1
|
Panchanawaporn S, Chutrakul C, Jeennor S, Anantayanon J, Laoteng K. Development of Aspergillus oryzae BCC7051 as a Robust Cell Factory Towards the Transcriptional Regulation of Protease-Encoding Genes for Industrial Applications. J Fungi (Basel) 2024; 11:6. [PMID: 39852426 PMCID: PMC11765966 DOI: 10.3390/jof11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Enzyme-mediated protein degradation is a major concern in industrial fungal strain improvement, making low-proteolytic strains preferable for enhanced protein production. Here, we improved food-grade Aspergillus oryzae BCC7051 by manipulating the transcriptional regulation of protease-encoding genes. Genome mining of the transcription factor AoprtR and computational analysis confirmed its deduced amino acid sequence sharing evolutionary conservation across Aspergillus and Penicillium spp. The AoPrtR protein, which is classified into the Zn(II)2-Cys6-type transcription factor family, manipulates both intra- and extracellular proteolytic enzymes. Our transcriptional analysis indicated that the regulation of several protease-encoding genes was AoPrtR-dependent, with AoPrtR acting as a potent activator for extracellular acid-protease-encoding genes and a likely repressor for intracellular non-acid-protease-encoding genes. An indirect regulatory mechanism independent of PrtR may enhance proteolysis. Moreover, AoPrtR disruption increased extracellular esterase production by 2.55-fold, emphasizing its role in protein secretion. Our findings highlight the complexity of AoPrtR-mediated regulation by A. oryzae. Manipulation of regulatory processes through AoPrtR prevents secreted protein degradation and enhances the quantity of extracellular proteins, suggesting the low-proteolytic variant as a promising platform for the production of these proteins. This modified strain has biotechnological potential for further refinement and sustainable production of bio-based products in the food, feed, and nutraceutical industries.
Collapse
Affiliation(s)
| | - Chanikul Chutrakul
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.P.); (S.J.); (J.A.); (K.L.)
| | | | | | | |
Collapse
|
2
|
Dai Y, Chen Y, Lin X, Zhang S. Recent Applications and Prospects of Enzymes in Quality and Safety Control of Fermented Foods. Foods 2024; 13:3804. [PMID: 39682876 DOI: 10.3390/foods13233804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Fermented foods have gained global attention for their unique flavor and immense health benefits. These flavor compounds and nutrients result from the metabolic activities of microorganism during fermentation. However, some unpleasant sensory characteristics and biohazard substances could also be generated in fermentation process. These quality and safety issues in fermented foods could be addressed by endogenous enzymes. In this review, the applications of enzymes in quality control of fermented foods, including texture improvement, appearance stability, aroma enhancement, and debittering, are discussed. Furthermore, the enzymes employed in eliminating biohazard compounds such as ethyl carbamate, biogenic amines, and nitrites, formed during fermentation, are reviewed. Advanced biological methods used for enhancing the enzymatic activity and stability are also summarized. This review focused on the applications and future prospects of enzymes in the improvement quality and safety qualities of fermented foods.
Collapse
Affiliation(s)
- Yiwei Dai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yingxi Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinping Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Yuan M, Li Z, Zhou Q, Zheng X, Sun C, Liu B, Wang A, Zhu A. Enhancement of Digestive Enzyme Activity in Enterococcus faecalis Using ARTP Mutagenesis. Microorganisms 2024; 12:2425. [PMID: 39770628 PMCID: PMC11676370 DOI: 10.3390/microorganisms12122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Enterococcus faecalis is used as a probiotic in animal and human food supplements. Atmospheric and room temperature plasma (ARTP) systems have frequently been used to screen for effective mutant probiotics. In this study, E. faecalis was treated with ARTP, and high-yielding digestive enzyme mutant strains were obtained by measuring the activities of α-amylase, lipase, and neutral protease. A total of 833 mutant strains were obtained after 40-60 s of ARTP treatment, and after screening for digestive enzyme activity, EF-448, EF-798, and EF-804 were obtained. The three strains demonstrated an 180% increase in α-amylase activity, a 30% increase in lipase activity, and a more than 40% increase in neutral protease activity. Furthermore, the enzyme activities remained stable after nine generations. In addition, the strains exhibited high auto-aggregation capacity (over 91%) and high cell hydrophobicity (over 93%). After exposure to simulated intestinal fluid for 6 h, the survival rates of EF-448 and EF-798 were 85.71% and 82.32%, respectively. Moreover, the three mutant strains retained antioxidant capacity and DPPH free radical scavenging ability, and there was no hemolysis. A safety experiment has shown that there is no mortality of Macrobrachium rosenbergii within 14 days after receiving injections of mutant strains at different concentrations. In conclusion, this study obtained three mutant strains with high production of digestive enzymes and stable inheritance through ARTP mutagenesis of E. faecalis, providing an efficient microbial resource.
