1
|
Sharma DK, Soni I, Rajpurohit YS. Surviving the storm: exploring the role of natural transformation in nutrition and DNA repair of stressed Deinococcus radiodurans. Appl Environ Microbiol 2025; 91:e0137124. [PMID: 39651863 PMCID: PMC11784314 DOI: 10.1128/aem.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Deinococcus radiodurans, a natural transformation (NT)-enabled bacterium renowned for its exceptional radiation resistance, employs unique DNA repair and oxidative stress mitigation mechanisms as a strategic response to DNA damage. This study excavates into the intricate roles of NT machinery in the stressed D. radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA, which are instrumental in the uptake and processing of extracellular DNA (eDNA). Our data reveal that NT not only supports the nutritional needs of D. radiodurans under stress but also has roles in DNA repair. The study findings establish that NT-specific proteins (ComEA, ComEC, and endonuclease A [EndA]) may contribute to support the nutritional requirements in unstressed and heavily DNA-damaged cells, while DprA contributes differently and in a context-dependent manner to navigating through the DNA damage storm. Thus, this dual functionality of NT-specific genes is proposed to be a contributing factor in the remarkable ability of D. radiodurans to survive and thrive in environments characterized by high levels of DNA-damaging agents.IMPORTANCEDeinococcus radiodurans is a bacterium known for its extraordinary radiation resistance. This study explores the roles of NT machinery in the radiation-resistant bacterium Deinococcus radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA. These genes are crucial for the uptake and processing of eDNA and contribute to the bacterium nutritional needs and DNA repair under stress. The findings suggest that the NT-specific proteins ComEA, ComEC, and EndA may help meet the nutritional needs of unstressed and heavily DNA-damaged cells, whereas DprA plays a distinct role that varies, depending on the context in aiding cells to cope with DNA damage. The functionality of NT genes is proposed to enhance D. radiodurans survival in environments with high levels of DNA-damaging agents.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Ishu Soni
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| |
Collapse
|
2
|
Wang Y, Liu J, Yi Y, Zhu L, Liu M, Zhang Z, Xie Q, Jiang L. Insights into the synthesis, engineering, and functions of microbial pigments in Deinococcus bacteria. Front Microbiol 2024; 15:1447785. [PMID: 39119139 PMCID: PMC11306087 DOI: 10.3389/fmicb.2024.1447785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
The ability of Deinococcus bacteria to survive in harsh environments, such as high radiation, extreme temperature, and dryness, is mainly attributed to the generation of unique pigments, especially carotenoids. Although the limited number of natural pigments produced by these bacteria restricts their industrial potential, metabolic engineering and synthetic biology can significantly increase pigment yield and expand their application prospects. In this study, we review the properties, biosynthetic pathways, and functions of key enzymes and genes related to these pigments and explore strategies for improving pigment production through gene editing and optimization of culture conditions. Additionally, studies have highlighted the unique role of these pigments in antioxidant activity and radiation resistance, particularly emphasizing the critical functions of deinoxanthin in D. radiodurans. In the future, Deinococcus bacterial pigments will have broad application prospects in the food industry, drug production, and space exploration, where they can serve as radiation indicators and natural antioxidants to protect astronauts' health during long-term space flights.
