1
|
Ismail N, Seguin P, Pricam L, Janssen EML, Kohn T, Ibelings BW, Carratalà A. Seasonality of cyanobacteria and eukaryotes in Lake Geneva and the impacts of cyanotoxins on growth of the model ciliate Tetrahymena pyriformis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107262. [PMID: 39893999 DOI: 10.1016/j.aquatox.2025.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Toxic cyanobacteria are likely to be favored by global warming and other human impacts, posing significant threats to aquatic ecosystems. While cyanobacterial blooms in eutrophic lakes are widely investigated, the dynamics of cyanobacteria and the effects of their toxins and bioactive metabolites on the plankton communities in mesotrophic and oligotrophic lakes are less well understood. Here we investigated seasonal dynamics of cyanobacteria, eukaryotic algae and cyanotoxins in oligo-mesotrophic Lake Geneva-the largest and deepest lake in western Europe. High-throughput sequencing of the 16S rRNA genes in 143 samples along a water column revealed that Lake Geneva hosts diverse, co-dominant cyanobacterial genera, including Planktothrix, Cyanobium, Pseudanabaena, and Aphanizomenon. The abundance of the mcyA gene marker for microcystin production was highly correlated with total cyanobacteria abundance, obtained from qPCR of the 16S rRNA genes. Targeted LC-HRMS/MS analysis demonstrated peak concentrations of cyanotoxins in September and December 2021 at the deep chlorophyll-a maximum layer, reaching up to 1474 ng/l for anabaenopeptins and 144 ng/l for microcystins. The toxin peaks did not correlate with the abundance or variations in the cyanobacteria or eukaryote community, but they were correlated in time with seasonal lows in the abundances of ciliates (18S rRNA analysis). Laboratory exposure tests demonstrated that growth of the model ciliate Tetrahymena pyriformis was inhibited by Microcystin-RR and Anabaenopeptin A at environmentally relevant concentrations in the ng/l-range, in natural lake water, synthetic freshwater, and growth media spiked with the cyanotoxins. Our findings suggest that even low concentrations (in the ng/l-range) of microcystins and anabaenopeptins, reduce growth of ciliates such as T. pyriformis and can be expected to have wider impacts on the eukaryote communities.
Collapse
Affiliation(s)
- Niveen Ismail
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Picker Engineering Program, Smith College, Northampton, MA, USA
| | - Paul Seguin
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lola Pricam
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Elisabeth M L Janssen
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf 8600, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Bas W Ibelings
- Department FA Forel for Environmental and Aquatic Sciences / Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Anna Carratalà
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
2
|
McGrath-Blaser SE, McGathey N, Pardon A, Hartmann AM, Longo AV. Invasibility of a North American soil ecosystem to amphibian-killing fungal pathogens. Proc Biol Sci 2024; 291:20232658. [PMID: 38628130 PMCID: PMC11021929 DOI: 10.1098/rspb.2023.2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
North American salamanders are threatened by intercontinental spread of chytridiomycosis, a deadly disease caused by the fungal pathogen Batrachochytrium salamandrivorans (Bsal). To predict potential dispersal of Bsal spores to salamander habitats, we evaluated the capacity of soil microbial communities to resist invasion. We determined the degree of habitat invasibility using soils from five locations throughout the Great Smoky Mountains National Park, a region with a high abundance of susceptible hosts. Our experimental design consisted of replicate soil microcosms exposed to different propagule pressures of the non-native pathogen, Bsal, and an introduced but endemic pathogen, B. dendrobatidis (Bd). To compare growth and competitive interactions, we used quantitative PCR, live/dead cell viability assays, and full-length 16S rRNA sequencing. We found that soil microcosms with intact bacterial communities inhibited both Bsal and Bd growth, but inhibitory capacity diminished with increased propagule pressure. Bsal showed greater persistence than Bd. Linear discriminant analysis (LDA) identified the family Burkolderiaceae as increasing in relative abundance with the decline of both pathogens. Although our findings provide evidence of environmental filtering in soils, such barriers weakened in response to pathogen type and propagule pressure, showing that habitats vary their invasibility based on properties of their local microbial communities.
