1
|
Ali W, Chen Y, Wang Z, Sun M, Song Y, Guo X, Wang X, He Y, Qi J. Evaluating the Antimicrobial Efficacy of TroLEAP2 like-27 peptide in golden pompano (Trachinotus ovatus) against Bacterial Pathogens. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110310. [PMID: 40187504 DOI: 10.1016/j.fsi.2025.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Amicrobial peptides are crucial components of immune system, acting as the first line of defense against microbial invasion. This study investigated the antimicrobial activity of TroLEAP2 like-27, a novel 27-amino acid peptide derived from golden pompano (Trachinotus ovatus), against Gram-positive Lactococcus garvieae and Staphylococcus epidermidis, and Gram-negative Vibrio alginolyticus and Vibrio harveyi. The 3D structure and helical wheel presentation of TroLEAP2 like-27 were consistent with typical AMP features. The hydrophobic ratio of TroLEAP2 like-27 was 47 %, and its α-helical structure suggested strong antimicrobial potential. The expression levels of the TroLEAP2 like gene in the liver and intestines tissues of T. ovatus were significantly upregulated following infection with L. garvieae and V. harveyi. The peptide induced bacterial agglutination in the presence of Ca2+ and exhibited bactericidal activity with a MIC50 of 60 μM. Transmission electron microscopy (TEM) revealed structural damage to bacterial membranes, while membrane permeability assays showed dose-dependent disruption and depolarization in all tested strains. Additionally, TroLEAP2 like-27 exhibited a potent capacity to interact with and degrade genomic DNA of all tested bacteria. The peptide treatment significantly reduced bacterial loads in the gill, liver, and intestinal tissues of the fish, with histological analysis revealing a remarkable protective effect on the tissues. Furthermore, fish treated with TroLEAP2 like-27 exhibited improved survival rates following bacterial infection. These findings suggest that TroLEAP2 like-27 is a promising antimicrobial peptide with potential therapeutic applications.
Collapse
Affiliation(s)
- Wajid Ali
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Ying Chen
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Zhuoyu Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Minmin Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Yongkang Song
- The University of New South Wales, Kensington NSW, 2033, Australia
| | - Xiaodan Guo
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xiangyuan Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
2
|
Xu H, Pan K, Yan C, Jin Y, Li H, Xiao J, Sun X, Liu H. Molecular characterization of an antimicrobial peptide LEAP-2 in Onychostoma macrolepis: Expression pattern, antimicrobial ability and immunomodulation function. Int J Biol Macromol 2025; 307:142386. [PMID: 40121727 DOI: 10.1016/j.ijbiomac.2025.142386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Antimicrobial peptides (AMPs) as the host's antimicrobial source are promising candidates for the development of novel antibacterial agents. Our study identified and analyzed the LEAP-2 gene from the cavefish - Onychostoma macrolepis (OmLEAP-2), and antimicrobial activity of OmLEAP-2 was assessed through both in vivo and in vitro experiments. The OmLEAP-2 encodes 92 amino acids with a hydrophobic surface (LAMMPWY) and two disulfide bonds. Following A. hydrophila infection, OmLEAP-2 expression was up-regulated in the liver, spleen and intestine in Onychostoma macrolepis. Recombinant OmLEAP-2 protein exhibited dose-dependent antimicrobial activity against both Gram-negative and Gram-positive bacteria, particularly A. hydrophila and A. veronii. OmLEAP-2 overexpression not only reduced bacterial load and increased survival rate, but also suppressed expression of TNF-α and IL-1β in A. hydrophila-infected Onychostoma macrolepis. Furthermore, OmLEAP-2 regulated iron metabolism by increasing liver iron levels, altering serum iron content, and modulating iron-related genes (fpn1 and hepcidin) expression. Collectively, these findings demonstrate that OmLEAP-2 exhibits broad-spectrum antibacterial activity against aquatic pathogens and shows potential as a therapeutic peptide for treating bacterial disease.
Collapse
Affiliation(s)
- Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenyang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanjiang Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huanjie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiadong Xiao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaonan Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Khanem A, Ullah I, Younas F. Essential oils from Eucalyptus camaldulensis, Mentha piperita L., and Rosmarinus officinalis L.: a new frontier in combating antibiotic-resistant E. coli by inducing cellular components release. Braz J Microbiol 2025:10.1007/s42770-025-01664-3. [PMID: 40237922 DOI: 10.1007/s42770-025-01664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Escherichia coli biofilms, a major cause of persistent infections, often exhibit resistance to conventional antibiotics. This study investigates the potential of essential oils derived from Eucalyptus camaldulensis, Mentha piperita L., and Rosmarinus officinalis L. as natural alternatives to combat these infections. A comparative analysis of biofilm quantification was done by using 0.5% crystal violet and safranin. The essential oils, characterized by Fourier Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry, demonstrated significant antibacterial activity against diverse Escherichia coli strains, with Minimum Inhibitory Concentration and Minimum Bactericidal Concentration values ranging from 3.13 to 35 µg/mL. Gas Chromatography-Mass Spectrometry revealed the presence of 1,8 cineol (90%) in the essential oils from Eucalyptus camaldulensis, mono terpenoids (64%) in the essential oils from Mentha piperita L and D1-2- ethylhexyl chloroformate (94%) in the essential oils from Rosmarinus officinalis L as major components. The essential oils effectively inhibited biofilm formation by 55-96% and eradicated existing biofilms by 57.5-95%. Mechanistic studies revealed that the essential oils induced the release of cellular components, suggesting a novel mode of action. These findings highlight the potential of these oils as promising agents for combating Escherichia coli infections, particularly those caused by biofilm-forming strains. Further research is warranted to optimize this approach for clinical applications and to fully elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Aalia Khanem
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University Islamabad, Islamabad, Pakistan
| | - Ikram Ullah
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University Islamabad, Islamabad, Pakistan
| | - Farhan Younas
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
4
|
Li Y, Liu Y, Gou M. Peptide with Dual Roles in Immune and Metabolic Regulation: Liver-Expressed Antimicrobial Peptide-2 (LEAP-2). Molecules 2025; 30:429. [PMID: 39860298 PMCID: PMC11767564 DOI: 10.3390/molecules30020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting as a competitive antagonist to ghrelin, LEAP-2 influences energy balance and metabolic processes via the ghrelin-GHSR1a signaling pathway. LEAP-2 alone or the LEAP-2/ghrelin molar ratio showed potential as therapeutic targets for obesity, diabetes, and metabolic disorders. This review explores the recent advances of LEAP-2 in immune modulation and energy regulation, highlighting its potential in treating the above diseases.