Collapse
Affiliation(s)
- Yuxian Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Jiayu Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yuanyang Yi
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi, China
- College of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Minghui Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zhidong Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi, China
| | - Qiong Xie
- China Astronaut Research and Training Center, Beijing, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
3
|
Cordova A, Niese B, Sweet P, Kamat P, Phillip JM, Gordon V, Contreras LM. Quantitative morphological analysis of Deinococcus radiodurans elucidates complex dose-dependent nucleoid condensation during recovery from ionizing radiation. Appl Environ Microbiol 2024; 90:e0010824. [PMID: 38864629 PMCID: PMC11323932 DOI: 10.1128/aem.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/19/2024] [Indexed: 06/13/2024] Open
Abstract
The extremophile Deinococcus radiodurans maintains a highly organized and condensed nucleoid as its default state, possibly contributing to its high tolerance to ionizing radiation (IR). Previous studies of the D. radiodurans nucleoid were limited by reliance on manual image annotation and qualitative metrics. Here, we introduce a high-throughput approach to quantify the geometric properties of cells and nucleoids using confocal microscopy, digital reconstructions of cells, and computational modeling. We utilize this novel approach to investigate the dynamic process of nucleoid condensation in response to IR stress. Our quantitative analysis reveals that at the population level, exposure to IR induced nucleoid compaction and decreased the size of D. radiodurans cells. Morphological analysis and clustering identified six distinct sub-populations across all tested experimental conditions. Results indicate that exposure to IR induced fractional redistributions of cells across sub-populations to exhibit morphologies associated with greater nucleoid condensation and decreased the abundance of sub-populations associated with cell division. Nucleoid-associated proteins (NAPs) may link nucleoid compaction and stress tolerance, but their roles in regulating compaction in D. radiodurans are unknown. Imaging of genomic mutants of known and suspected NAPs that contribute to nucleoid condensation found that deletion of nucleic acid-binding proteins, not previously described as NAPs, can remodel the nucleoid by driving condensation or decondensation in the absence of stress and that IR increased the abundance of these morphological states. Thus, our integrated analysis introduces a new methodology for studying environmental influences on bacterial nucleoids and provides an opportunity to further investigate potential regulators of nucleoid condensation.IMPORTANCEDeinococcus radiodurans, an extremophile known for its stress tolerance, constitutively maintains a highly condensed nucleoid. Qualitative studies have described nucleoid behavior under a variety of conditions. However, a lack of quantitative data regarding nucleoid organization and dynamics has limited our understanding of the regulatory mechanisms controlling nucleoid organization in D. radiodurans. Here, we introduce a quantitative approach that enables high-throughput quantitative measurements of subcellular spatial characteristics in bacterial cells. Applying this to wild-type or single-protein-deficient populations of D. radiodurans subjected to ionizing radiation, we identified significant stress-responsive changes in cell shape, nucleoid organization, and morphology. These findings highlight this methodology's adaptability and capacity for quantitatively analyzing the cellular response to stressors for screening cellular proteins involved in bacterial nucleoid organization.
Collapse
Affiliation(s)
- Antonio Cordova
- Interdisciplinary Life
Sciences Graduate Program, Department of Molecular Biosciences, The
University of Texas at Austin,
Austin, Texas, USA
- Interdisciplinary Life
Sciences Graduate Program, The University of Texas at
Austin, Austin,
Texas, USA
| | - Brandon Niese
- Department of Physics,
Center for Nonlinear Dynamics, The University of Texas at
Austin, Austin,
Texas, USA
| | - Philip Sweet
- Interdisciplinary Life
Sciences Graduate Program, Department of Molecular Biosciences, The
University of Texas at Austin,
Austin, Texas, USA
| | - Pratik Kamat
- Department of Chemical
