1
|
Ku Y, Liao Y, Chiou S, Lam H, Chan C. From trade-off to synergy: microbial insights into enhancing plant growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2461-2471. [PMID: 38735054 PMCID: PMC11331785 DOI: 10.1111/pbi.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 04/06/2024] [Indexed: 05/14/2024]
Abstract
The reduction in crop yield caused by pathogens and pests presents a significant challenge to global food security. Genetic engineering, which aims to bolster plant defence mechanisms, emerges as a cost-effective solution for disease control. However, this approach often incurs a growth penalty, known as the growth-defence trade-off. The precise molecular mechanisms governing this phenomenon are still not completely understood, but they generally fall under two main hypotheses: a "passive" redistribution of metabolic resources, or an "active" regulatory choice to optimize plant fitness. Despite the knowledge gaps, considerable practical endeavours are in the process of disentangling growth from defence. The plant microbiome, encompassing both above- and below-ground components, plays a pivotal role in fostering plant growth and resilience to stresses. There is increasing evidence which indicates that plants maintain intimate associations with diverse, specifically selected microbial communities. Meta-analyses have unveiled well-coordinated, two-way communications between plant shoots and roots, showcasing the capacity of plants to actively manage their microbiota for balancing growth with immunity, especially in response to pathogen incursions. This review centers on successes in making use of specific root-associated microbes to mitigate the growth-defence trade-off, emphasizing pivotal advancements in unravelling the mechanisms behind plant growth and defence. These findings illuminate promising avenues for future research and practical applications.
Collapse
Affiliation(s)
- Yee‐Shan Ku
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
| | - Yi‐Jun Liao
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Shian‐Peng Chiou
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hon‐Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
- Institute of Environment, Energy and SustainabilityThe Chinese University of Hong KongShatinHong Kong
| | - Ching Chan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
2
|
Sun W, Luo C, Wu Y, Ding M, Feng M, Leng F, Wang Y. Paraphoma chrysanthemicola Affects the Carbohydrate and Lobetyolin Metabolism Regulated by Salicylic Acid in the Soilless Cultivation of Codonopsis pilosula. BIOLOGY 2024; 13:408. [PMID: 38927288 PMCID: PMC11200528 DOI: 10.3390/biology13060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Paraphoma chrysanthemicola, an endophytic fungus isolated from the roots of Codonopsis pilosula, influences salicylic acid (SA) levels. The interaction mechanism between SA and P. chrysanthemicola within C. pilosula remains elusive. To elucidate this, an experiment was conducted with four treatments: sterile water (CK), P. chrysanthemicola (FG), SA, and a combination of P. chrysanthemicola with salicylic acid (FG+SA). Results indicated that P. chrysanthemicola enhanced plant growth and counteracted the growth inhibition caused by exogenous SA. Physiological analysis showed that P. chrysanthemicola reduced carbohydrate content and enzymatic activity in C. pilosula without affecting total chlorophyll concentration and attenuated the increase in these parameters induced by exogenous SA. Secondary metabolite profiling showed a decrease in soluble proteins and lobetyolin levels in the FG group, whereas SA treatment led to an increase. Both P. chrysanthemicola and SA treatments decreased antioxidase-like activity. Notably, the FG group exhibited higher nitric oxide (NO) levels, and the SA group exhibited higher hydrogen peroxide (H2O2) levels in the stems. This study elucidated the intricate context of the symbiotic dynamics between the plant species P. chrysanthemicola and C. pilosula, where an antagonistic interaction involving salicylic acid was prominently observed. This antagonism was observed in the equilibrium between carbohydrate metabolism and secondary metabolism. This equilibrium had the potential to engage reactive oxygen species (ROS) and nitric oxide (NO).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (W.S.); (C.L.); (Y.W.); (M.D.); (M.F.); (F.L.)