Collapse
Affiliation(s)
- Meng Yuan
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (Q.Z.); (X.Z.)
| | - Zhengzhong Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (Q.Z.); (X.Z.)
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (Q.Z.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (Q.Z.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (Q.Z.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Bo Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Z.L.); (Q.Z.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Aimin Wang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Aimin Zhu
- Yancheng Academy of Fishery Science, Yancheng 224051, China; zam--
| |
Collapse
|
4
|
Canoy TS, Wiedenbein ES, Bredie WLP, Meyer AS, Wösten HAB, Nielsen DS. Solid-State Fermented Plant Foods as New Protein Sources. Annu Rev Food Sci Technol 2024; 15:189-210. [PMID: 38109492 DOI: 10.1146/annurev-food-060721-013526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The current animal-based production of protein-rich foods is unsustainable, especially in light of continued population growth. New alternative proteinaceous foods are therefore required. Solid-state fermented plant foods from Africa and Asia include several mold- and Bacillus-fermented foods such as tempeh, sufu, and natto. These fermentations improve the protein digestibility of the plant food materials while also creating unique textures, flavors, and taste sensations. Understanding the nature of these transformations is of crucial interest to inspire the development of new plant-protein foods. In this review, we describe the conversions taking place in the plant food matrix as a result of these solid-state fermentations. We also summarize how these (nonlactic) plant food fermentations can lead to desirable flavor properties, such as kokumi and umami sensations, and improve the protein quality by removing antinutritional factors and producing additional essential amino acids in these foods.
Collapse
Affiliation(s)
- Tessa S Canoy
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark; ,
| | | | - Wender L P Bredie
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark; ,
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
5
|
Liu Y, Sun G, Li J, Cheng P, Song Q, Lv W, Wang C. Starter molds and multi-enzyme catalysis in koji fermentation of soy sauce brewing: A review. Food Res Int 2024; 184:114273. [PMID: 38609250 DOI: 10.1016/j.foodres.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Soy sauce is a traditional fermented food produced from soybean and wheat under the action of microorganisms. The soy sauce brewing process mainly involves two steps, namely koji fermentation and moromi fermentation. In the koji fermentation process, enzymes from starter molds, such as protease, aminopeptidase, carboxypeptidase, l-glutaminase, amylase, and cellulase, hydrolyze the protein and starch in the raw ingredients to produce short-chain substances. However, the enzymatic reactions may be diminished after being subjected to moromi fermentation due to its high NaCl concentration. These enzymatically hydrolyzed products are further metabolized by lactic acid bacteria and yeasts during the moromi fermentation process into organic acids and aromatic compounds, giving soy sauce a unique flavor. Thus, the starter molds, such as Aspergillus oryzae, Aspergillus sojae, and Aspergillus niger, and their secreted enzymes play crucial roles in soy sauce brewing. This review comprehensively covers the characteristics of the starter molds mainly used in soy sauce brewing, the enzymes produced by starter molds, and the roles of enzymes in the degradation of raw material. We also enumerate current problems in the production of soy sauce, aiming to offer some directions for the improvement of soy sauce taste.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China.
| | - Guangru Sun
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China
| | - Jingyao Li
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China
| | - Peng Cheng
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Qian Song
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Wen Lv
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China.