Collapse
Affiliation(s)
- Yitong Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China;
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Ying Liu
- Haixia Institute of Science and Technology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China;
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116081, China;
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
5
|
Mahboub HH, Yousefi M, Abdelgawad HA, Abdelwarith AA, Younis EM, Sakr E, Khamis T, Ismail SH, Abdel Rahman AN. Expression profiling of antimicrobial peptides and immune-related genes in Nile tilapia following Pseudomonas putida infection and nano-titanium dioxide gel exposure. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110037. [PMID: 39577786 DOI: 10.1016/j.fsi.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Pseudomonas putida is a virulent bacterium that prompts major losses in fish. Recently, there has been a noticeable direction for utilizing nanomaterials in the aquaculture industry for sustaining fish health and performance. Hence, the present study is the first trial to investigate the antibacterial influence of nano titanium dioxide gel (NTG) as a watery addition for combating P. putida infection in Nile tilapia (Oreochromis niloticus). Further, antioxidant-immune capacity, and gene expression in the spleen including antimicrobial peptides and immune-related genes are assessed. Fish (n = 200; 47.50 ± 1.32 g of body weight) were assigned into four groups for 10 days [control, NTG (0.9 mg/L), P. putida, and NTG + P. putida]. Findings demonstrated that the infection by P. putida induced a decline in antioxidant immune indicators including catalase, glutathione peroxidase, and nitric oxide. Furthermore, a noteworthy rise in lipid peroxide (malondialdehyde), tumor necrosis factor-alpha (TNF-α), and stress indicator (glucose) levels was noticed. P. putida infection induced remarkable alterations in the expression of antimicrobial peptides genes [tilapia piscidin (TP3 and TP4), colony-stimulating factor 1 receptor, hepcidin-2, beta-defensin1, and neutrophil cytosolic factor 4] and immune-relevant genes [transforming growth factor beta, tumor necrosis factor receptor-associated factor 6, TNF-α, interleukins (IL-10 and IL-11)]. Notably, applying NTG regenerated all the negative consequences of P. putida infection. Inclusive, this study underscores the crucial role of NTG as a potent antibacterial and immune-antioxidant agent, highlighting its potential in protecting O. niloticus from P. putida infection and improving immune-antioxidant response.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Morteza Yousefi
- Department of Veterinary Medicine, RUDN University, Miklukho-Maklaya St, Moscow, 117198, Russia.
| | - Hosny Ahmed Abdelgawad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Emad Sakr
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO Box 12588, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
6
|
Huo X, Zhao F, Xu Y, Liu Q, Wang W, Yang C, Su J. Fabulous combination therapy: Synergistic antibiotic inhibition of aquatic antibiotic-resistant bacteria via membrane damage and DNA binding by novel nano antimicrobial peptide C-I20. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136225. [PMID: 39442310 DOI: 10.1016/j.jhazmat.2024.136225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Aquatic microbiota' antibiotic resistance undermines traditional treatment efficacy, posing a severe threat to sustainable water environment. Our study addresses this challenge through a fantastic approach involving novel nano antimicrobial peptide C-I20 and antibiotics. Antibacterial tests demonstrated that C-I20 effectively combated both standard and aquatic pathogenic resistant strains. C-I20 killed drug-resistant bacteria by disrupting membrane structure and binding to DNA. C-I20 bound to DNA, forming precipitates susceptible to rapid degradation by trypsin and DNase I. When combined with chloramphenicol, florfenicol, ampicillin, or enrofloxacin, C-I20 exhibited remarkably higher inhibitory rates against bacteria compared to individual use of C-I20 or antibiotics alone. Continuous passage analysis revealed that co-administration of C-I20 with chloramphenicol, florfenicol, ampicillin, and enrofloxacin delays the emergence and progression of antibiotic resistance. This combination therapy was proved to be highly effective, notably reducing tissue bacterial loads and pathological changes. Evaluation in an Aeromonas hydrophila infection model showed the lowest morbidity rate and bacterial loading in the C-I20 combined with ampicillin group. Antimicrobial susceptibility analysis confirmed that C-I20 supplementation markedly suppresses ampicillin-induced intestinal resistant bacteria. In conclusion, C-I20 in conjunction with antibiotic therapy effectively inhibits infection and drug-resistant bacterial development, offering a promising strategy for managing drug-resistant bacteria in aquatic animals.
Collapse
Affiliation(s)
- Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Fengxia Zhao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuezong Xu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
7
|
Im MH, Kim YR, Byun JH, Jeon YJ, Choi MJ, Lim HK, Kim JM. Antibacterial activity of recombinant liver-expressed antimicrobial peptide-2 derived from olive flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109954. [PMID: 39389171 DOI: 10.1016/j.fsi.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Liver-expressed antimicrobial peptide-2 (LEAP-2) is a cysteine-rich peptide that plays a crucial role in the innate immune system of fish. To investigate the molecular function of LEAP-2 from olive flounder, Paralichthys olivaceus, we cloned the gene encoding LEAP-2 using PCR and expressed it in Escherichia coli. Analysis of LEAP-2 expression revealed predominant transcripts in the liver and lower levels in the intestine of olive flounder, whereas their expression levels in the liver and head kidney increased, during the initial stage of infection with the aquapathogenic bacterium Edwardsiella piscicida. Recombinant LEAP-2 (rOfLEAP-2) purified from E. coli exhibited antimicrobial activity, as demonstrated by the ultrasensitive radial diffusion assay, against both Gram-positive (Bacillus subtilis, Streptococcus parauberis, and Lactococcus garvieae) and Gram-negative (Vibrio harveyi and E. coli) bacteria, with minimum inhibitory concentrations ranging from 25 to 100 μg/mL depending on the species tested. The antibacterial activity of rOfLEAP-2 was attributed to its ability to disrupt bacterial membranes, validated by the N-phenylnaphthalen-1-amine uptake assays and scanning electron microscope analysis against E. coli, V. harveyi, B. subtilis, and L. garvieae treated with rOfLEAP-2. Furthermore, a synergistic enhancement of antibacterial activity was observed when rOfLEAP-2 was combined with ampicillin or synthetic LEAP-1 peptide, suggesting a distinct mechanism of action from those of other antimicrobial agents. These findings provide evidence for the antibacterial efficacy of LEAP-2 from olive flounder, highlighting its potential therapeutic application against pathogenic bacteria.