and Biomolecular Engineering, Whiting School of Engineering, Johns
Hopkins University,
Baltimore, Maryland,
USA
| | - Jude M. Phillip
- Department of Chemical
and Biomolecular Engineering, Whiting School of Engineering, Johns
Hopkins University,
Baltimore, Maryland,
USA
- Department of
Biomedical Engineering, Institute for Nanobiotechnology, Whiting School
of Engineering, Johns Hopkins
University, Baltimore,
Maryland, USA
| | - Vernita Gordon
- Interdisciplinary Life
Sciences Graduate Program, The University of Texas at
Austin, Austin,
Texas, USA
- Department of Physics,
Center for Nonlinear Dynamics, The University of Texas at
Austin, Austin,
Texas, USA
- LaMontagne Center for
Infectious Disease, The University of Texas at
Austin, Austin,
Texas, USA
| | - Lydia M. Contreras
- Interdisciplinary Life
Sciences Graduate Program, The University of Texas at
Austin, Austin,
Texas, USA
- McKetta Department of
Chemical Engineering, The University of Texas at
Austin, Austin,
Texas, USA
| |
Collapse
|
4
|
Khan A, Liu G, Zhang G, Li X. Radiation-resistant bacteria in desiccated soil and their potentiality in applied sciences. Front Microbiol 2024; 15:1348758. [PMID: 38894973 PMCID: PMC11184166 DOI: 10.3389/fmicb.2024.1348758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
A rich diversity of radiation-resistant (Rr) and desiccation-resistant (Dr) bacteria has been found in arid habitats of the world. Evidence from scientific research has linked their origin to reactive oxygen species (ROS) intermediates. Rr and Dr. bacteria of arid regions have the potential to regulate imbalance radicals and evade a higher dose of radiation and oxidation than bacterial species of non-arid regions. Photochemical-activated ROS in Rr bacteria is run through photo-induction of electron transfer. A hypothetical model of the biogeochemical cycle based on solar radiation and desiccation. These selective stresses generate oxidative radicals for a short span with strong reactivity and toxic effects. Desert-inhibiting Rr bacteria efficiently evade ROS toxicity with an evolved antioxidant system and other defensive pathways. The imbalanced radicals in physiological disorders, cancer, and lung diseases could be neutralized by a self-sustaining evolved Rr bacteria antioxidant system. The direct link of evolved antioxidant system with intermediate ROS and indirect influence of radiation and desiccation provide useful insight into richness, ecological diversity, and origin of Rr bacteria capabilities. The distinguishing features of Rr bacteria in deserts present a fertile research area with promising applications in the pharmaceutical industry, genetic engineering, biological therapy, biological transformation, bioremediation, industrial biotechnology, and astrobiology.
Collapse
Affiliation(s)
- Asaf Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Farci D, Piano D. Spatial arrangement and density variations in the cell envelope of Deinococcus radiodurans. Can J Microbiol 2024; 70:190-198. [PMID: 38525892 DOI: 10.1139/cjm-2023-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The cell envelope of the poly-extremophile bacterium Deinococcus radiodurans is renowned for its highly organized structure and unique functional characteristics. In this bacterium, a precise regularity characterizes not just the S-layer, but it also extends to the underlying cell envelope layers, resulting in a dense and tightly arranged configuration. This regularity is attributed to a minimum of three protein complexes located at the outer membrane level. Together, they constitute a recurring structural unit that extends across the cell envelope, effectively tiling the entirety of the cell body. Nevertheless, a comprehensive grasp of the vacant spaces within each layer and their functional roles remains limited. In this study, we delve into these aspects by integrating the state of the art with structural calculations. This approach provides crucial evidence supporting an evolutive pressure intricately linked to surface phenomena depending on the environmental conditions.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Daly MJ. The scientific revolution that unraveled the astonishing DNA repair capacity of the Deinococcaceae: 40 years on. Can J Microbiol 2023; 69:369-386. [PMID: 37267626 DOI: 10.1139/cjm-2023-0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn2+)-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields.