| |
Collapse
|
3
|
Bhardwaj M, Kailoo S, Khan RT, Khan SS, Rasool S. Harnessing fungal endophytes for natural management: a biocontrol perspective. Front Microbiol 2023; 14:1280258. [PMID: 38143866 PMCID: PMC10748429 DOI: 10.3389/fmicb.2023.1280258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In the ever-evolving realm of agriculture, the convoluted interaction between plants and microorganisms have assumed paramount significance. Fungal endophytes, once perceived as mere bystanders within plant tissues, have now emerged as dynamic defenders of plant health. This comprehensive review delves into the captivating world of fungal endophytes and their multifaceted biocontrol mechanisms. Exploring their unique ability to coexist with their plant hosts, fungal endophytes have unlocked a treasure trove of biological weaponry to fend off pathogens and enhance plant resilience. From the synthesis of bioactive secondary metabolites to intricate signaling pathways these silent allies are masters of biological warfare. The world of fungal endophytes is quite fascinating as they engage in a delicate dance with the plant immune system, orchestrating a symphony of defense that challenges traditional notions of plant-pathogen interactions. The journey through the various mechanisms employed by these enigmatic endophytes to combat diseases, will lead to revelational understanding of sustainable agriculture. The review delves into cutting-edge research and promising prospects, shedding light on how fungal endophytes hold the key to biocontrol and the reduction of chemical inputs in agriculture. Their ecological significance, potential for bioprospecting and avenues for future research are also explored. This exploration of the biocontrol mechanisms of fungal endophytes promise not only to enrich our comprehension of plant-microbe relationships but also, to shape the future of sustainable and ecofriendly agricultural practices. In this intricate web of life, fungal endophytes are indeed the unsung heroes, silently guarding our crops and illuminating a path towards a greener, healthier tomorrow.
Collapse
Affiliation(s)
| | | | | | | | - Shafaq Rasool
- Molecular Biology Laboratory, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
4
|
Masmoudi F, Alsafran M, Jabri HA, Hosseini H, Trigui M, Sayadi S, Tounsi S, Saadaoui I. Halobacteria-Based Biofertilizers: A Promising Alternative for Enhancing Soil Fertility and Crop Productivity under Biotic and Abiotic Stresses-A Review. Microorganisms 2023; 11:1248. [PMID: 37317222 DOI: 10.3390/microorganisms11051248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Abiotic and biotic stresses such as salt stress and fungal infections significantly affect plant growth and productivity, leading to reduced crop yield. Traditional methods of managing stress factors, such as developing resistant varieties, chemical fertilizers, and pesticides, have shown limited success in the presence of combined biotic and abiotic stress factors. Halotolerant bacteria found in saline environments have potential as plant promoters under stressful conditions. These microorganisms produce bioactive molecules and plant growth regulators, making them a promising agent for enhancing soil fertility, improving plant resistance to adversities, and increasing crop production. This review highlights the capability of plant-growth-promoting halobacteria (PGPH) to stimulate plant growth in non-saline conditions, strengthen plant tolerance and resistance to biotic and abiotic stressors, and sustain soil fertility. The major attempted points are: (i) the various abiotic and biotic challenges that limit agriculture sustainability and food safety, (ii) the mechanisms employed by PGPH to promote plant tolerance and resistance to both biotic and abiotic stressors, (iii) the important role played by PGPH in the recovery and remediation of agricultural affected soils, and (iv) the concerns and limitations of using PGHB as an innovative approach to boost crop production and food security.
Collapse
Affiliation(s)
- Fatma Masmoudi
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammed Alsafran
- Central Laboratories Unit (CLU), Office of VP for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar
- Agricultural Research Station (ARS), Office of VP for Research and Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hareb Al Jabri
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biological and Environmental Sciences, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hoda Hosseini
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammed Trigui
- Laboratory of Environmental Sciences and Sustainable Development (LASED), Sfax Preparatory Engineering Institute, University of Sfax, Sfax 3018, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Slim Tounsi
- Laboratory of Biopesticides (LBPES), Center of Biotechnology of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Imen Saadaoui
- Biotechnology Program, Center for Sustainable Development, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biological and Environmental Sciences, College of Art and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
5
|
Bastías DA, Gundel PE. Plant stress responses compromise mutualisms with Epichloë endophytes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:19-23. [PMID: 36309896 PMCID: PMC9786834 DOI: 10.1093/jxb/erac428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Affiliation(s)
| | - Pedro E Gundel
- IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
6
|
Bastías DA, Balestrini R, Pollmann S, Gundel PE. Environmental interference of plant-microbe interactions. PLANT, CELL & ENVIRONMENT 2022; 45:3387-3398. [PMID: 36180415 PMCID: PMC9828629 DOI: 10.1111/pce.14455] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Environmental stresses can compromise the interactions of plants with beneficial microbes. In the present review, experimental results showing that stresses negatively affect the abundance and/or functionality of plant beneficial microbes are summarized. It is proposed that the environmental interference of these plant-microbe interactions is explained by the stress-mediated induction of plant signalling pathways associated with defence hormones and reactive oxygen species. These plant responses are recognized to regulate beneficial microbes within plants. The direct negative effect of stresses on microbes may also contribute to the environmental regulation of these plant mutualisms. It is also posited that, in stress situations, beneficial microbes harbour mechanisms that contribute to maintain the mutualistic associations. Beneficial microbes produce effector proteins and increase the antioxidant levels in plants that counteract the detrimental effects of plant stress responses on them. In addition, they deliver specific stress-protective mechanisms that assist to their plant hosts to mitigate the negative effects of stresses. Our study contributes to understanding how environmental stresses affect plant-microbe interactions and highlights why beneficial microbes can still deliver benefits to plants in stressful environments.
