1
|
Hou P, Zhou RQ, Jiang YL, Yu RC, Du K, Gan N, Ke F, Zhang QY, Li Q, Zhou CZ. Cryo-EM structure of cyanopodophage A4 reveals a pentameric pre-ejectosome in the double-stabilized capsid. Proc Natl Acad Sci U S A 2025; 122:e2423403122. [PMID: 40163721 PMCID: PMC12002296 DOI: 10.1073/pnas.2423403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Upon infection, the podophages usually eject a couple of proteins from the capsid to form a transmembrane ejectosome on the host cell membrane that facilitates the ejection of viral genome. However, it remains unclear how these proteins of pre-ejectosome are finely assembled at the center of highly packaged genome. Here, we report the intact structure of Anabaena cyanopodophage A4, which consists of a capsid stabilized by two types of cement proteins and a short tail attached with six tail fibers. Notably, we find a pentameric pre-ejectosome at the core of capsid, which is composed of four ejection proteins wrapped into a coaxial cylinder of triple layers. Moreover, a segment of genomic DNA runs along the positively charged circular cleft formed by two ejection proteins. Based on the mortise-and-tenon architecture of pre-ejectosome in combination with previous studies, we propose a putative DNA packaging process and ejection mechanism for podophages. These findings largely enrich our knowledge on the assembly mechanism of podophages, which might facilitate the application of A4 as a chassis cyanophage in synthetic biology.
Collapse
Affiliation(s)
- Pu Hou
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Rui-Qian Zhou
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Yong-Liang Jiang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Rong-Cheng Yu
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Kang Du
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Nanqin Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fei Ke
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiong Li
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| | - Cong-Zhao Zhou
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China and School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei230027, China
| |
Collapse
|
2
|
Shopen Gochev C, Demory D, Lopes dos Santos A, Carlson MCG, Gutiérrez‐Rodríguez A, Weitz JS, Lindell D. Cold Surface Waters of the Sub-Antarctic Pacific Ocean Support High Cyanophage Abundances and Infection Levels. Environ Microbiol 2025; 27:e70031. [PMID: 39797436 PMCID: PMC11724200 DOI: 10.1111/1462-2920.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
Cyanobacterial distributions are shaped by abiotic factors including temperature, light and nutrient availability as well as biotic factors such as grazing and viral infection. In this study, we investigated the abundances of T4-like and T7-like cyanophages and the extent of picocyanobacterial infection in the cold, high-nutrient-low-chlorophyll, sub-Antarctic waters of the southwest Pacific Ocean during austral spring. Synechococcus was the dominant picocyanobacterium, ranging from 4.7 × 103 to 1.2 × 105 cells∙mL-1, while Prochlorococcus abundances were relatively low overall, ranging from 1.0 × 103 to 3.9 × 104 cells∙mL-1. Using taxon-specific, single-virus and single-cell polony methods, we found that cyanophages were on average 15-fold, and up to 50-fold, more abundant than cyanobacteria in these waters. T4-like cyanophages (ranging from 1.7 × 105 to 6.5 × 105 phage·mL-1) were 2.7-fold more abundant than T7-like cyanophages (ranging from 3.1 × 104 to 2.8 × 105 phage·mL-1). Picocyanobacteria were primarily infected by T4-like cyanophages with more Synechococcus (4.8%-12.1%) infected than Prochlorococcus (2.5%-6.2%), whereas T7-like cyanophages infected less than 1% of both genera. These infection levels translated to daily mortality in the range of 5.7%-26.2% and 2.9%-14.3% of the standing stock of Synechococcus and Prochlorococcus, respectively. Our findings suggest that T4-like cyanophages are significant agents of cyanobacterial mortality in the cold, low-iron, sub-Antarctic waters of the South Pacific Ocean.