Collapse
Affiliation(s)
- Michael J Daly
- Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Department of Pathology, Bethesda, MD 20814-4799, USA
- Committee on Planetary Protection (CoPP), National Academies of Sciences, Washington, DC 20001, USA
| |
Collapse
|
7
|
Chen Y, Zhang Q, Wang D, Shu YG, Shi H. Memory Effect on the Survival of Deinococcus radiodurans after Exposure in Near Space. Microbiol Spectr 2023; 11:e0347422. [PMID: 36749041 PMCID: PMC10100890 DOI: 10.1128/spectrum.03474-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Near space (20 to 100 km in altitude) is an extreme environment with high radiation and extreme cold, making it difficult for organisms to survive. However, many studies had shown that there were still microbes living in this extremely harsh environment. It was particularly important to study which factors affected the survival of microorganisms living in near space after exposure to irradiation, as this was related to many studies, such as studies of radioresistance mechanisms, panspermia hypothesis, long-distance microbial transfer, and developing extraterrestrial habitats. Survival after radiation was probably influenced by the growth condition before radiation, which is called the memory effect. In this research, we used different growth conditions to affect the growth of Deinococcus radiodurans and lyophilized bacteria in exponential phase to maintain the physiological state at this stage. Then high-altitude scientific balloon exposure experiments were carried out by using the Chinese Academy of Sciences Balloon-Borne Astrobiology Platform (CAS-BAP) at Dachaidan, Qinghai, China (37°44'N, 95°21'E). The aim was to investigate which factors influence survival after near-space exposure. The results suggested that there was a memory effect on the survival of D. radiodurans after exposure. If the differences in growth rate were caused by differences in nutrition, the survival rate and growth rate were positively correlated. Moreover, the addition of paraquat and Mn2+ during the growth phase can also increase survival. This finding may help to deepen the understanding of the mechanics of radiation protection and provide relevant evidence for many studies, such as of long-distance transfer of microorganisms in near space. IMPORTANCE Earth's near space is an extreme environment with high radiation and extreme cold. Which factors affect the survival of microbes in near space is related to many studies, such as studies of radioresistance mechanisms, panspermia hypothesis, long-distance microbial transfer, and developing extraterrestrial habitats. We performed several exposure experiments with Deinococcus radiodurans in near space to investigate which factors influence the survival rate after near-space exposure; that is, there was a relationship between survival after radiation and the growth condition before radiation. The results suggested that there was a memory effect on the survival of D. radiodurans after exposure. This finding may help to deepen the understanding of the mechanism of radiation protection and provide relevant evidence for many studies, such as of long-distance transfer of microorganisms in near space.
Collapse
Affiliation(s)
- Yining Chen
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Deyu Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yao-Gen Shu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Hualin Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
8
|
M S, N RP, Chakraborty A, Rajendrasozhan S. Proteomic profiling of Deinococcus radiodurans with response to thioredoxin reductase inhibitor and ionizing radiation treatment. J Proteomics 2022; 267:104697. [PMID: 35995383 DOI: 10.1016/j.jprot.2022.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
This study explains the importance of cellular redox system in preserving the proteome of the radioresistant Deinococcus radiodurans. The thioredoxin reductase (TrxR) redox system was inhibited by ebselen (10 μM), and then the bacterium was exposed to 4 kGy of ionizing radiation. The differentially expressed proteins were analyzed using label-free quantitative (LFQ) proteomics. The 4 kGy radiation treatment increases the expression of stress response proteins like osmotically inducible protein OsmC, catalase, and metallophosphoesterase compared to control. Ebselen plus radiation treatment augments oxidoreductases proteins in D. radiodurans. Further, the proteins involved in glycolysis, tricarboxylic acetic acid (TCA) and proteins like proteases, peptidase, and peptide transporters were significantly decreased in the ebselen plus radiation group compared to radiation treated group. Further, ebselen plus radiation treatment increases the ATP-binding cassette (ABC) transporters involved in the efflux of toxic chemicals and nutrient uptake and the stress response related membrane protein like S-layer homology domain-containing protein in D. radiodurans. Thus, the results show that the altered redox status via inhibition of TrxR redox system significantly affects the expression of essential cellular proteins for the survival. The cellular content of D. radiodurans may be used to handle redox imbalances in the normal cells during cancer radiotherapy. SIGNIFICANCE: Deinococcus radiodurans is a popular radioresistance organism with efficient antioxidant systems and DNA repair mechanisms. There are many antioxidant systems and small molecules that responsible for its resistance. The importance of thiol based antioxidant systems in its resistance property has not fully studied yet. Thioredoxin reductase is an important disulfide containing protein that involved in maintaining redox homeostasis. The TrxR inhibition affects the cell survival and synthesis of molecules against ionizing radiation. In this study we are reporting the effects of TrxR inhibitor on proteome of D. radiodurans upon ionizing radiation. This study reveals the significance of TrxR antioxidant system on the proteome of D. radiodurans. The inhibition of TrxR antioxidant system and the subsequent disturbances in the proteome content makes the organism vulnerable to oxidative stress.