Collapse
Affiliation(s)
- Daniel A. Bastías
- AgResearch LimitedGrasslands Research CentrePalmerston NorthNew Zealand
| | | | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Pedro E. Gundel
- IFEVA, CONICET, Universidad de Buenos AiresFacultad de AgronomíaBuenos AiresArgentina
- Centro de Ecología Integrativa, Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
| |
Collapse
|
7
|
Shi X, Qin T, Qu Y, Zhang J, Hao G, Zhao N, Gao Y, Ren A. Infection by Endophytic Epichloë sibirica Was Associated with Activation of Defense Hormone Signal Transduction Pathways and Enhanced Pathogen Resistance in the Grass Achnatherum sibiricum. PHYTOPATHOLOGY 2022; 112:2310-2320. [PMID: 35704677 DOI: 10.1094/phyto-12-21-0521-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Epichloë endophytes can improve the resistance of host grasses to pathogenic fungi, but the underlying mechanisms remain largely unknown. Here, we used phytohormone quantifications, gene expression analysis, and pathogenicity experiments to investigate the effect of Epichloë sibirica on the resistance of Achnatherum sibiricum to Curvularia lunata pathogens. Comparison of gene expression patterns between endophyte-infected and endophyte-free leaves revealed that endophyte infection was associated with significant induction of 1,758 and 765 differentially expressed genes in the host before and after pathogen inoculation, respectively. Functional analysis of the differentially expressed genes suggested that endophyte infection could activate the constitutive resistance of the host by increasing photosynthesis, enhancing the ability to scavenge reactive oxygen species, and actively regulating the expression of genes with function related to disease resistance. We found that endophyte infection was associated with induction of the expression of genes involved in the biosynthesis pathways of jasmonic acid, ethylene, and pipecolic acid and amplified the defense response of the jasmonic acid/ethylene co-regulated EIN/ERF1 transduction pathway and Pip-mediated TGA transduction pathway. Phytohormone quantifications showed that endophyte infection was associated with significant accumulation of jasmonic acid, ethylene, and pipecolic acid after pathogen inoculation. Exogenous phytohormone treatments confirmed that the disease index of plants was negatively related to both jasmonic acid and ethylene concentrations. Our results demonstrate that endophyte infection can not only improve the constitutive resistance of the host to phytopathogens before pathogen inoculation but also be associated with enhanced systemic resistance of the host to necrotrophs after C. lunata inoculation.
Collapse
Affiliation(s)
- Xinjian Shi
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tianzi Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaobing Qu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Junzhen Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Hao
- College of Life Sciences, Nankai University, Tianjin 300071, China
- College of Environmental Science & Engineering, Nankai University, Tianjin 300071, China
| | - Nianxi Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yubao Gao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Anzhi Ren
- College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Yin L, Wei M, Wu G, Ren A. Epichloë endophytes improved Leymus chinensis tolerance to both neutral and alkali salt stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:968774. [PMID: 36330267 PMCID: PMC9623246 DOI: 10.3389/fpls.2022.968774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic relationships with microbes may influence how plants respond to environmental change. In the present study, we tested the hypothesis that symbiosis with the endophytes promoted salt tolerance of the native grass. In the field pot experiment we compared the performance of endophyte-infected (E+) and endophyte-uninfected (E-) Leymus chinensis, a dominant species native to the Inner Mongolia steppe, under altered neutral and alkaline salt stresses. The results showed that under both neutral and alkaline salt stresses, endophyte infection significantly increased plant height, leaf length and fibrous root biomass. Under neutral salt stress, endophyte infection decreased Na+ content and Na+/K+ ratio (p=0.066) in the leaf sheath while increased Ca2+ and Mg2+ content in the rhizome. Under alkali salt stress, endophyte infection tended to increase K+ content in the fibrous root, enhance Mg2+ content in the fibrous root while reduce Na+/K+ ratio in the leaf blade in the 100 mmol/L alkali salt treatment. Although endophyte-infected L. chinensis cannot accumulate Na+ high enough to be halophytes, the observed growth promotion and stress tolerance give endophyte/plant associations the potential to be a model for endophyte-assisted phytoremediation of saline-alkaline soils.