Collapse
Affiliation(s)
| | - David Demory
- CNRS, Sorbonne Université, USR 3579, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM)Observatoire OcéanologiqueBanyuls‐sur‐MerFrance
| | | | - Michael C. G. Carlson
- Faculty of Biology, TechnionIsrael Institute of TechnologyHaifaIsrael
- Department of Biological SciencesCalifornia State UniversityLong BeachCaliforniaUSA
| | | | - Joshua S. Weitz
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
- Institute for Health ComputingUniversity of MarylandNorth BethesdaMarylandUSA
- Department of PhysicsUniversity of MarylandCollege ParkMarylandUSA
| | - Debbie Lindell
- Faculty of Biology, TechnionIsrael Institute of TechnologyHaifaIsrael
| |
Collapse
|
3
|
Beckett SJ, Demory D, Coenen AR, Casey JR, Dugenne M, Follett CL, Connell P, Carlson MCG, Hu SK, Wilson ST, Muratore D, Rodriguez-Gonzalez RA, Peng S, Becker KW, Mende DR, Armbrust EV, Caron DA, Lindell D, White AE, Ribalet F, Weitz JS. Disentangling top-down drivers of mortality underlying diel population dynamics of Prochlorococcus in the North Pacific Subtropical Gyre. Nat Commun 2024; 15:2105. [PMID: 38453897 PMCID: PMC10920773 DOI: 10.1038/s41467-024-46165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Photosynthesis fuels primary production at the base of marine food webs. Yet, in many surface ocean ecosystems, diel-driven primary production is tightly coupled to daily loss. This tight coupling raises the question: which top-down drivers predominate in maintaining persistently stable picocyanobacterial populations over longer time scales? Motivated by high-frequency surface water measurements taken in the North Pacific Subtropical Gyre (NPSG), we developed multitrophic models to investigate bottom-up and top-down mechanisms underlying the balanced control of Prochlorococcus populations. We find that incorporating photosynthetic growth with viral- and predator-induced mortality is sufficient to recapitulate daily oscillations of Prochlorococcus abundances with baseline community abundances. In doing so, we infer that grazers in this environment function as the predominant top-down factor despite high standing viral particle densities. The model-data fits also reveal the ecological relevance of light-dependent viral traits and non-canonical factors to cellular loss. Finally, we leverage sensitivity analyses to demonstrate how variation in life history traits across distinct oceanic contexts, including variation in viral adsorption and grazer clearance rates, can transform the quantitative and even qualitative importance of top-down controls in shaping Prochlorococcus population dynamics.
Collapse
Affiliation(s)
- Stephen J Beckett
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Biology, University of Maryland, College Park, MD, USA.
| | - David Demory
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Sorbonne Université, CNRS, USR 3579, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| | - Ashley R Coenen
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - John R Casey
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Mathilde Dugenne
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Sorbonne Université, CNRS, UMR 7093, Laboratoire d'Océanographie de Villefranche-sur-Mer (LOV), Villefranche-sur-Mer, France
| | - Christopher L Follett
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Paige Connell
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Biology Department, San Diego Mesa College, San Diego, CA, USA
| | - Michael C G Carlson
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Sarah K Hu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Oceanography, Texas A&M University, College Station, TX, USA
| | - Samuel T Wilson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Muratore
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | | | - Shengyun Peng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Adobe, San Jose, CA, USA
| | - Kevin W Becker
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Daniel R Mende
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Angelicque E White
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - François Ribalet
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Biology, University of Maryland, College Park, MD, USA.
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
- Institut de Biologie, École Normale Supérieure, Paris, France.