Collapse
Affiliation(s)
- Min-Hyuk Im
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yeo-Reum Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jun-Hwan Byun
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yu-Jeong Jeon
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Mi-Jin Choi
- Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Han Kyu Lim
- Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Jong-Myoung Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
8
|
Mascarenha RJL, Jo DM, Sim YA, Kim DH, Kim YM. Synergistic Antibacterial Effect of Eisenia bicyclis Extracts in Combination with Antibiotics against Fish Pathogenic Bacteria. J Microbiol Biotechnol 2024; 34:2112-2117. [PMID: 39210618 PMCID: PMC11540609 DOI: 10.4014/jmb.2406.06027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
The aquaculture industry faces significant challenges due to bacterial infections caused by Edwardsiella tarda, Photobacterium damselae, and Vibrio harveyi. The extensive use of traditional antibiotics, has resulted in widespread antibiotic resistance. This study aimed to investigate the antibacterial potential of the brown seaweed Eisenia bicyclis, particularly its synergistic effects with antibiotics against these fish pathogenic bacteria. E. bicyclis were processed to obtain methanolic extracts and fractionated using different polar solvents. The antibacterial activities of these extracts and fractions were assessed through disc diffusion and minimum inhibitory concentration (MIC) assays. The study further evaluated the antibiotic susceptibility of the bacterial strains and the synergistic effects of the extracts combined with erythromycin and oxyteteracycline using the fractional inhibitory concentration index. Results showed that the ethyl acetate (EtOAc) fraction of E. bicyclis methanolic extract exhibited the highest antibacterial activity. The combination of the EtOAc fraction with erythromycin significantly enhanced its antibacterial efficacy against the tested strains. This synergistic effect was indicated by a notable reduction in MIC values, demonstrating the potential of E. bicyclis to enhance the effectiveness of traditional antibiotics. The findings suggest that E. bicyclis extracts, particularly the EtOAc fraction, could serve as a potent natural resource to counteract antibiotic resistance in aquaculture.
Collapse
Affiliation(s)
- Raul Joao Lourenco Mascarenha
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- National Marine Biodiversity Institute of Korea, Seochun 33662, Republic of Korea
| | - Yoon-Ah Sim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
9
|
Wei L, Tu W, Xu Y, Xu C, Dou Y, Ge Y, Sun S, Wei Y, Yang K, Yuan B. Assembly-Induced Membrane Selectivity of Artificial Model Peptides through Entropy-Enthalpy Competition. ACS NANO 2024; 18:18650-18662. [PMID: 38959157 DOI: 10.1021/acsnano.4c05265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Peptide design and drug development offer a promising solution for combating serious diseases or infections. In this study, using an AI-human negotiation approach, we have designed a class of minimal model peptides against tuberculosis (TB), among which K7W6 exhibits potent efficacy attributed to its assembly-induced function. Comprising lysine and tryptophan with an amphiphilic α-helical structure, the K7W6 sequence exhibits robust activity against various infectious bacteria causing TB (including clinically isolated and drug-resistant strains) both in vitro and in vivo. Moreover, it synergistically enhances the effectiveness of the first-line antibiotic rifampicin while displaying low potential for inducing drug resistance and minimal toxicity toward mammalian cells. Biophysical experiments and simulations elucidate that K7W6's exceptional performance can be ascribed to its highly selective and efficient membrane permeabilization activity induced by its distinctive self-assembly behavior. Additionally, these assemblies regulate the interplay between enthalpy and entropy during K7W6-membrane interaction, leading to the peptide's two-step mechanism of membrane interaction. These findings provide valuable insights into rational design principles for developing advanced peptide-based drugs while uncovering the functional role played by assembly.
Collapse
Affiliation(s)
- Lin Wei
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenqiang Tu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yiwei Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yujiang Dou
- School of Electronic Information, Dongguan Polytechnic, Dongguan, Guangdong 523808, China
| | - Yuke Ge
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Shuqing Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
10
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
11
|
Bhat RAH, Khangembam VC, Pant V, Tandel RS, Pandey PK, Thakuria D. Antibacterial activity of a short de novo designed peptide against fish bacterial pathogens. Amino Acids 2024; 56:28. [PMID: 38578302 PMCID: PMC10997546 DOI: 10.1007/s00726-024-03388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
In the face of increasing antimicrobial resistance in aquaculture, researchers are exploring novel substitutes to customary antibiotics. One potential solution is the use of antimicrobial peptides (AMPs). We aimed to design and evaluate a novel, short, and compositionally simple AMP with potent activity against various bacterial pathogens in aquaculture. The resulting peptide, KK12YW, has an amphipathic nature and net charge of + 7. Molecular docking experiments disclosed that KK12YW has a strong affinity for aerolysin, a virulence protein produced by the bacterial pathogen Aeromonas sobria. KK12YW was synthesized using Fmoc chemistry and tested against a range of bacterial pathogens, including A. sobria, A. salmonicida, A. hydrophila, Edwardsiella tarda, Vibrio parahaemolyticus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and methicillin-resistant S. aureus. The AMP showed promising antibacterial activity, with MIC and MBC values ranging from 0.89 to 917.1 µgmL-1 and 3.67 to 1100.52 µgmL-1, respectively. In addition, KK12YW exhibited resistance to high temperatures and remained effective even in the presence of serum and salt, indicating its stability. The peptide also demonstrated minimal hemolysis toward fish RBCs, even at higher concentrations. Taken together, these findings indicate that KK12YW could be a highly promising and viable substitute for conventional antibiotics to combat microbial infections in aquaculture.