Collapse
Affiliation(s)
- Sudharsan M
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608 002, Tamilnadu, India
| | - Rajendra Prasad N
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608 002, Tamilnadu, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 700098, West Bengal, India
| | | |
Collapse
|
9
|
Han R, Jiang J, Fang J, Contreras LM. PNPase and RhlB Interact and Reduce the Cellular Availability of Oxidized RNA in Deinococcus radiodurans. Microbiol Spectr 2022; 10:e0214022. [PMID: 35856907 PMCID: PMC9430589 DOI: 10.1128/spectrum.02140-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023] Open
Abstract
8-Oxo-7,8-dihydroguanine (8-oxoG) is a major RNA modification caused by oxidative stresses and has been implicated in carcinogenesis, neurodegeneration, and aging. Several RNA-binding proteins have been shown to have a binding preference for 8-oxoG-modified RNA in eukaryotes and protect cells from oxidative stress. To date, polynucleotide phosphorylase (PNPase) is one of the most well-characterized proteins in bacteria that recognize 8-oxoG-modified RNA, but how PNPase cooperates with other proteins to process oxidized RNA is still unclear. Here, we use RNA affinity chromatography and mass spectrometry to search for proteins that preferably bind 8-oxoG-modified RNA in Deinococcus radiodurans, an extremophilic bacterium with extraordinary resistance to oxidative stresses. We identified four proteins that preferably bind to oxidized RNA: PNPase (DR_2063), DEAD box RNA helicase (DR_0335/RhlB), ribosomal protein S1 (DR_1983/RpsA), and transcriptional termination factor (DR_1338/Rho). Among these proteins, PNPase and RhlB exhibit high-affinity binding to 8-oxoG-modified RNA in a dose-independent manner. Deletions of PNPase and RhlB caused increased sensitivity of D. radiodurans to oxidative stress. We further showed that PNPase and RhlB specifically reduce the cellular availability of 8-oxoG-modified RNA but have no effect on oxidized DNA. Importantly, PNPase directly interacts with RhlB in D. radiodurans; however, no additional phenotypic effect was observed for the double deletion of pnp and rhlB compared to the single deletions. Overall, our findings suggest the roles of PNPase and RhlB in targeting 8-oxoG-modified RNAs and thereby constitute an important component of D. radiodurans resistance to oxidative stress. IMPORTANCE Oxidative RNA damage can be caused by oxidative stress, such as hydrogen peroxide, ionizing radiation, and antibiotic treatment. 8-oxo-7,8-dihydroguanine (8-oxoG), a major type of oxidized RNA, is highly mutagenic and participates in a variety of disease occurrences and development. Although several proteins have been identified to recognize 8-oxoG-modified RNA, the knowledge of how RNA oxidative damage is controlled largely remains unclear, especially in nonmodel organisms. In this study, we identified four RNA binding proteins that show higher binding affinity to 8-oxoG-modified RNA compared to unmodified RNA in the extremophilic bacterium Deinococcus radiodurans, which can endure high levels of oxidative stress. Two of the proteins, polynucleotide phosphorylase (PNPase) and DEAD-box RNA helicase (RhlB), interact with each other and reduce the cellular availability of 8-oxoG-modified RNA under oxidative stress. As such, this work contributes to our understanding of how RNA oxidation is influenced by RNA binding proteins in bacteria.