Collapse
Affiliation(s)
| | - Natalie McGathey
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Allison Pardon
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Arik M. Hartmann
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ana V. Longo
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Wagner RS, McKindles KM, Bullerjahn GS. Effects of water movement and temperature on Rhizophydium infection of Planktothrix in a shallow hypereutrophic lake. Front Microbiol 2023; 14:1197394. [PMID: 37455723 PMCID: PMC10345987 DOI: 10.3389/fmicb.2023.1197394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Grand Lake St. Marys (GLSM) is a popular recreational lake located in western Ohio, United States, generating nearly $150 million in annual revenue. However, recurring algal blooms dominated by Planktothrix agardhii, which can produce harmful microcystin toxins, have raised concerns about water safety and negatively impacted the local economy. Planktothrix agardhii is host to a number of parasites and pathogens, including an obligate fungal parasite in the Chytridiomycota (chytrids). In this study, we investigated the potential of these chytrid (Rhizophydium sp.) to infect P. agardhii blooms in the environment by modifying certain environmental conditions thought to limit infection prevalence in the wild. With a focus on temperature and water mixing, mesocosms were designed to either increase or decrease water flow compared to the control (water outside the mesocosm). In the control and water circulation mesocosms, infections were found infrequently and were found on less than 0.75% of the Planktothrix population. On the other hand, by decreasing the water flow to stagnation, chytrid infections were more frequent (found in nearly 3x as many samples) and more prevalent, reaching a maximum infection rate of 4.12%. In addition, qPCR coupled with 16S-18S sequencing was utilized to confirm the genetic presence of both host and parasite, as well as to better understand the effect of water circulation on the community composition. Statistical analysis of the data confirmed that chytrid infection was dependent on water temperature, with infections predominantly occurring between 19°C and 23°C. Additionally, water turbulence can significantly reduce the infectivity of chytrids, as infections were mostly found in stagnant mesocosms. Further, decreasing the water circulation promoted the growth of the cyanobacterial population, while increasing water agitation promoted the growth of green algae (Chlorophyta). This study starts to explore the environmental factors that affect chytrid pathogenesis which can provide valuable insights into controlling measures to reduce the prevalence of harmful algal blooms and improve water quality in GLSM and similarly affected waterbodies.
Collapse
Affiliation(s)
- Ryan S. Wagner
- Department of Biology, Bowling Green State University, Bowling Green, OH, United States
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - Katelyn M. McKindles
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
- Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, University of Michigan, Ypsilanti, MI, United States
| | - George S. Bullerjahn
- Department of Biology, Bowling Green State University, Bowling Green, OH, United States
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| |
Collapse
|
4
|
Deknock A, Pasmans F, van Leeuwenberg R, Van Praet S, De Troyer N, Goessens T, Lammens L, Bruneel S, Lens L, Martel A, Croubels S, Goethals P. Impact of heavy metal exposure on biological control of a deadly amphibian pathogen by zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153800. [PMID: 35150694 DOI: 10.1016/j.scitotenv.2022.153800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Despite devastating effects on global biodiversity, efficient mitigation strategies against amphibian chytridiomycosis are lacking. Since the free-living pathogenic zoospores of Batrachochytrium dendrobatidis (Bd), the infective stage of this disease, can serve as a nutritious food source for components of zooplankton communities, these groups may act as biological control agents by eliminating zoospores from the aquatic environment. Such pathogen-predator interaction is, however, embedded in the aquatic food web structure and is therefore affected by abiotic factors interfering with these networks. Heavy metals, released from both natural and anthropogenic sources, are widespread contaminants of aquatic ecosystems and may interfere with planktonic communities and thus pathogen elimination rates. We investigated the interaction between zooplankton communities and chytridiomycosis infections in a Flemish agricultural region. Moreover, we also investigated the impact of heavy metal contamination, that was previously investigated in the region and presented in recent work, on zooplankton assemblages and chytridiomycosis infections. Finally, we tested the effect of sublethal concentrations of copper and zinc on Bd removal rates by Daphnia magna in a laboratory assay. Although zinc, copper, nickel and chromium were widely abundant pollutants, heavy metals were no driving force for zooplankton assemblages at our study locations. Moreover, our field survey did not reveal indirect effects of zooplankton assemblages on chytridiomycosis infections. However, sampling occasions testing negative for Bd showed a higher degree of copper contamination compared to positive sampling occasions, indicating a potential inhibitory effect of copper on Bd prevalence. Finally, whereas D. magna significantly reduced zoospore densities in its environment, sublethal concentrations of copper and zinc showed no interference with pathogen removal in the laboratory assay. Our results provide perspectives for further research on such a biological control strategy against chytridiomycosis by optimizing environmental conditions for pathogen predation.