| |
Collapse
|
4
|
Wu LY, Piedade GJ, Moore RM, Harrison AO, Martins AM, Bidle KD, Polson SW, Sakowski EG, Nissimov JI, Dums JT, Ferrell BD, Wommack KE. Ubiquitous, B 12-dependent virioplankton utilizing ribonucleotide-triphosphate reductase demonstrate interseasonal dynamics and associate with a diverse range of bacterial hosts in the pelagic ocean. ISME COMMUNICATIONS 2023; 3:108. [PMID: 37789093 PMCID: PMC10547690 DOI: 10.1038/s43705-023-00306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023]
Abstract
Through infection and lysis of their coexisting bacterial hosts, viruses impact the biogeochemical cycles sustaining globally significant pelagic oceanic ecosystems. Currently, little is known of the ecological interactions between lytic viruses and their bacterial hosts underlying these biogeochemical impacts at ecosystem scales. This study focused on populations of lytic viruses carrying the B12-dependent Class II monomeric ribonucleotide reductase (RNR) gene, ribonucleotide-triphosphate reductase (Class II RTPR), documenting seasonal changes in pelagic virioplankton and bacterioplankton using amplicon sequences of Class II RTPR and the 16S rRNA gene, respectively. Amplicon sequence libraries were analyzed using compositional data analysis tools that account for the compositional nature of these data. Both virio- and bacterioplankton communities responded to environmental changes typically seen across seasonal cycles as well as shorter term upwelling-downwelling events. Defining Class II RTPR-carrying viral populations according to major phylogenetic clades proved a more robust means of exploring virioplankton ecology than operational taxonomic units defined by percent sequence homology. Virioplankton Class II RTPR populations showed positive associations with a broad phylogenetic diversity of bacterioplankton including dominant taxa within pelagic oceanic ecosystems such as Prochlorococcus and SAR11. Temporal changes in Class II RTPR virioplankton, occurring as both free viruses and within infected cells, indicated possible viral-host pairs undergoing sustained infection and lysis cycles throughout the seasonal study. Phylogenetic relationships inferred from Class II RTPR sequences mirrored ecological patterns in virio- and bacterioplankton populations demonstrating possible genome to phenome associations for an essential viral replication gene.
Collapse
Affiliation(s)
- Ling-Yi Wu
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ, t'Horntje, The Netherlands
- Department of Oceanography and Fisheries and Ocean Sciences Institute-OKEANOS, University of the Azores, 9901-862 Horta, Faial, Azores, Portugal
| | - Ryan M Moore
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Amelia O Harrison
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Ana M Martins
- Department of Oceanography and Fisheries and Ocean Sciences Institute-OKEANOS, University of the Azores, 9901-862 Horta, Faial, Azores, Portugal
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, USA
| | - Shawn W Polson
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Eric G Sakowski
- Department of Earth Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Jacob T Dums
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
- Biotechnology Program, North Carolina State University, 2800 Faucette Dr, Raleigh, NC, 27695, USA
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - K Eric Wommack
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
5
|
Jung SW, Kim KE, Kim HJ, Lee TK. Metavirome Profiling and Dynamics of the DNA Viral Community in Seawater in Chuuk State, Federated States of Micronesia. Viruses 2023; 15:1293. [PMID: 37376592 DOI: 10.3390/v15061293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Despite their abundance and ecological importance, little is known about the diversity of marine viruses, in part because most cannot be cultured in the laboratory. Here, we used high-throughput viral metagenomics of uncultivated viruses to investigate the dynamics of DNA viruses in tropical seawater sampled from Chuuk State, Federated States of Micronesia, in March, June, and December 2014. Among the identified viruses, 71-79% were bacteriophages belonging to the families Myoviridae, Siphoviridae, and Podoviridae (Caudoviriales), listed in order of abundance at all sampling times. Although the measured environmental factors (temperature, salinity, and pH) remained unchanged in the seawater over time, viral dynamics changed. The proportion of cyanophages (34.7%) was highest in June, whereas the proportion of mimiviruses, phycodnaviruses, and other nucleo-cytoplasmic large DNA viruses (NCLDVs) was higher in March and December. Although host species were not analysed, the dramatic viral community change observed in June was likely due to changes in the abundance of cyanophage-infected cyanobacteria, whereas that in NCLDVs was likely due to the abundance of potential eukaryote-infected hosts. These results serve as a basis for comparative analyses of other marine viral communities, and guide policy-making when considering marine life care in Chuuk State.