Collapse
Affiliation(s)
- Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Jessie Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Jaden Fang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
10
|
Zhou S, Alper HS, Zhou J, Deng Y. Intracellular biosensor-based dynamic regulation to manipulate gene expression at the spatiotemporal level. Crit Rev Biotechnol 2022; 43:646-663. [PMID: 35450502 DOI: 10.1080/07388551.2022.2040415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of intracellular, biosensor-based dynamic regulation strategies to regulate and improve the production of useful compounds have progressed significantly over previous decades. By employing such an approach, it is possible to simultaneously realize high productivity and optimum growth states. However, industrial fermentation conditions contain a mixture of high- and low-performance non-genetic variants, as well as young and aged cells at all growth phases. Such significant individual variations would hinder the precise controlling of metabolic flux at the single-cell level to achieve high productivity at the macroscopic population level. Intracellular biosensors, as the regulatory centers of metabolic networks, can real-time sense intra- and extracellular conditions and, thus, could be synthetically adapted to balance the biomass formation and overproduction of compounds by individual cells. Herein, we highlight advances in the designing and engineering approaches to intracellular biosensors. Then, the spatiotemporal properties of biosensors associated with the distribution of inducers are compared. Also discussed is the use of such biosensors to dynamically control the cellular metabolic flux. Such biosensors could achieve single-cell regulation or collective regulation goals, depending on whether or not the inducer distribution is only intracellular.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.,McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Small-Molecule Mn Antioxidants in Caenorhabditis elegans and Deinococcus radiodurans Supplant MnSOD Enzymes during Aging and Irradiation. mBio 2022; 13:e0339421. [PMID: 35012337 PMCID: PMC8749422 DOI: 10.1128/mbio.03394-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Denham Harman's oxidative damage theory identifies superoxide (O2•-) radicals as central agents of aging and radiation injury, with Mn2+-dependent superoxide dismutase (MnSOD) as the principal O2•--scavenger. However, in the radiation-resistant nematode Caenorhabditis elegans, the mitochondrial antioxidant enzyme MnSOD is dispensable for longevity, and in the model bacterium Deinococcus radiodurans, it is dispensable for radiation resistance. Many radiation-resistant organisms accumulate small-molecule Mn2+-antioxidant complexes well-known for their catalytic ability to scavenge O2•-, along with MnSOD, as exemplified by D. radiodurans. Here, we report experiments that relate the MnSOD and Mn-antioxidant content to aging and oxidative stress resistances and which indicate that C. elegans, like D. radiodurans, may rely on Mn-antioxidant complexes as the primary defense against reactive oxygen species (ROS). Wild-type and ΔMnSOD D. radiodurans and C. elegans were monitored for gamma radiation sensitivities over their life spans while gauging Mn2+-antioxidant content by electron paramagnetic resonance (EPR) spectroscopy, a powerful new approach to determining the in vivo Mn-antioxidant content of cells as they age. As with D. radiodurans, MnSOD is dispensable for radiation survivability in C. elegans, which hyperaccumulates Mn-antioxidants exceptionally protective of proteins. Unexpectedly, ΔMnSOD mutants of both the nematodes and bacteria exhibited increased gamma radiation survival compared to the wild-type. In contrast, the loss of MnSOD renders radiation-resistant bacteria sensitive to atmospheric oxygen during desiccation. Our results support the concept that the disparate responses to oxidative stress are explained by the accumulation of Mn-antioxidant complexes which protect, complement, and can even supplant MnSOD. IMPORTANCE The current theory of cellular defense against oxidative damage identifies antioxidant enzymes as primary defenders against ROS, with MnSOD being the preeminent superoxide (O2•-) scavenger. However, MnSOD is shown to be dispensable both for radiation resistance and longevity in model organisms, the bacterium Deinococcus radiodurans and the nematode Caenorhabditis elegans. Measured by electron paramagnetic resonance (EPR) spectroscopy, small-molecule Mn-antioxidant content was shown to decline in unison with age-related decreases in cell proliferation and radioresistance, which again are independent of MnSOD presence. Most notably, the Mn-antioxidant content of C. elegans drops precipitously in the last third of its life span, which links with reports that the steady-state level of oxidized proteins increases exponentially during the last third of the life span in animals. This leads us to propose that global responses to oxidative stress must be understood through an extended theory that includes small-molecule Mn-antioxidants as potent O2•--scavengers that complement, and can even supplant, MnSOD.