| |
Collapse
|
6
|
Li Q, Lu J, Liu J, Li J, Zhang G, Du G, Chen J. High-throughput droplet microfluidics screening and genome sequencing analysis for improved amylase-producing Aspergillus oryzae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:185. [PMID: 38031105 PMCID: PMC10685594 DOI: 10.1186/s13068-023-02437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The exceptional protein secretion capacity, intricate post-translational modification processes, and inherent safety features of A. oryzae make it a promising expression system. However, heterologous protein expression levels of existing A. oryzae species cannot meet the requirement for industrial-scale production. Therefore, establishing an efficient screening technology is significant for the development of the A. oryzae expression system. RESULTS In this work, a high-throughput screening method suitable for A. oryzae has been established by combining the microfluidic system and flow cytometry. Its screening efficiency can reach 350 droplets per minute. The diameter of the microdroplet was enlarged to 290 µm to adapt to the polar growth of A. oryzae hyphae. Through enrichment and screening from approximately 450,000 droplets within 2 weeks, a high-producing strain with α-amylase increased by 6.6 times was successfully obtained. Furthermore, 29 mutated genes were identified by genome resequencing of high-yield strains, with 15 genes subjected to editing and validation. Two genes may individually influence α-amylase expression in A. oryzae by affecting membrane-associated multicellular processes and regulating the transcription of related genes. CONCLUSIONS The developed high-throughput screening strategy provides a reference for other filamentous fungi and Streptomyces. Besides, the strains with different excellent characteristics obtained by efficient screening can also provide materials for the analysis of genetic and regulatory mechanisms in the A. oryzae expression system.
Collapse
Affiliation(s)
- Qinghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jinchang Lu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingya Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
7
|
Gao X, Zhao X, Hu F, Fu J, Zhang Z, Liu Z, Wang B, He R, Ma H, Ho CT. The latest advances on soy sauce research in the past decade: Emphasis on the advances in China. Food Res Int 2023; 173:113407. [PMID: 37803742 DOI: 10.1016/j.foodres.2023.113407] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
As an indispensable soybean-fermented condiment, soy sauce is extensively utilized in catering, daily cooking and food industry in East Asia and Southeast Asia and is becoming popular in the whole world. In the past decade, researchers began to pay great importance to the scientific research of soy sauce, which remarkably promoted the advances on fermentation strains, quality, safety, function and other aspects of soy sauce. Of them, the screening and reconstruction of Aspergillus oryzae with high-yield of salt and acid-tolerant proteases, mechanism of soy sauce flavor formation, improvement of soy sauce quality through the combination of novel physical processing technique and microbial/enzyme, separation and identification of soy sauce functional components are attracting more attention of researchers, and related achievements have been reported continually. Meanwhile, we pointed out the drawbacks of the above research and the future research directions based on published literature and our knowledge. We believe that this review can provide an insightful reference for international related researchers to understand the advances on soy sauce research.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xue Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Feng Hu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Zhankai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhan Liu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
8
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
9
|
Akwagiobe E, Ekpenyong M, Asitok A, Amenaghawon A, Ubi D, Ikharia E, Kusuma H, Antai S. Strain improvement, artificial intelligence optimization, and sensitivity analysis of asparaginase-mediated acrylamide reduction in sweet potato chips. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2358-2369. [PMID: 37424578 PMCID: PMC10326208 DOI: 10.1007/s13197-023-05757-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/02/2023] [Accepted: 03/26/2023] [Indexed: 07/11/2023]
Abstract
In recent times, L-asparaginase has emerged as a potential anti-carcinogen through hydrolysis of L-asparagine in the blood for anti-leukemic application, and in carbohydrate-based foods, for acrylamide reduction applications. In this study, Aspergillus sydowii strain UCCM 00124 produced an L-asparaginase with a baseline acrylamide reduction potential of 64.5% in sweet potato chips. Plasma mutagenesis at atmospheric pressure and room temperature (ARTP) was employed to improve L-asparaginase production while artificial neural network embedded with genetic algorithm (ANN-GA) and global sensitivity analysis were used to identify and optimize process conditions for improved acrylamide reduction in sweet potato chips. The ARTP mutagenesis generated a valine-deficient mutant, Val-Asp-S-180-L with 2.5-fold L-asparaginase improvement. The ANN-GA hybrid evolutionary intelligence significantly improved process efficiency to 98.18% under optimized conditions set as 118.6 °C, 726.37 g/L asparagine content, 9.92 µg/mL L-asparaginase, 4.54% NaCl, and soaking time of 15 h without significant changes in sensory properties. The sensitivity index revealed initial asparagine content as the most sensitive parameter to the bioprocess. The enzyme demonstrated significant thermo-stability with Arrhenius deactivation rate constant, Kd, of 0.00562 min-1 and half-life, t1/2, of 123.35 min at 338 K. These conditions are recommended for sustainable healthier, and safer sweet potato chips processing in the food industry. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05757-5.