Collapse
Affiliation(s)
- Arne Deknock
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Building F, B-9000 Ghent, Belgium.
| | - Frank Pasmans
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Robby van Leeuwenberg
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Sarah Van Praet
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Niels De Troyer
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Building F, B-9000 Ghent, Belgium
| | - Tess Goessens
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Leni Lammens
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Stijn Bruneel
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Building F, B-9000 Ghent, Belgium
| | - Luc Lens
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - An Martel
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Building F, B-9000 Ghent, Belgium
| |
Collapse
|
5
|
Li Z, Wang Q, Sun K, Feng J. Prevalence of Batrachochytrium dendrobatidis in Amphibians From 2000 to 2021: A Global Systematic Review and Meta-Analysis. Front Vet Sci 2022; 8:791237. [PMID: 34977222 PMCID: PMC8718539 DOI: 10.3389/fvets.2021.791237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Chytridiomycosis is an amphibian fungal disease caused by Batrachochytrium dendrobatidis (Bd), which has caused large-scale death and population declines on several continents around the world. To determine the current status of Bd infection in amphibians, we conducted a global meta-analysis. Using PubMed, ScienceDirect, SpringerLink, China National Knowledge Infrastructure (CNKI) and Wanfang database searches, we retrieved a total of 111 articles from 2000 to 2021. Based on these, we estimated the Bd prevalence to be 18.54% (95% CI: 13.76–20.52) in current extent amphibians. Among these populations, the prevalence of Bd in Asia was the lowest at 7.88% (95% CI: 1.92–8.71). Further, no Bd infection was found in Vietnam. However, the prevalence of Bd in Oceania was the highest at 36.34% (95% CI: 11.31–46.52). The Bd prevalence in Venezuela was as high as 49.77% (95% CI: 45.92–53.62). After 2009, the global Bd prevalence decreased to 18.91% (95% CI: 13.23–21.56). The prevalence of Bd in epizootic populations was significantly higher than enzootic populations. The highest prevalence of Bd was detected with real-time PCR at 20.11% (95% CI: 13.12–21.38). The prevalence of Bd in frogs was the highest at 20.04% (95% CI: 13.52–21.71), and this different host was statistically significant (P < 0.05). At the same time, we analyzed the geographic factors (longitude, latitude, elevation, rainfall and temperature) that impacted the fungal prevalence in amphibians. Our meta-analysis revealed that factors including region, disease dynamic, detection method, host and climate may be sources of the observed heterogeneity. These results indicate that chytridiomycosis was a consistent threat to amphibians from 2000 to 2021. Based on different habitat types and geographical conditions, we recommend formulating corresponding control plans and adopting reasonable and efficient biological or chemical methods to reduce the severity of such diseases.
Collapse
Affiliation(s)
- Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
De Troyer N, Bruneel S, Lock K, Greener MS, Facq E, Deknock A, Martel A, Pasmans F, Goethals P. Ratio-dependent functional response of two common Cladocera present in farmland ponds to Batrachochytrium dendrobatidis. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Deknock A, Pasmans F, van Leeuwenberg R, Van Praet S, Bruneel S, Lens L, Croubels S, Martel A, Goethals P. Alternative food sources interfere with removal of a fungal amphibian pathogen by zooplankton. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Arne Deknock
- Department of Animal Sciences and Aquatic Ecology Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Poultry Diseases Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - Robby van Leeuwenberg
- Department of Pathology, Bacteriology and Poultry Diseases Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - Sarah Van Praet
- Department of Pathology, Bacteriology and Poultry Diseases Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - Stijn Bruneel
- Department of Animal Sciences and Aquatic Ecology Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Luc Lens
- Department of Biology Faculty of Sciences Ghent University Ghent Belgium
| | - Siska Croubels
- Department of Pharmacology Toxicology and Biochemistry Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Poultry Diseases Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology Faculty of Bioscience Engineering Ghent University Ghent Belgium
| |
Collapse
|
8
|
Mechanisms by which predators mediate host-parasite interactions in aquatic systems. Trends Parasitol 2021; 37:890-906. [PMID: 34281798 DOI: 10.1016/j.pt.2021.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023]
Abstract
It is often assumed that predators reduce disease prevalence and transmission by lowering prey population density and/or by selectively feeding on infected individuals. However, recent studies, many of which come from aquatic systems, suggest numerous alternative mechanisms by which predators can influence disease dynamics in their prey. Here, we review the mechanisms by which predators can mediate host-parasite interactions in aquatic prey. We highlight how life histories of aquatic hosts and parasites influence transmission pathways and describe how such pathways intersect with predation to shape disease dynamics. We also provide recommendations for future studies; experiments that account for multiple effects of predators on host-parasite interactions, and that examine how predator-host-parasite interactions shift under changing environmental conditions, are particularly needed.
Collapse
|