Collapse
|
12
|
Wu B, Yu J, Liu Y, Dou G, Hou Y, Zhang Z, Pan X, Wang H, Zhou P, Zhu D. Potential Pathogenic Genes and Mechanism of Ankylosing Spondylitis: A Study Based on WGCNA and Bioinformatics Analysis. World Neurosurg 2021; 158:e543-e556. [PMID: 34775094 DOI: 10.1016/j.wneu.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The purpose of this study is to explore the high-risk pathogenic driver genes for the occurrence and development of ankylosing spondylitis (AS) based on the bioinformatics method at the molecular level, to further elaborate the molecular mechanism of the pathogenesis of AS, and to provide potential biological targets for the diagnosis and treatment of clinical AS. METHODS The gene expression profile data GSE16879 were downloaded from the GEO (Gene Expression Omnibus) database, and weighted gene coexpression network analysis was performed. Highly correlated genes were divided into 14 modules, and 582 genes contained in the yellow (classic module) and 59 genes contained in grey60 (hematologic module) modules had the strongest correlation with AS. After protein-protein interaction (PPI) analysis, the top 20 genes with the highest scores were obtained from classic module and hematologic module, respectively. The DAVID (Database for Annotation, Visualization, and Integrated Discovery) database was used for Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis to analyze the biological functions of high-risk genes related to AS. RESULTS The results showed that the process of signal recognition particle-dependent cotranslational protein targeting to membrane, ribosome, nicotinamide adenine diphosphate hydride dehydrogenase (ubiquinone) activity, platelet activation, integrin complex, and extracellular matrix binding were enriched. CONCLUSIONS In this study, weighted gene coexpression network analysis, an efficient system biology algorithm, was used to analyze the high-risk pathogenic driver gene of AS. We provide new targets for the diagnosis and treatment of clinical AS and new ideas for further study.
Collapse
Affiliation(s)
- Bo Wu
- Department of Orthopaedics, the First Bethune Hospital of Jilin University, Changchun, China; Clinical College, Jilin University, Changchun, China
| | - Jing Yu
- Operating Theatre No. 1, the First Bethune Hospital of Jilin University, Changchun, China
| | - Yibing Liu
- Clinical College, Jilin University, Changchun, China
| | - Gaojing Dou
- Clinical College, Jilin University, Changchun, China; Department of Breast Surgery, the First Bethune Hospital of Jilin University, Changchun, China
| | - Yuanyuan Hou
- Clinical College, Jilin University, Changchun, China
| | - Zhiyun Zhang
- Clinical College, Jilin University, Changchun, China
| | - Xuefeng Pan
- Department of Obstetrics, the First Bethune Hospital of Jilin University, Changchun, China
| | - Hongyu Wang
- Clinical College, Jilin University, Changchun, China
| | - Pengcheng Zhou
- Department of Orthopaedics, the First Bethune Hospital of Jilin University, Changchun, China
| | - Dong Zhu
- Department of Orthopaedics, the First Bethune Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Chen A, Hernandez-Vargas J, Han R, Cortazar-Martínez O, Gonzalez N, Patel S, Keitz BK, Luna-Barcenas G, Contreras LM. Small RNAs as a New Platform for Tuning the Biosynthesis of Silver Nanoparticles for Enhanced Material and Functional Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36769-36783. [PMID: 34319072 DOI: 10.1021/acsami.1c07400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genetic engineering of nanoparticle biosynthesis in bacteria could help facilitate the production of nanoparticles with enhanced or desired properties. However, this process remains limited due to the lack of mechanistic knowledge regarding specific enzymes and other key biological factors. Herein, we report on the ability of small noncoding RNAs (sRNAs) to affect silver nanoparticle (AgNP) biosynthesis using the supernatant from the bacterium Deinococcus radiodurans. Deletion strains of 12 sRNAs potentially involved in the oxidative stress response were constructed, and the supernatants from these strains were screened for their effect on AgNP biosynthesis. We identified several sRNA deletions that drastically decreased AgNP yield compared to the wild-type (WT) strain, suggesting the importance of these sRNAs in AgNP biosynthesis. Furthermore, AgNPs biosynthesized using the supernatants from three of these sRNA deletion strains demonstrated significantly enhanced antimicrobial and catalytic