Collapse
Affiliation(s)
- Ernest Akwagiobe
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Andrew Amenaghawon
- Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Nigeria
| | - David Ubi
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Eloghosa Ikharia
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Heri Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Yogyakarta, Indonesia
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| |
Collapse
|
10
|
Li Y, Li C, Muhammad Aqeel S, Wang Y, Zhang Q, Ma J, Zhou J, Li J, Du G, Liu S. Enhanced expression of xylanase in Aspergillus niger enabling a two-step enzymatic pathway for extracting β-glucan from oat bran. BIORESOURCE TECHNOLOGY 2023; 377:128962. [PMID: 36966944 DOI: 10.1016/j.biortech.2023.128962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The high cost and process complexity limit the enzymatic extraction of β-glucan. In this study, β-glucan was extracted from oat bran in a two-step enzymatic pathway using a recombinant strain of Aspergillus niger AG11 overexpressing the endogenous xylanase (xynA) and amylolytic enzyme. First, co-optimization of promoter and signal peptide and a fusion of glucoamylase (glaA) fragment were integrated into the β-glucosidase (bgl) locus to improve xynA expression. Then, the optimized expression cassette was simultaneously integrated into bgl, α-amylase amyA, and acid α-amylase ammA loci, yielding the Rbya with 3,650-fold and 31.2% increase in xynA and amylolytic enzyme activity than the wild-type strain, respectively. Finally, Rbya's supernatants at 72 h (rich in xynA and amylolytic enzyme) and 10 d (rich in proteases) were used to decompose xylan/starch and proteins in oat bran, respectively, to obtain 85.1% pure β-glucan. Rbya could be a robust candidate for the cost-effective extraction of β-glucan.
Collapse
Affiliation(s)
- Yangyang Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
| | - Sahibzada Muhammad Aqeel
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yachan Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Quan Zhang
- Dalian Research Institute of Petrolem and Petrochemicals, SINOPEC, Dalian 116000, China
| | - Jianing Ma
- School of Chemical Engineering, Dalian University of Technology, Dalian 116000, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
11
|
Asitok A, Ekpenyong M, Akwagiobe E, Asuquo M, Rao A, Ubi D, Iheanacho J, Ikharia E, Antai A, Essien J, Antai S. Interspecific protoplast fusion of atmospheric and room-temperature plasma mutants of Aspergillus generates an L-asparaginase hyper-producing hybrid with techno-economic benefits. Prep Biochem Biotechnol 2022:1-14. [PMID: 36449415 DOI: 10.1080/10826068.2022.2150643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The axenic culture of Aspergillus candidus (Asp-C) produced an anti-leukemic L-asparaginase while Aspergillus sydowii (Asp-S) produced the acrylamide-reduction type. Upon mutagenesis by atmospheric and room-temperature plasma (ARTP), their individual L-asparaginase activities improved 2.3-folds in each of Ile-Thr-Asp-C-180-K and Val-Asp-S-180-E stable mutants. Protoplast fusion of selected stable mutants generated fusant-09 with improved anti-leukemic activity, acrylamide reduction, higher temperature optimum and superior kinetic parameters. Submerged (SmF) and solid-state fermentation (SSF) types were compared; likewise batch, fed-batch and continuous fermentation modes; and fed-batch submerged fermentation was selected on the basis of impressive techno-economics. Fusant L-asparaginase was purified by PEG/Na+ citrate aqueous two-phase system and molecular exclusion chromatography to 69.96 and 146.21-fold, respectively, and characterized by molecular weight, specificity, activity and stability to chemical and physical agents. Michaelis-Menten kinetics, evaluated under optimum conditions gave Km, Vmax, Kcat, and Kcat/Km as 1.667 × 10-3 M, 1666.67 µmol min-1 mg-1 protein, 645.99 s-1 and 3.88 × 105 M-1 s-1 respectively. In-vitro cytotoxicity of HL-60 cell lines by fusant-09 L-asparaginase improved 3.00 and 18.71-folds from mutants Ile-Thr-Asp-C-180-K and Val-Asp-S-180-E, and from 5.73 and 32.55 from respective original strains. Free-radical scavenging and acrylamide reduction improvements were intermediate. Fusant-09 L-asparaginase is strongly recommended for sustainable economic anti-leukemic and food industry applications.