Collapse
Affiliation(s)
- Lijia Yin
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Maoying Wei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guanghong Wu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, China
| | - Anzhi Ren
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Comparative Research on Metabolites of Different Species of Epichloë Endophytes and Their Host Achnatherum sibiricum. J Fungi (Basel) 2022; 8:jof8060619. [PMID: 35736102 PMCID: PMC9225340 DOI: 10.3390/jof8060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Achnatherum sibiricum can be infected by two species of fungal endophytes, Epichloë gansuensis (Eg) and Epichloë sibirica (Es). In this study, the metabolites of Eg, Es, and their infected plants were studied by GC−MS analysis. The results showed that the metabolic profiles of Eg and Es were similar in general, and only six differential metabolites were detected. The direct effect of endophyte infection on the metabolites in A. sibiricum was that endophyte-infected plants could produce mannitol, which was not present in uninfected plants. Epichloë infection indirectly caused an increase in the soluble sugars in A. sibiricum related to growth and metabolites related to the defense against pathogens and herbivores, such as α-tocopherol, α-linolenic acid and aromatic amino acids. Epichloë infection could regulate galactose metabolism, starch and sucrose metabolism, tyrosine metabolism and phenylalanine metabolism of host grass. In addition, there was a significant positive correlation in the metabolite contents between the endophyte and the host.
Collapse
|
10
|
Bastías DA, Bustos LB, Jáuregui R, Barrera A, Acuña-Rodríguez IS, Molina-Montenegro MA, Gundel PE. Epichloë Fungal Endophytes Influence Seed-Associated Bacterial Communities. Front Microbiol 2022; 12:795354. [PMID: 35058911 PMCID: PMC8764391 DOI: 10.3389/fmicb.2021.795354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Seeds commonly harbour diverse bacterial communities that can enhance the fitness of future plants. The bacterial microbiota associated with mother plant’s foliar tissues is one of the main sources of bacteria for seeds. Therefore, any ecological factor influencing the mother plant’s microbiota may also affect the diversity of the seed’s bacterial community. Grasses form associations with beneficial vertically transmitted fungal endophytes of genus Epichloë. The interaction of plants with Epichloë endophytes and insect herbivores can influence the plant foliar microbiota. However, it is unknown whether these interactions (alone or in concert) can affect the assembly of bacterial communities in the produced seed. We subjected Lolium multiflorum plants with and without its common endophyte Epichloë occultans (E+, E-, respectively) to an herbivory treatment with Rhopalosiphum padi aphids and assessed the diversity and composition of the bacterial communities in the produced seed. The presence of Epichloë endophytes influenced the seed bacterial microbiota by increasing the diversity and affecting the composition of the communities. The relative abundances of the bacterial taxa were more similarly distributed in communities associated with E+ than E- seeds with the latter being dominated by just a few bacterial groups. Contrary to our expectations, seed bacterial communities were not affected by the aphid herbivory experienced by mother plants. We speculate that the enhanced seed/seedling performance documented for Epichloë-host associations may be explained, at least in part, by the Epichloë-mediated increment in the seed-bacterial diversity, and that this phenomenon may be applicable to other plant-endophyte associations.