Collapse
Affiliation(s)
| | - Victoria C Khangembam
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Vinita Pant
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Ritesh Shantilal Tandel
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
- Navsari Gujarat Research Centre, ICAR-Central Institute of Brackishwater Aquaculture, Navsari, 396 450, Gujarat, India
| | - Pramod Kumar Pandey
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India.
| |
Collapse
|
12
|
Thomas AM, Antony SP. Marine Antimicrobial Peptides: An Emerging Nightmare to the Life-Threatening Pathogens. Probiotics Antimicrob Proteins 2024; 16:552-578. [PMID: 37022565 DOI: 10.1007/s12602-023-10061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
The emergence of multidrug-resistant pathogens due to improper usage of conventional antibiotics has created a global health crisis. Alternatives to antibiotics being an urgent need, the scientific community is forced to search for new antimicrobials. This exploration has led to the discovery of antimicrobial peptides, a group of small peptides occurring in different phyla such as Porifera, Cnidaria, Annelida, Arthropoda, Mollusca, Echinodermata, and Chordata, as a component of their innate immune system. The marine environment, possessing immense diversity of organisms, is undoubtedly one of the richest sources of unique potential antimicrobial peptides. The distinctiveness of marine antimicrobial peptides lies in their broad-spectrum activity, mechanism of action, less cytotoxicity, and high stability, which form the benchmark for developing a potential therapeutic. This review aims to (1) synthesise the available information on the distinctive antimicrobial peptides discovered from marine organisms, particularly over the last decade, and (2) discuss the distinctiveness of marine antimicrobial peptides and their prospects.
Collapse
Affiliation(s)
- Anne Maria Thomas
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
13
|
Al-Rasheed AA, Garba B, Handool KO, Al-Jashamy KA, Odhah MNA, Dirie NI, Daud HM. An in-vivo experimental evaluation of the efficacy of fish-derived antimicrobial peptides against multidrug-resistant Pseudomonas aeruginosa. Pan Afr Med J 2023; 46:112. [PMID: 38465008 PMCID: PMC10924623 DOI: 10.11604/pamj.2023.46.112.38578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/16/2023] [Indexed: 03/12/2024] Open
Abstract
Introduction due to the fact that antimicrobial peptides antimicrobial peptides (AMPs) from climbing perch have not been fully explored for their antimicrobial potency, this investigation was undertaken to explore that possibility. Methods antimicrobial peptides (AMPs) from the mucous secretion of climbing perch were obtained and an in-vivo analysis was conducted using mice. Results the results showed inhibitory effects on multidrug-resistant multidrug-resistant Pseudomonas aeruginosa with reduced mortality from 100% among the non-treated group to 25%. Similarly, the level of serum transaminase enzymes (AST and ALT), creatinine levels, and pro-inflammatory cytokines (TNF-α and IL-6) were all found to be higher in the non-treatment group compared to the AMP-treatment group. Also, extensive tissue damage in the lung, liver, and spleen of the non-treated control group mice was observed based on the histopathological lesions recorded. As expected, AMPs from climbing perch significantly alleviated multidrug-resistant P. aeruginosa infection in-vivo and produced enhanced therapeutic efficacy superior to the ciprofloxacin treatment. Conclusion this study provides insight into the potential antimicrobial activity of fish innate immune system-derived peptides that could serve as a candidate for the substitute of antibiotics.
Collapse
Affiliation(s)
- Agharid Ali Al-Rasheed
- Department of Microbiology, Faculty of Veterinary Medicine, Tikrit University, Tikrit, Iraq
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Bashiru Garba
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | | | - Karim Alwan Al-Jashamy
- Department of Radiology and Sonar Technology, Bilad Alrafidain University College, Baghdad, Iraq
| | - Mohamed Naji Ahmed Odhah
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Najib Isse Dirie
- Department of Urology, Dr. Sumait Hospital, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu, Somalia
| | - Hassan Mohd Daud
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
14
|
Lennard PR, Hiemstra PS, Nibbering PH. Complementary Activities of Host Defence Peptides and Antibiotics in Combating Antimicrobial Resistant Bacteria. Antibiotics (Basel) 2023; 12:1518. [PMID: 37887219 PMCID: PMC10604037 DOI: 10.3390/antibiotics12101518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Due to their ability to eliminate antimicrobial resistant (AMR) bacteria and to modulate the immune response, host defence peptides (HDPs) hold great promise for the clinical treatment of bacterial infections. Whereas monotherapy with HDPs is not likely to become an effective first-line treatment, combinations of such peptides with antibiotics can potentially provide a path to future therapies for AMR infections. Therefore, we critically reviewed the recent literature regarding the antibacterial activity of combinations of HDPs and antibiotics against AMR bacteria and the approaches taken in these studies. Of the 86 studies compiled, 56 featured a formal assessment of synergy between agents. Of the combinations assessed, synergistic and additive interactions between HDPs and antibiotics amounted to 84.9% of the records, while indifferent and antagonistic interactions accounted for 15.1%. Penicillin, aminoglycoside, fluoro/quinolone, and glycopeptide antibiotic classes were the most frequently documented as interacting with HDPs, and Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecium were the most reported bacterial species. Few studies formally evaluated the effects of combinations of HDPs and antibiotics on bacteria, and even fewer assessed such combinations against bacteria within biofilms, in animal models, or in advanced tissue infection models. Despite the biases of the current literature, the studies suggest that effective combinations of HDPs and antibiotics hold promise for the future treatment of infections caused by AMR bacteria.