activities against environmentally relevant dyes and bacteria relative to AgNPs biosynthesized using the WT strain. Characterization of these AgNPs using electron microscopy (EM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) revealed that the deletion of these small RNAs led to changes within the supernatant composition that altered AgNP properties such as the surface chemistry, surface potential, and overall composition. Taken together, our results demonstrate that modulating specific sRNA levels can affect the composition of supernatants used to biosynthesize AgNPs, resulting in AgNPs with unique material properties and improved functionality; as such, we introduce sRNAs as a new platform for genetically engineering the biosynthesis of metal nanoparticles using bacteria. Many of the sRNAs examined in this work have potential regulatory roles in oxidative stress responses; further studies into their targets could help provide insight into the specific molecular mechanisms underlying bacterial biosynthesis and metal reduction, enabling the production of nanoparticles with enhanced properties.
Collapse
Affiliation(s)
- Angela Chen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Julia Hernandez-Vargas
- Unidad Querétaro, Centro de Investigacion y de Estudios Avanzados Unidad Queretaro, Querétaro 76230, Mexico
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Orlando Cortazar-Martínez
- Unidad Querétaro, Centro de Investigacion y de Estudios Avanzados Unidad Queretaro, Querétaro 76230, Mexico
| | - Natalia Gonzalez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sonia Patel
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gabriel Luna-Barcenas
- Unidad Querétaro, Centro de Investigacion y de Estudios Avanzados Unidad Queretaro, Querétaro 76230, Mexico
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Villa JK, Han R, Tsai CH, Chen A, Sweet P, Franco G, Vaezian R, Tkavc R, Daly MJ, Contreras LM. A small RNA regulates pprM, a modulator of pleiotropic proteins promoting DNA repair, in Deinococcus radiodurans under ionizing radiation. Sci Rep 2021; 11:12949. [PMID: 34155239 PMCID: PMC8217566 DOI: 10.1038/s41598-021-91335-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Networks of transcriptional and post-transcriptional regulators are critical for bacterial survival and adaptation to environmental stressors. While transcriptional regulators provide rapid activation and/or repression of a wide-network of genes, post-transcriptional regulators, such as small RNAs (sRNAs), are also important to fine-tune gene expression. However, the mechanisms of sRNAs remain poorly understood, especially in less-studied bacteria. Deinococcus radiodurans is a gram-positive bacterium resistant to extreme levels of ionizing radiation (IR). Although multiple unique regulatory systems (e.g., the Radiation and Desiccation Response (RDR)) have been identified in this organism, the role of post-transcriptional regulators has not been characterized within the IR response. In this study, we have characterized an sRNA, PprS (formerly Dsr2), as a post-transcriptional coordinator of IR recovery in D. radiodurans. PprS showed differential expression specifically under IR and knockdown of PprS resulted in reduced survival and growth under IR, suggesting its importance in regulating post-radiation recovery. We determined a number of potential RNA targets involved in several pathways including translation and DNA repair. Specifically, we confirmed that PprS binds within the coding region to stabilize the pprM (DR_0907) transcript, a RDR modulator. Overall, these results are the first to present an additional layer of sRNA-based control in DNA repair pathways associated with bacterial radioresistance.
Collapse
Affiliation(s)
- Jordan K Villa
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Runhua Han
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Chen-Hsun Tsai
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Philip Sweet
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Gabriela Franco
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Respina Vaezian
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Rok Tkavc
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Microbiology and Immunology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael J Daly
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Molecular and Cellular Biology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lydia M Contreras
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|