Collapse
Affiliation(s)
- Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| |
Collapse
|
6
|
Yuan B, Liu Y, Lv M, Sui Y, Hou S, Yang T, Belhadj Z, Zhou Y, Chang N, Ren Y, Sun C. Virus-like particle-based nanocarriers as an emerging platform for drug delivery. J Drug Target 2023; 31:433-455. [PMID: 36940208 DOI: 10.1080/1061186x.2023.2193358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
New nanocarrier technologies are emerging, and they have great potential for improving drug delivery, targeting efficiency, and bioavailability. Virus-like particles (VLPs) are natural nanoparticles from animal and plant viruses and bacteriophages. Hence, VLPs present several great advantages, such as morphological uniformity, biocompatibility, reduced toxicity, and easy functionalisation. VLPs can deliver many active ingredients to the target tissue and have great potential as a nanocarrier to overcome the limitations associated with other nanoparticles. This review will focus primarily on the construction and applications of VLPs, particularly as a novel nanocarrier to deliver active ingredients. Herein, the main methods for the construction, purification, and characterisation of VLPs, as well as various VLP-based materials used in delivery systems are summarised. The biological distribution of VLPs in drug delivery, phagocyte-mediated clearance, and toxicity are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No.100, Kexue Avenue, Zhengzhou 450001, China
| | - Meilin Lv
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yilei Sui
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Shenghua Hou
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Tinghui Yang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Naidan Chang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yachao Ren
- Harbin Medical University-Daqing, Daqing 163319, China.,School of Chemistry and Chemical Engineering, Tianjin University of Technology, tianjin, 300000, China
| | | |
Collapse
|
7
|
Abundant and cosmopolitan lineage of cyanopodoviruses lacking a DNA polymerase gene. THE ISME JOURNAL 2023; 17:252-262. [PMID: 36357781 PMCID: PMC9860041 DOI: 10.1038/s41396-022-01340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Cyanopodoviruses affect the mortality and population dynamics of the unicellular picocyanobacteria Prochlorococcus and Synechococcus, the dominant primary producers in the oceans. Known cyanopodoviruses all contain the DNA polymerase gene (DNA pol) that is important for phage DNA replication and widely used in field quantification and diversity studies. However, we isolated 18 cyanopodoviruses without identifiable DNA pol. They form a new MPP-C clade that was separated from the existing MPP-A, MPP-B, and P-RSP2 clades. The MPP-C phages have the smallest genomes (37.3-37.9 kb) among sequenced cyanophages, and show longer latent periods than the MPP-B phages. Metagenomic reads of both clades are highly abundant in surface waters, but the MPP-C phages show higher relative abundance in surface waters than in deeper waters, while MPP-B phages have higher relative abundance in deeper waters. Our study reveals that cyanophages with distinct genomic contents and infection kinetics can exhibit different depth profiles in the oceans.
Collapse
|
8
|
Baran N, Carlson MCG, Sabehi G, Peleg M, Kondratyeva K, Pekarski I, Lindell D. Widespread yet persistent low abundance of TIM5-like cyanophages in the oceans. Environ Microbiol 2022; 24:6476-6492. [PMID: 36116015 PMCID: PMC10087341 DOI: 10.1111/1462-2920.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/12/2022] [Indexed: 01/12/2023]
Abstract
Ocean ecosystems are inhabited by a diverse set of viruses that impact microbial mortality and evolution. However, the distribution and abundances of specific viral lineages, particularly those from the large bank of rare viruses, remains largely unknown. Here, we assessed the diversity and abundance of the TIM5-like cyanophages. The sequencing of three new TIM5-like cyanophage genomes and environmental amplicons of a signature gene from the Red Sea revealed highly conserved gene content and sequence similarity. We adapted the polony method, a solid-phase polymerase chain reaction assay, to quantify TIM5-like cyanophages during three 2000 km expeditions in the Pacific Ocean and four annual cycles in the Red Sea. TIM5-like cyanophages were widespread, detected at all latitudes and seasons surveyed throughout the photic zone. Yet they were generally rare, ranging between <100 and 4000 viruses·ml-1 . Occasional peaks in abundance of 10- to 100-fold were observed, reaching 71,000 viruses·ml-1 . These peaks were ephemeral and seasonally variable in the Red Sea. Infection levels, quantified during one such peak, were very low. These characteristics of low diversity and abundance, as well as variable outbreaks, distinguishes the TIM5-like lineage from other major cyanophage lineages and illuminates that rare virus lineages can be persistent and widespread in the oceans.