Collapse
Affiliation(s)
- Patrick R. Lennard
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
- Institute of Immunology and Infection, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FE, UK
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Centre, Leiden 2333, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden 2333, The Netherlands;
| | - Pieter S. Hiemstra
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Centre, Leiden 2333, The Netherlands
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden 2333, The Netherlands;
| |
Collapse
|
15
|
Ioannou P, Baliou S, Kofteridis DP. Antimicrobial Peptides in Infectious Diseases and Beyond-A Narrative Review. Life (Basel) 2023; 13:1651. [PMID: 37629508 PMCID: PMC10455936 DOI: 10.3390/life13081651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite recent medical research and clinical practice developments, the development of antimicrobial resistance (AMR) significantly limits therapeutics for infectious diseases. Thus, novel treatments for infectious diseases, especially in this era of increasing AMR, are urgently needed. There is ongoing research on non-classical therapies for infectious diseases utilizing alternative antimicrobial mechanisms to fight pathogens, such as bacteriophages or antimicrobial peptides (AMPs). AMPs are evolutionarily conserved molecules naturally produced by several organisms, such as plants, insects, marine organisms, and mammals, aiming to protect the host by fighting pathogenic microorganisms. There is ongoing research regarding developing AMPs for clinical use in infectious diseases. Moreover, AMPs have several other non-medical applications in the food industry, such as preservatives, animal husbandry, plant protection, and aquaculture. This review focuses on AMPs, their origins, biology, structure, mechanisms of action, non-medical applications, and clinical applications in infectious diseases.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
16
|
Ajingi YS, Rukying N, Jiddah NU, Koga Y, Jongruja N. Cloning, recombinant expression, purification, and functional characterization of AGAAN antibacterial peptide. 3 Biotech 2023; 13:88. [PMID: 36811032 PMCID: PMC9938847 DOI: 10.1007/s13205-023-03512-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023] Open
Abstract
A recombinant version of the AGAAN antimicrobial peptide (rAGAAN) was cloned, expressed, and purified in this study. Its antibacterial potency and stability in harsh environments were thoroughly investigated. A 15 kDa soluble rAGAAN was effectively expressed in E. coli. The purified rAGAAN exhibited a broad antibacterial spectrum and was efficacious against seven Gram-positive and Gram-negative bacteria. The minimal inhibitory concentration (MIC) of rAGAAN against the growth of M. luteus (TISTR 745) was as low as 60 µg/ml. Membrane permeation assay reveals that the integrity of the bacterial envelope is compromised. In addition, rAGAAN was resistant to temperature shock and maintained a high degree of stability throughout a reasonably extensive pH range. The bactericidal activity of rAGAAN ranged from 36.26 to 79.22% in the presence of pepsin and Bacillus proteases. Lower bile salt concentrations had no significant effect on the function of the peptide, whereas higher concentrations induced E. coli resistance. Additionally, rAGAAN exhibited minimal hemolytic activity against red blood cells. This study indicated that rAGAAN may be produced on a large scale in E. coli and that it had an excellent antibacterial activity and sufficient stability. This first work to express biologically active rAGAAN in E. coli yielded 8.01 mg/ml at 16 °C/150 rpm for 18 h in Luria Bertani (LB) medium supplemented with 1% glucose and induced with 0.5 mM IPTG. It also assesses the interfering factors that influence the activity of the peptide, demonstrating its potential for research and therapy of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Ya’u Sabo Ajingi
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Thonburi , 10140 Bangkok Thailand
- Department of Biology, Faculty of Science, Kano University of Science and Technology (KUST), Wudil, Nigeria
| | - Neeranuch Rukying
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Thonburi , 10140 Bangkok Thailand
| | - Nafiu Usman Jiddah
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Thonburi , 10140 Bangkok Thailand
- Department of Biochemistry, Faculty of Science, Gombe State University, Gombe, Nigeria
| | - Yuichi Koga
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science , Ridai-cho 1-1, Kita-ku, Okayama City, Okayama Japan
| | - Nujarin Jongruja
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Thonburi , 10140 Bangkok Thailand
| |
Collapse
|
17
|
Liu X, Hu YZ, Pan YR, Liu J, Jiang YB, Zhang YA, Zhang XJ. Comparative study on antibacterial characteristics of the multiple liver expressed antimicrobial peptides (LEAPs) in teleost fish. Front Immunol 2023; 14:1128138. [PMID: 36891317 PMCID: PMC9986249 DOI: 10.3389/fimmu.2023.1128138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Antimicrobial peptides are important components of the host innate immune system, forming the first line of defense against infectious microorganisms. Among them, liver-expressed antimicrobial peptides (LEAPs) are a family of antimicrobial peptides that widely exist in vertebrates. LEAPs include two types, named LEAP-1 and LEAP-2, and many teleost fish have two or more LEAP-2s. In this study, LEAP-2C from rainbow trout and grass carp were discovered, both of which are composed of 3 exons and 2 introns. The antibacterial functions of the multiple LEAPs were systematically compared in rainbow trout and grass carp. The gene expression pattern revealed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C were differentially expressed in various tissues/organs, mainly in liver. After bacterial infection, the expression levels of LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C in the liver and gut of rainbow trout and grass carp increased to varying degrees. Moreover, the antibacterial assay and bacterial membrane permeability assay showed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and LEAP-2C all have antibacterial activities against a variety of Gram-positive and Gram-negative bacteria with varying levels through membrane rupture. Furthermore, cell transfection assay showed that only rainbow trout LEAP-1, but not LEAP-2, can lead to the internalization of ferroportin, the only iron exporter on cell surface, indicating that only LEAP-1 possess iron metabolism regulation activity in teleost fish. Taken together, this study systematically compared the antibacterial function of LEAPs in teleost fish and the results suggest that multiple LEAPs can enhance the immunity of teleost fish through different expression patterns and different antibacterial activities to various bacteria.
Collapse
Affiliation(s)
- Xun Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi-Ru Pan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jia Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - You-Bo Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Chen X, Han J, Cai X, Wang S. Antimicrobial peptides: Sustainable application informed by evolutionary constraints. Biotechnol Adv 2022; 60:108012. [PMID: 35752270 DOI: 10.1016/j.biotechadv.2022.108012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 01/10/2023]
Abstract
The proliferation and global expansion of multidrug-resistant (MDR) bacteria have deepened the need to develop novel antimicrobials. Antimicrobial peptides (AMPs) are regarded as promising antibacterial agents because of their broad-spectrum antibacterial activity and multifaceted mechanisms of action with non-specific targets. However, if AMPs are to be applied sustainably, knowledge of how they induce resistance in pathogenic bacteria must be mastered to avoid repeating the traditional antibiotic resistance mistakes currently faced. Furthermore, the evolutionary constraints on the acquisition of AMP resistance by microorganisms in the natural environment, such as functional compatibility and fitness trade-offs, inform the translational application of AMPs. Consequently, the shortcut to achieve sustainable utilization of AMPs is to uncover the evolutionary constraints of bacteria on AMP resistance in nature and find the tricks to exploit these constraints, such as applying AMP cocktails to minimize the efficacy of selection for resistance or combining nanomaterials to maximize the costs of AMP resistance. Altogether, this review dissects the benefits, challenges, and opportunities of utilizing AMPs against disease-causing bacteria, and highlights the use of AMP cocktails or nanomaterials to proactively address potential AMP resistance crises in the future.