Collapse
Affiliation(s)
- Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Ernest Akwagiobe
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Marcus Asuquo
- Department of Hematology, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Anitha Rao
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - David Ubi
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Juliet Iheanacho
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Eloghosa Ikharia
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Agnes Antai
- Department of Economics, Faculty of Social Sciences, University of Calabar, Calabar, Nigeria
| | - Joseph Essien
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| |
Collapse
|
12
|
Niu C, Xing X, Yang X, Zheng F, Liu C, Wang J, Li Q. Isolation, identification and application of Aspergillus oryzae BL18 with high protease activity as starter culture in doubanjiang (broad bean paste) fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wang W, Nie Y, Tian H, Quan X, Li J, Shan Q, Li H, Cai Y, Ning S, Santos Bermudez R, He W. Microbial Community, Co-Occurrence Network Relationship and Fermentation Lignocellulose Characteristics of Broussonetia papyrifera Ensiled with Wheat Bran. Microorganisms 2022; 10:microorganisms10102015. [PMID: 36296291 PMCID: PMC9611845 DOI: 10.3390/microorganisms10102015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022] Open
Abstract
Broussonetia papyrifera has a high lignocellulose content leading to poor palatability and low digestion rate of ruminants. Thus, dynamic profiles of fermentation lignocellulose characteristics, microbial community structure, potential function, and interspecific relationships of B. papyrifera mixing with wheat bran in different ratios: 100:0 (BP100), 90:10 (BP90), 80:20 (BP80), and 65:35 (BP65) were investigated on ensiling days 5, 15, 30, and 50. The results showed that adding bran increased the degradation rate of hemicellulose, neutral detergent fiber, and the activities of filter paper cellulase, endoglucanase, acid protease, and neutral protease, especially in the ratio of 65:35. Lactobacillus, Pediococcus, and Weissella genus bacteria were the dominant genera in silage fermentation, and Pediococcus and Weissella genus bacteria regulated the process of silage fermentation. Compared with monospecific B. papyrifera silage, adding bran significantly increased the abundance of Weissella sp., and improved bacterial fermentation potential in BP65 (p < 0.05). Distance-based redundancy analysis showed that lactic acid bacteria (LAB) were significantly positive correlated with most lignocellulose content and degrading enzymes activities, while Monascus sp. and Syncephalastrum sp. were opposite (p < 0.05). Co-occurrence network analysis indicated that there were significant differences in microbial networks among different mixing ratios of B. papyrifera silage prepared with bran. There was a more complex, highly diverse and less competitive co-occurrence network in BP65, which was helpful to silage fermentation. In conclusion, B. papyrifera ensiled with bran improved the microbial community structure and the interspecific relationship and reduced the content of lignocellulose.
Collapse
Affiliation(s)
- Wenbo Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yanshun Nie
- Fengtang Ecological Agriculture Technology Research and Development (Shandong) Co., Ltd., Taian 271400, China
| | - Hua Tian
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xiaoyan Quan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Qiuli Shan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yichao Cai
- Fengtang Ecological Agriculture Technology Research and Development (Shandong) Co., Ltd., Taian 271400, China
| | - Shangjun Ning
- Fengtang Ecological Agriculture Technology Research and Development (Shandong) Co., Ltd., Taian 271400, China
| | - Ramon Santos Bermudez
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
- Faculty of Agricultural Sciences, Luis Vargas Torres de Esmeraldas University of Technology, Esmeraldas 080103, Ecuador
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
- Correspondence:
| |
Collapse
|
14
|
Nonthermal Plasma Effects on Fungi: Applications, Fungal Responses, and Future Perspectives. Int J Mol Sci 2022; 23:ijms231911592. [PMID: 36232892 PMCID: PMC9569944 DOI: 10.3390/ijms231911592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The kingdom of Fungi is rich in species that live in various environments and exhibit different lifestyles. Many are beneficial and indispensable for the environment and industries, but some can threaten plants, animals, and humans as pathogens. Various strategies have been applied to eliminate fungal pathogens by relying on chemical and nonchemical antifungal agents and tools. Nonthermal plasma (NTP) is a potential tool to inactivate pathogenic and food-contaminating fungi and genetically improve fungal strains used in industry as enzyme and metabolite producers. The NTP mode of action is due to many highly reactive species and their interactions with biological molecules. The interaction of the NTP with living cells is believed to be synergistic yet not well understood. This review aims to summarize the current NTP designs, applications, and challenges that involve fungi, as well as provide brief descriptions of underlying mechanisms employed by fungi in interactions with the NTP components.