Collapse
Affiliation(s)
- Nava Baran
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Michael C G Carlson
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Gazalah Sabehi
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Margalit Peleg
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Kira Kondratyeva
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Irena Pekarski
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Debbie Lindell
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| |
Collapse
|
9
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nat Microbiol 2022; 7:570-580. [PMID: 35365792 PMCID: PMC8975747 DOI: 10.1038/s41564-022-01088-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
The photosynthetic picocyanobacteria Prochlorococcus and Synechococcus are models for dissecting how ecological niches are defined by environmental conditions, but how interactions with bacteriophages affect picocyanobacterial biogeography in open ocean biomes has rarely been assessed. We applied single-virus and single-cell infection approaches to quantify cyanophage abundance and infected picocyanobacteria in 87 surface water samples from five transects that traversed approximately 2,200 km in the North Pacific Ocean on three cruises, with a duration of 2-4 weeks, between 2015 and 2017. We detected a 550-km-wide hotspot of cyanophages and virus-infected picocyanobacteria in the transition zone between the North Pacific Subtropical and Subpolar gyres that was present in each transect. Notably, the hotspot occurred at a consistent temperature and displayed distinct cyanophage-lineage composition on all transects. On two of these transects, the levels of infection in the hotspot were estimated to be sufficient to substantially limit the geographical range of Prochlorococcus. Coincident with the detection of high levels of virally infected picocyanobacteria, we measured an increase of 10-100-fold in the Synechococcus populations in samples that are usually dominated by Prochlorococcus. We developed a multiple regression model of cyanophages, temperature and chlorophyll concentrations that inferred that the hotspot extended across the North Pacific Ocean, creating a biological boundary between gyres, with the potential to release organic matter comparable to that of the sevenfold-larger North Pacific Subtropical Gyre. Our results highlight the probable impact of viruses on large-scale phytoplankton biogeography and biogeochemistry in distinct regions of the oceans.
Collapse
|
11
|
The Beauty of Bacteriophage T4 Research: Lindsay W. Black and the T4 Head Assembly. Viruses 2022; 14:v14040700. [PMID: 35458430 PMCID: PMC9026906 DOI: 10.3390/v14040700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Viruses are biochemically complex structures and mainly consist of folded proteins that contain nucleic acids. Bacteriophage T4 is one of most prominent examples, having a tail structure that contracts during the infection process. Intracellular phage multiplication leads to separate self-directed assembly reactions of proheads, tails and tail fibers. The proheads are packaged with concatemeric DNA produced by tandem replication reactions of the parental DNA molecule. Once DNA packaging is completed, the head is joined with the tail and six long fibers are attached. The mature particles are then released from the cell via lysis, another tightly regulated process. These processes have been studied in molecular detail leading to a fascinating view of the protein-folding dynamics that direct the structural interplay of assembled complexes. Lindsay W. Black dedicated his career to identifying and defining the molecular events required to form the T4 virion. He leaves us with rich insights into the astonishingly precise molecular clockwork that co-ordinates all of the players in T4 assembly, both viral and cellular. Here, we summarize Lindsay’s key research contributions that are certain to stimulate our future science for many years to come.
Collapse
|
12
|
Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. THE ISME JOURNAL 2022; 16:488-499. [PMID: 34429521 PMCID: PMC8776855 DOI: 10.1038/s41396-021-01085-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Marine cyanobacteria of the genera Synechococcus and Prochlorococcus are the most abundant photosynthetic organisms on earth, spanning vast regions of the oceans and contributing significantly to global primary production. Their viruses (cyanophages) greatly influence cyanobacterial ecology and evolution. Although many cyanophage genomes have been sequenced, insight into the functional role of cyanophage genes is limited by the lack of a cyanophage genetic engineering system. Here, we describe a simple, generalizable method for genetic engineering of cyanophages from multiple families, that we named REEP for REcombination, Enrichment and PCR screening. This method enables direct investigation of key cyanophage genes, and its simplicity makes it adaptable to other ecologically relevant host-virus systems. T7-like cyanophages often carry integrase genes and attachment sites, yet exhibit lytic infection dynamics. Here, using REEP, we investigated their ability to integrate and maintain a lysogenic life cycle. We found that these cyanophages integrate into the host genome and that the integrase and attachment site are required for integration. However, stable lysogens did not form. The frequency of integration was found to be low in both lab cultures and the oceans. These findings suggest that T7-like cyanophage integration is transient and is not part of a classical lysogenic cycle.