Collapse
Affiliation(s)
- Xuan Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinzhi Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
19
|
Luo X, Zhang T, Tang H, Liu J. Novel electrochemical and electrochemiluminescence dual-modality sensing platform for sensitive determination of antimicrobial peptides based on probe encapsulated liposome and nanochannel array electrode. Front Nutr 2022; 9:962736. [PMID: 36046128 PMCID: PMC9421287 DOI: 10.3389/fnut.2022.962736] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023] Open
Abstract
With the increasing application of antimicrobial peptides (AMPs) to replace antibiotics in medicine, food and agriculture, it is highly desired to develop a fast, reliable, and convenient strategy for sensitive detection of AMPs. Herein, a novel electrochemical (EC) and electrochemiluminescence (ECL) dual-modality sensing platform was developed based on probe encapsulated liposomes and nanochannel array modified electrodes, which enables sensitive determination of nisin in food samples. The bifunctional probe with both EC and ECL signals, tris(2,2-bipyridyl) dichlororuthenium (II) (Ru(bpy)32+), was chosen to be easily encapsulated in liposomes (Ru(bpy)32+@liposome). Based on the unique sterilization mechanism that AMPs can disrupt cell membranes, Ru(bpy)32+@liposome can be destroyed by nisin and release a large number of Ru(bpy)32+ probes. Vertically-ordered mesoporous silica-nanochannel film (VMSF) modified ITO electrodes (VMSF/ITO) prepared by electrochemically assisted self-assembly (EASA) method were applied as the sensing electrode. Due to the efficient enrichment of Ru(bpy)32+ by the negatively charged nanochannel arrays, VMSF/ITO enables detection of the EC/ECL signals of the released Ru(bpy)32+ probes with ultrahigh sensitivity. In consequence, sensitive dual-modality detection of nisin was achieved by the combination of Ru(bpy)32+@liposome and VMSF/ITO. The developed sensing system can realize sensitive determination of nisin in ECL mode in the concentration range of 10 ng/ml to 50 μg/ml with a limit of detection (LOD) of 9.3 ng/ml, or in EC mode from 800 ng/ml to 100 μg/ml with a LOD of 70 ng/ml. Combined with the excellent anti-fouling and anti-interference performance of VMSF, rapid and sensitive detection of nisin in milk or egg white was also achieved by the sensor.
Collapse
Affiliation(s)
- Xuan Luo
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tongtong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongliang Tang
- Affiliated Fangchenggang Hospital, Guangxi University of Chinese Medicine, Fangchenggang, China
| | - Jiyang Liu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
20
|
Getahun YA, Ali DA, Taye BW, Alemayehu YA. Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System. Vet Med (Auckl) 2022; 13:173-190. [PMID: 35983086 PMCID: PMC9379109 DOI: 10.2147/vmrr.s366533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
Abstract
The emergence and spread of multidrug-resistant microbes become a serious threat to animal and human health globally because of their less responsiveness to conventional antimicrobial therapy. Multidrug-resistant microbial infection poses higher morbidity and mortality rate with significant economic losses. Currently, antimicrobial peptides and the CRISPR/Cas9 system are explored as alternative therapy to circumvent the challenges of multidrug-resistant organisms. Antimicrobial peptides are small molecular weight, cationic peptides extracted from all living organisms. It is a promising drug candidate for the treatment of multidrug-resistant microbes by direct microbial killing or indirectly modulating the innate immune system. The CRISPR/Cas9 system is another novel antimicrobial alternative used to manage multidrug-resistant microbial infection. It is a versatile gene-editing tool that uses engineered single guide RNA for targeted gene recognition and the Cas9 enzyme for the destruction of target nucleic acids. Both the CRISPR/Cas9 system and antimicrobial peptides were used to successfully treat nosocomial infections caused by ESKAPE pathogens, which developed resistance to various antimicrobials. Despite, their valuable roles in multidrug-resistant microbial treatments, both the antimicrobial peptides and the CRISPR/Cas systems have various limitations like toxicity, instability, and incurring high manufacturing costs. Thus, this review paper gives detailed explanations of the roles of the CRISPR/Cas9 system and antimicrobial peptides in circumventing the challenges of multidrug-resistant microbial infections, its limitation and prospects in clinical applications.
Collapse
Affiliation(s)
- Yared Abate Getahun
- Livestock and Fishery Research Center, College of Agriculture, Arba Minch University, Arba Minch, Southern Nation Nationalities and Peoples Regional State, Ethiopia
- Correspondence: Yared Abate Getahun, Email
| | - Destaw Asfaw Ali
- Department of Paraclinical Studies, College of Veterinary Medicine, Gondar University, Gondar City, Amhara Regional State, Ethiopia
| | - Bihonegn Wodajnew Taye
- Faculty of Veterinary Medicine, College of Agriculture, Assosa University, Assosa City, Benshangul Gumez Regional State, Ethiopia
| | - Yismaw Alemie Alemayehu
- Department of Animal Science, College of Agriculture, Wollega University, Nekemtie City, Oromia Regional State, Ethiopia
| |
Collapse
|
21
|
Zhong W, Chen K, Yang L, Tang T, Jiang S, Guo J, Gao Z. Essential Oils From Citrus unshiu Marc. Effectively Kill Aeromonas hydrophila by Destroying Cell Membrane Integrity, Influencing Cell Potential, and Leaking Intracellular Substances. Front Microbiol 2022; 13:869953. [PMID: 35836415 PMCID: PMC9274202 DOI: 10.3389/fmicb.2022.869953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Aeromonas hydrophila is one of the important pathogenic bacteria in aquaculture causing serious losses every year. Essential oils are usually used as natural antimicrobial agents to reduce or replace the use of antibiotics. The aim of this study was to evaluate the antibacterial activity and explore the mechanisms of essential oil from satsuma mandarin (Citrus unshiu Marc.) (SMEO) against A. hydrophila. The results of the gas chromatography-mass spectrometer demonstrated that SMEO contains 79 chemical components with the highest proportion of limonene (70.22%). SMEO exhibited strong antibacterial activity against A. hydrophila in vitro, the diameter of the inhibition zone was 31.22 ± 0.46 mm, and the MIC and MBC values were all 1% (v/v). Intracellular material release, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and flow cytometry analysis revealed the dynamic antibacterial process of SMEO, the morphological changes of bacterial cells, and the leakage process of intracellular components. These results demonstrated that SMEO disrupted the extracellular membrane permeability. Our study demonstrated that SEMO has the potential to be used to control and prevent A. hydrophila infections in aquaculture.