Collapse
|
15
|
Zhu X, Du C, Mohsin A, Yin Q, Xu F, Liu Z, Wang Z, Zhuang Y, Chu J, Guo M, Tian X. An Efficient High-Throughput Screening of High Gentamicin-Producing Mutants Based on Titer Determination Using an Integrated Computer-Aided Vision Technology and Machine Learning. Anal Chem 2022; 94:11659-11669. [PMID: 35942642 DOI: 10.1021/acs.analchem.2c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "design-build-test-learn" (DBTL) cycle has been adopted in rational high-throughput screening to obtain high-yield industrial strains. However, the mismatch between build and test slows the DBTL cycle due to the lack of high-throughput analytical technologies. In this study, a highly efficient, accurate, and noninvasive detection method of gentamicin (GM) was developed, which can provide timely feedback for the high-throughput screening of high-yield strains. First, a self-made tool was established to obtain data sets in 24-well plates based on the color of the cells. Subsequently, the random forest (RF) algorithm was found to have the highest prediction accuracy with an R2 value of 0.98430 for the same batch. Finally, a stable genetically high-yield strain (998 U/mL) was successfully screened out from 3005 mutants, which was verified to improve the titer by 72.7% in a 5 L bioreactor. Moreover, the verified new data sets were updated on the model database in order to improve the learning ability of the DBTL cycle.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Congcong Du
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Qian Yin
- College of Biological & Medical Engineering, South-Central University for Nationalities, Minzu Road 182, Wuhan, Hubei 430070, China
| | - Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| |
Collapse
|
16
|
Lu F, Chao J, Zhao X, Betchem G, Ding Y, Yang X, Li Y, Ma H. Enhancing protease activity of Bacillus subtilis using UV-laser random mutagenesis and high-throughput screening. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Hoppanová L, Dylíková J, Kováčik D, Medvecká V, Ďurina P, Kryštofová S, Hudecová D, Kaliňáková B. Non-thermal plasma induces changes in aflatoxin production, devitalization, and surface chemistry of Aspergillus parasiticus. Appl Microbiol Biotechnol 2022; 106:2107-2119. [PMID: 35194655 DOI: 10.1007/s00253-022-11828-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/28/2022]
Abstract
Non-thermal plasma (NTP) represents the fourth state of matter composed of neutral molecules, atoms, ions, radicals, and electrons. It has been used by various industries for several decades, but only recently NTPs have emerged in fields such as medicine, agriculture, and the food industry. In this work, we studied the effect of NTP exposure on aflatoxin production, conidial germination and mycelial vitality, morphological and surface changes of conidia and mycelium. When compared with colonies grown from untreated conidia, the colonies from NTP-treated conidia produced significantly higher levels of aflatoxins much earlier during development than colonies from untreated conidia. However, at the end of cultivation, both types of cultures yielded similar aflatoxin concentrations. The increase in the accumulation of aflatoxins was supported by high transcription levels of aflatoxin biosynthetic genes, which indicated a possibility that NTP treatment of conidia was having a longer-lasting effect on colony development and aflatoxins accumulation. NTP generated in the air at atmospheric pressure effectively devitalized Aspergillus parasiticus in conidia and hyphae within a few minutes of treatment. To describe devitalization kinetics, we applied Weibull and Hill models on sets of data collected at different exposure times during NTP treatment. The damage caused by NTP to hyphal cell wall structures was displayed by raptures visualized by scanning electron microscopy. Fourier transform infrared spectroscopy demonstrated that changes in cell envelope correlated with shifts in characteristic chemical bonds indicating dehydration, oxidation of lipids, proteins, and polysaccharides. Key points • Non-thermal plasma increases aflatoxin production shortly after treatment. • Non-thermal plasma rapidly devitalizes Aspergillus parasiticus. • Non-thermal plasma disrupts the cell surface and oxidizes biological components.