Collapse
|
13
|
Sawaya NA, Baran N, Mahank S, Varsani A, Lindell D, Breitbart M. Adaptation of the polony technique to quantify Gokushovirinae, a diverse group of single-stranded DNA phage. Environ Microbiol 2021; 23:6622-6636. [PMID: 34623742 DOI: 10.1111/1462-2920.15805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022]
Abstract
Advances in metagenomics have revealed the ubiquity of single-stranded DNA (ssDNA) phage belonging to the subfamily Gokushovirinae in the oceans; however, the abundance and ecological roles of this group are unknown. Here, we quantify gokushoviruses through adaptation of the polony method, in which viral template DNA is immobilized in a gel, amplified by PCR, and subsequently detected by hybridization. Primers and probes for this assay were designed based on PCR amplicon diversity of gokushovirus major capsid protein gene sequences from a depth profile in the Gulf of Aqaba, Red Sea sampled in September 2015. At ≥95% identity, these 87 gokushovirus sequences formed 14 discrete clusters with the largest clades showing distinct depth distributions. The application of the polony method enabled the first quantification of gokushoviruses in any environment. The gokushoviruses were most abundant in the upper 40 m of the stratified water column, with a subsurface peak in abundance of 1.26 × 105 viruses ml-1 . These findings suggest that discrete gokushovirus genotypes infect bacterial hosts that differentially partition in the water column. Since the designed primers and probe are conserved across marine ecosystems, this polony method can be applied broadly for the quantification of gokushoviruses throughout the global oceans.
Collapse
Affiliation(s)
- Natalie A Sawaya
- University of South Florida, College of Marine Science, Saint Petersburg, FL, USA
| | - Nava Baran
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shelby Mahank
- University of South Florida, College of Marine Science, Saint Petersburg, FL, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA.,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Mya Breitbart
- University of South Florida, College of Marine Science, Saint Petersburg, FL, USA
| |
Collapse
|
14
|
Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, Beckett SJ, Shitrit D, Weitz JS, Armbrust EV, Lindell D. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME JOURNAL 2020; 15:41-54. [PMID: 32918065 PMCID: PMC7853090 DOI: 10.1038/s41396-020-00752-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Long-term stability of picocyanobacteria in the open oceans is maintained by a balance between synchronous division and death on daily timescales. Viruses are considered a major source of microbial mortality, however, current methods to measure infection have significant methodological limitations. Here we describe a method that pairs flow-cytometric sorting with a PCR-based polony technique to simultaneously screen thousands of taxonomically resolved individual cells for intracellular virus DNA, enabling sensitive, high-throughput, and direct quantification of infection by different virus lineages. Under controlled conditions with picocyanobacteria-cyanophage models, the method detected infection throughout the lytic cycle and discriminated between varying infection levels. In North Pacific subtropical surface waters, the method revealed that only a small percentage of Prochlorococcus (0.35–1.6%) were infected, predominantly by T4-like cyanophages, and that infection oscillated 2-fold in phase with the diel cycle. This corresponds to 0.35–4.8% of Prochlorococcus mortality daily. Cyanophages were 2–4-fold more abundant than Prochlorococcus, indicating that most encounters did not result in infection and suggesting infection is mitigated via host resistance, reduced phage infectivity and inefficient adsorption. This method will enable quantification of infection for key microbial taxa across oceanic regimes and will help determine the extent that viruses shape microbial communities and ecosystem level processes.
Collapse
Affiliation(s)
- Noor Mruwat
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Michael C G Carlson
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Svetlana Goldin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - François Ribalet
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Shay Kirzner
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yotam Hulata
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Stephen J Beckett
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dror Shitrit
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|