Collapse
Affiliation(s)
- Weiming Zhong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Kangyong Chen
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Linlin Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tao Tang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Sifan Jiang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Jiajing Guo,
| | - Zhipeng Gao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Zhipeng Gao,
| |
Collapse
|
22
|
Zhang S, Xiong P, Ma Y, Jin N, Sun S, Dong X, Li X, Xu J, Zhou H, Xu W. Transformation of food waste to source of antimicrobial proteins by black soldier fly larvae for defense against marine Vibrio parahaemolyticus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154163. [PMID: 35231526 DOI: 10.1016/j.scitotenv.2022.154163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Insect biorefinery by black soldier fly larvae (BSFL), Hermetia illucens, has emerged as an innovative technique for the valorization of food waste. However, despite BSFL being an attractive natural source of antimicrobial proteins (AMPs), there is a scarcity of research on the antimicrobial activity and transcriptome expression of AMPs derived from BSFL following waste treatment. In the present study, food waste treatment was performed by BSFL with a substrate C/N ratio ranging from 21:1 to 10:1, marine Vibrio parahaemolyticus (VP) was selected as the model aquaculture pathogen, the antimicrobial activities of AMPs in vitro and zebrafish in vivo were examined, and the molecular mechanism of the C/N-dependent AMP difference was expounded. Findings were made that the AMP extract of C/N16:1 resulted in relatively higher antimicrobial activity in vitro than that of other C/Ns. Further, the AMPs of C/N16:1 exhibited a promising in vivo defense effect for elevating the 96-h survival rate of zebrafish from 0% to 39% after VP infection, comparable to the animal antibiotic sulfamethoxidine. The results of transcriptome analysis reveal that lysozymes were the highest expressed components in the AMP gene family. The C/N16:1 BSFL significantly up-regulated 12 out of 51 lysozyme genes compared with C/N21:1, which likely contributed to the improvement of AMP antimicrobial activity. Further, C/N16:1 significantly up-regulated the expression of lysozyme, glycosyl hydrolase and muscle protein genes compared with C/N21:1, which likely enhanced the defense ability of the immune system, the utilization of the starch-like substrate, and the mobility of the larvae, thereby facilitating the larval transformation and AMP production. Overall, such results indicate that waste C/N ratio interacted with the activity and expression of BSFL AMPs through transcriptome regulation, and the BSFL AMPs derived from food waste could be used for the defense against marine pathogens to support the sustainable development of aquaculture.
Collapse
Affiliation(s)
- Shouyu Zhang
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Pu Xiong
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Yongsheng Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Ning Jin
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaoying Dong
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Xiaodong Li
- Panjin Guanghe Crab Industry Co. Ltd., Panjin 124200, China
| | - Jianqiang Xu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Hao Zhou
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian 116024, China
| | - Weiping Xu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian 116024, China.
| |
Collapse
|
23
|
Zhao X, Mei Y, Guo Z, Si S, Ma X, Li Y, Li Y, Song D. Discovery of new riminophenazine analogues as antimycobacterial agents against drug-resistant Mycobacterium tuberculosis. Bioorg Chem 2022; 128:105929. [PMID: 35701239 DOI: 10.1016/j.bioorg.2022.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
Twenty-three new riminophenazine and pyrido[3,2-b]quinoxaline derivatives were prepared and examined for their antimycobacterial activities against Mycobacterium marinum and Mycobacterium tuberculosis H37Rv, taking clofazimine (1) as the lead. Structure-activity relationship (SAR) analysis revealed that the introduction of a heterocycle or diethylamine substituted benzene moiety on the N-5 atom might be beneficial for activity. The most potent compound 7m also displayed enhanced activity against wild-type as well as multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB clinical isolates, with the MICs ranging from 0.08 to 1.25 μg/mL, especially effective toward strain M20A507, resistant to 1. Further mechanism study indicated that its anti-TB activity was independent of cell membrane disruption, but related to NDH-2 reduction and the resulting high ROS production. Our study provides instructive guidance for the further development of clofazimine derivatives into promising antimicrobial agents against MDR and XDR TB.
Collapse
Affiliation(s)
- Xiaoqiang Zhao
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuheng Mei
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhihao Guo
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyi Si
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xican Ma
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yinghong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Yan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
24
|
Prior BS, Lange MD, Salger SA, Reading BJ, Peatman E, Beck BH. The effect of piscidin antimicrobial peptides on the formation of Gram-negative bacterial biofilms. JOURNAL OF FISH DISEASES 2022; 45:99-105. [PMID: 34590712 DOI: 10.1111/jfd.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Fish-derived antimicrobial peptides are an important part of the innate immune system due to their potent antimicrobial properties. Piscidins are a class of antimicrobial peptides first described in hybrid striped bass (Morone chrysops x Morone saxatilis) but have also been identified in many other fish species. Previous work demonstrated the broad antimicrobial activity of piscidins against Gram-negative and Gram-positive bacterial species. This study sought to determine the extent to which class I (striped bass piscidin 1, white bass piscidin 1 and striped bass/white bass piscidin 3) and class II (striped bass piscidin 4 and white bass piscidin 5) piscidins inhibit biofilm formation of different Gram-negative bacteria. In general, the class I and II piscidins demonstrate potent activity against Escherichia coli and Flavobacterium columnare biofilms. The class II piscidins showed more activity against E. coli and F. columnare isolates than did the class I piscidins. The piscidins in general were much less effective against inhibiting Aeromonas hydrophila and A. veronii biofilm growth. Only the class I piscidins showed significant growth inhibition among the Aeromonas spp. examined.