Collapse
Affiliation(s)
- Lucia Hoppanová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic. .,Department of Biophysics and Electrophysiology, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bratislava, Slovak Republic.
| | - Juliana Dylíková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Dušan Kováčik
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48, Bratislava, Slovak Republic
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48, Bratislava, Slovak Republic
| | - Pavol Ďurina
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48, Bratislava, Slovak Republic
| | - Svetlana Kryštofová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Daniela Hudecová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Barbora Kaliňáková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic.
| |
Collapse
|
18
|
Veerana M, Yu N, Ketya W, Park G. Application of Non-Thermal Plasma to Fungal Resources. J Fungi (Basel) 2022; 8:jof8020102. [PMID: 35205857 PMCID: PMC8879654 DOI: 10.3390/jof8020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
In addition to being key pathogens in plants, animals, and humans, fungi are also valuable resources in agriculture, food, medicine, industry, and the environment. The elimination of pathogenic fungi and the functional enhancement of beneficial fungi have been the major topics investigated by researchers. Non-thermal plasma (NTP) is a potential tool to inactivate pathogenic and food-spoiling fungi and functionally enhance beneficial fungi. In this review, we summarize and discuss research performed over the last decade on the use of NTP to treat both harmful and beneficial yeast- and filamentous-type fungi. NTP can efficiently inactivate fungal spores and eliminate fungal contaminants from seeds, fresh agricultural produce, food, and human skin. Studies have also demonstrated that NTP can improve the production of valuable enzymes and metabolites in fungi. Further studies are still needed to establish NTP as a method that can be used as an alternative to the conventional methods of fungal inactivation and activation.
Collapse
Affiliation(s)
- Mayura Veerana
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Nannan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Correspondence: ; Tel.: +82-2-940-8324
| |
Collapse
|
19
|
Isolation, Classification, and Growth-Promoting Effects of Pantoea sp. YSD J2 from the Aboveground Leaves of Cyperus Esculentus L. var. sativus. Curr Microbiol 2022; 79:66. [DOI: 10.1007/s00284-021-02755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022]
|
20
|
Wang S, Wang J, Zhou Y, Huang Y, Tang X. Prospecting the plant growth–promoting activities of endophytic bacteria Cronobacter sp. YSD YN2 isolated from Cyperus esculentus L. var. sativus leaves. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-021-01656-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Purpose
Plant growth–promoting (PGP) bacteria are an environment-friendly alternative to chemical fertilizers for promoting plant growth and development. We isolated and characterized a PGP endophyte, YSD YN2, from the leaves of Cyperus esculentus L. var. sativus.
Methods
Specific PGP characteristics of this strain, such as phosphate solubilization ability, potassium-dissolving ability, siderophore and indole-3-acetic acid (IAA) production, and salt tolerance, were determined in vitro. In addition, positive mutants were screened using the atmospheric and room temperature plasma (ARTP) technology, with IAA level and organic phosphate solubility as indices. Furthermore, the effect of the positive mutant on seed germination, biomass production, and antioxidant abilities of greengrocery seedling was evaluated, and the genome was mined to explore the underlying mechanisms.
Results
The strain YSD YN2 showed a good performance of PGP characteristics, such as the production of indole acetic acid and siderophores, solubilization ability of phosphate, and potassium-dissolving ability. It was recognized through 16S rRNA sequencing together with morphological and physiological tests and confirmed as Cronobacter sp. The strain exposed to a mutation time of 125 s by ARTP had the highest IAA and organic phosphate (lecithin) concentrations of 9.25 mg/L and 16.50 mg/L, 50.41% and 30.54% higher than those of the initial strain. Inoculation of mutant strain YSD YN2 significantly increased the seed germination, plant growth attributes, and the activities of peroxidase (POD) and superoxide dismutase (SOD), respectively, but decreased the content of malondialdehyde (MDA) significantly compared with the control. Furthermore, genome annotation and functional analysis were performed through whole-genome sequencing, and PGP-related genes were identified.
Conclusion
Our results indicated that the mutant strain YSD YN2 with PGP characteristics is a potential candidate for the development of biofertilizers.