Collapse
Affiliation(s)
- Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ludmila Bubica Bustos
- IFEVA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ruy Jáuregui
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Andrea Barrera
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ian S Acuña-Rodríguez
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Marco A Molina-Montenegro
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile.,Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Pedro E Gundel
- IFEVA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
11
|
Antagonism to Plant Pathogens by Epichloë Fungal Endophytes-A Review. PLANTS 2021; 10:plants10101997. [PMID: 34685806 PMCID: PMC8539511 DOI: 10.3390/plants10101997] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Epichloë is a genus of filamentous fungal endophytes that has co-evolved with cool-season grasses with which they form long-term, symbiotic associations. The most agriculturally important associations for pasture persistence for grazing livestock are those between asexual vertically transmitted Epichloë strains and the pasture species, perennial ryegrass, and tall fescue. The fungus confers additional traits to their host grasses including invertebrate pest deterrence and drought tolerance. Selected strains of these mutualistic endophytes have been developed into highly efficacious biocontrol products and are widely utilized within the Americas, Australia, and New Zealand for pasture persistence. Less publicized is the antagonism Epichloë endophytes display towards multiple species of saprophytic and pathogenic microbes. This opinion piece will review the current literature on antimicrobial properties exhibited by this genus of endophyte and discuss the reasons why this trait has historically remained a research curiosity rather than a trait of commercial significance.
Collapse
|
12
|
Kou MZ, Bastías DA, Christensen MJ, Zhong R, Nan ZB, Zhang XX. The Plant Salicylic Acid Signalling Pathway Regulates the Infection of a Biotrophic Pathogen in Grasses Associated with an Epichloë Endophyte. J Fungi (Basel) 2021; 7:jof7080633. [PMID: 34436172 PMCID: PMC8399569 DOI: 10.3390/jof7080633] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
The study of the contribution of the plant defence hormones, salicylic acid (SA) and jasmonic acid (JA), in the resistance against pathogens of plants associated with Epichloë fungal endophytes has been scanty. We hypothesised that Epichloë spp., capable of inducing host plant SA-dependent defences, would increase the levels of plant resistance against biotrophic pathogens. Plants of Achnatherum inebrians, with and without the fungal endophyte Epichloë gansuensis, were inoculated with the biotrophic fungal pathogen Blumeria graminis. We measured the status of plant defences (associated with SA and JA signalling pathways) and the levels of resistance to the pathogen. Plants associated with the endophyte showed less disease symptoms caused by the biotrophic pathogen than plants without the endophyte. In agreement with our hypothesis, the Epichloë endophyte increased the plant production of SA and enhanced the expression levels of plant genes of synthesis and response to the SA hormone. The elevated expression of SA-related genes coding for putative plant enzymes with anti-fungal activities promoted by the endophyte may explain the enhanced resistance to the pathogen. The present study highlights that interaction between the plant immune system and Epichloë fungal endophytes can contribute significantly to the resistance of endophyte-symbiotic plants against pathogens.
Collapse
Affiliation(s)
- Ming-Zhu Kou
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
| | - Daniel A. Bastías
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (D.A.B.); (M.J.C.)
| | - Michael J. Christensen
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; (D.A.B.); (M.J.C.)
| | - Rui Zhong
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
| | - Zhi-Biao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
| | - Xing-Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (M.-Z.K.); (R.Z.); (Z.-B.N.)
- Correspondence:
| |
Collapse
|
13
|
Bastías DA, Gianoli E, Gundel PE. Fungal endophytes can eliminate the plant growth-defence trade-off. THE NEW PHYTOLOGIST 2021; 230:2105-2113. [PMID: 33690884 DOI: 10.1111/nph.17335] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 05/27/2023]
Abstract
A trade-off between growth and defence functions is commonly observed in plants. We propose that the association of plants with Epichloë fungal endophytes may eliminate this trade-off. This would be a consequence of the double role of these endophytes in host plants: the stimulation of plant growth hormones (e.g. gibberellins) and the fungal production of antiherbivore alkaloids. We put forward a model that integrates this dual effect of endophytes on plant growth and defence and test its predictions by means of meta-analysis of published literature. Our results support the notion that the enhanced plant resistance promoted by endophytes does not compromise plant growth. The limits and ecological benefits of this endophyte-mediated lack of plant growth-defence trade-off are discussed.
Collapse
Affiliation(s)
- Daniel A Bastías
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ernesto Gianoli
- Departamento de Biología, Universidad de La Serena, Casilla 554, La Serena, Chile
- Departamento de Botánica, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Pedro E Gundel
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
| |
Collapse
|