Collapse
Affiliation(s)
- Benjamin S Prior
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, Auburn, AL, USA
| | - Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| | | | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, Auburn, AL, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| |
Collapse
|
25
|
Okella H, Ikiriza H, Ochwo S, Ajayi CO, Ndekezi C, Nkamwesiga J, Kaggwa B, Aber J, Mtewa AG, Koffi TK, Odongo S, Vertommen D, Kato CD, Ogwang PE. Identification of Antimicrobial Peptides Isolated From the Skin Mucus of African Catfish, Clarias gariepinus (Burchell, 1822). Front Microbiol 2021; 12:794631. [PMID: 34987491 PMCID: PMC8721588 DOI: 10.3389/fmicb.2021.794631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) constitute a broad range of bioactive compounds in diverse organisms, including fish. They are effector molecules for the innate immune response, against pathogens, tissue damage and infections. Still, AMPs from African Catfish, Clarias gariepinus, skin mucus are largely unexplored despite their possible therapeutic role in combating antimicrobial resistance. In this study, African Catfish Antimicrobial peptides (ACAPs) were identified from the skin mucus of African Catfish, C. gariepinus. Native peptides were extracted from fish mucus scrapings in 10% acetic acid (v/v) and ultra-filtered using 5 kDa molecular weight cut-off membrane. The extract was purified using C18 Solid-Phase Extraction. The antibacterial activity was determined using the Agar Well Diffusion method and broth-dilution method utilizing Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922). Thereafter, Sephadex G-25 gel filtration was further utilized in bio-guided isolation of the most active fractions prior to peptide identification using Orbitrap Fusion Lumos Tribrid Mass Spectrometry. The skin mucus extracted from African Catfish from all the three major lakes of Uganda exhibited antimicrobial activity on E. coli and S. aureus. Lake Albert's C. gariepinus demonstrated the best activity with the lowest MIC of 2.84 and 0.71 μg/ml on S. aureus and E. coli, respectively. Sephadex G-25 peak I mass spectrometry analysis (Data are available via ProteomeXchange with identifier PXD029193) alongside in silico analysis revealed seven short peptides (11-16 amino acid residues) of high antimicrobial scores (0.561-0.905 units). In addition, these peptides had a low molecular weight (1005.57-1622.05 Da) and had percentage hydrophobicity above 54%. Up to four of these AMPs demonstrated α-helix structure conformation, rendering them amphipathic. The findings of this study indicate that novel AMPs can be sourced from the skin mucus of C. gariepinus. Such AMPs are potential alternatives to the traditional antibiotics and can be of great application to food and pharmaceutical industries; however, further studies are still needed to establish their drug-likeness and safety profiles.
Collapse
Affiliation(s)
- Hedmon Okella
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Hilda Ikiriza
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Sylvester Ochwo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Clement Olusoji Ajayi
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Joseph Nkamwesiga
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
- International Livestock Research Institute, Kampala, Uganda
| | - Bruhan Kaggwa
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Jacqueline Aber
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Andrew Glory Mtewa
- Chemistry Section, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Tindo Kevin Koffi
- Department of Food Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Steven Odongo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Didier Vertommen
- de Duve Institute and MASSPROT Platform, UCLouvain, Brussels, Belgium
| | - Charles Drago Kato
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
26
|
Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021; 8:48. [PMID: 34496967 PMCID: PMC8425997 DOI: 10.1186/s40779-021-00343-2] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria. As an excellent candidate to overcome antibiotic resistance, antimicrobial peptides (AMPs) that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity. These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action. This comprehensive review provides a broad overview of AMPs from the origin, structural characteristics, mechanisms of action, biological activities to clinical applications. We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.
Collapse
Affiliation(s)
- Qi-Yu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhi-Bin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Yue-Ming Meng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xiang-Yu Hong
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Gang Shao
- Department of Oncology, The 903rd Hospital of PLA, Hangzhou, 310013, Zhejiang, China
| | - Jun-Jie Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xu-Rui Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Jian Kang
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cai-Yun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
27
|
Li HZ, Shou LL, Shao XX, Li N, Liu YL, Xu ZG, Guo ZY. LEAP2 has antagonized the ghrelin receptor GHSR1a since its emergence in ancient fish. Amino Acids 2021; 53:939-949. [PMID: 33966114 DOI: 10.1007/s00726-021-02998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Recent studies have demonstrated that liver-expressed antimicrobial peptide 2 (LEAP2) antagonizes the ghrelin receptor GHSR1a in mammals. However, its antagonistic function in lower vertebrates has not yet been tested. LEAP2 orthologs have been identified from a variety of fish species; however, previous studies all focused on their antimicrobial activity. To test whether LEAP2 functions as a GHSR1a antagonist in the lowest vertebrates, we studied the antagonism of a fish LEAP2 from Latimeria chalumnae, an extant coelacanth that is one of the closest living fish relatives of tetrapods. Using binding assays, we demonstrated that the coelacanth LEAP2 and ghrelin bound to the coelacanth GHSR1a with IC50 values in the nanomolar range. Using activation assays, we demonstrated that the coelacanth ghrelin activated the coelacanth GHSR1a with an EC50 value in the nanomolar range, and this activation effect was efficiently antagonized by a nanomolar range of the coelacanth LEAP2. In addition, we also showed that the human LEAP2 and ghrelin were as effective as their coelacanth orthologs towards the coelacanth GHSR1a; however, the coelacanth peptides had moderately lower activity towards the human GHSR1a. Thus, LEAP2 serves as an endogenous antagonist of the ghrelin receptor GHSR1a in coelacanth and the ghrelin-LEAP2-GHSR1a system has evolved slowly since its emergence in ancient fish.
Collapse
Affiliation(s)
- Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Li-Li Shou
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ning Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|