Collapse
|
21
|
ARTP Mutagenesis of Schizochytrium sp. PKU#Mn4 and Clethodim-Based Mutant Screening for Enhanced Docosahexaenoic Acid Accumulation. Mar Drugs 2021; 19:md19100564. [PMID: 34677463 PMCID: PMC8539320 DOI: 10.3390/md19100564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Schizochytrium species are one of the best oleaginous thraustochytrids for high-yield production of docosahexaenoic acid (DHA, 22:6). However, the DHA yields from most wild-type (WT) strains of Schizochytrium are unsatisfactory for large-scale production. In this study, we applied the atmospheric and room-temperature plasma (ARTP) tool to obtain the mutant library of a previously isolated strain of Schizochytrium (i.e., PKU#Mn4). Two rounds of ARTP mutagenesis coupled with the acetyl-CoA carboxylase (ACCase) inhibitor (clethodim)-based screening yielded the mutant A78 that not only displayed better growth, glucose uptake and ACCase activity, but also increased (54.1%) DHA content than that of the WT strain. Subsequent optimization of medium components and supplementation improved the DHA content by 75.5 and 37.2%, respectively, compared with that of mutant A78 cultivated in the unoptimized medium. Interestingly, the ACCase activity of mutant A78 in a medium supplemented with biotin, citric acid or sodium citrate was significantly greater than that in a medium without supplementation. This study provides an effective bioengineering approach for improving the DHA accumulation in oleaginous microbes.
Collapse
|
22
|
Yang H, Qu J, Zou W, Shen W, Chen X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl Microbiol Biotechnol 2021; 105:6607-6626. [PMID: 34468804 DOI: 10.1007/s00253-021-11533-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Bacillus subtilis is a well-characterized Gram-positive bacterium and a valuable host for recombinant protein production because of its efficient secretion ability, high yield, and non-toxicity. Here, we comprehensively review the recent studies on recombinant protein production in B. subtilis to update and supplement other previous reviews. We have focused on several aspects, including optimization of B. subtilis strains, enhancement and regulation of expression, improvement of secretion level, surface display of proteins, and fermentation optimization. Among them, optimization of B. subtilis strains mainly involves undirected chemical/physical mutagenesis and selection and genetic manipulation; enhancement and regulation of expression comprises autonomous plasmid and integrated expression, promoter regulation and engineering, and fine-tuning gene expression based on proteases and molecular chaperones; improvement of secretion level predominantly involves secretion pathway and signal peptide screening and optimization; surface display of proteins includes surface display of proteins on spores or vegetative cells; and fermentation optimization incorporates medium optimization, process condition optimization, and feeding strategy optimization. Furthermore, we propose some novel methods and future challenges for recombinant protein production in B. subtilis.Key points• A comprehensive review on recombinant protein production in Bacillus subtilis.• Novel techniques facilitate recombinant protein expression and secretion.• Surface display of proteins has significant potential for different applications.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jinfeng Qu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, Sichuan, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
23
|
Ito K, Matsuyama A. Koji Molds for Japanese Soy Sauce Brewing: Characteristics and Key Enzymes. J Fungi (Basel) 2021; 7:jof7080658. [PMID: 34436196 PMCID: PMC8399179 DOI: 10.3390/jof7080658] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023] Open
Abstract
Soy sauce is a traditional Japanese condiment produced from the fermentation of soybeans, wheat, and salt by three types of microorganisms, namely koji molds, halophilic lactic acid bacteria, and salt-tolerant yeast. The delicate balance between taste, aroma, and color contributes to the characteristic delicious flavor imparted by soy sauce. In soy sauce brewing, protein and starch of the raw materials are hydrolyzed into amino acids and sugars by enzymes derived from koji molds. These enzymatically hydrolyzed products not only directly contribute to the taste but are further metabolized by lactic acid bacteria and yeasts to most of organic acids and aromatic compounds, resulting in its distinctive flavor and aroma. The color of the soy sauce is also due to the chemical reactions between amino acids and sugars during fermentation. Therefore, koji mold, which produces various enzymes for the breakdown of raw materials, is an essential microorganism in soy sauce production and plays an essential role in fermenting the ingredients. In this review, we describe the manufacturing process of Japanese soy sauce, the characteristics of koji molds that are suitable for soy sauce brewing, and the key enzymes produced by koji molds and their roles in the degradation of materials during soy sauce fermentation, focusing on the production of umami taste in soy sauce brewing.
Collapse
|