involved in CF of Trichoderma spp.
Collapse
Affiliation(s)
| | | | | | - Mei Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiliang Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|