1
|
Venuti I, Cuevas-Ferrando E, Falcó I, Girón-Guzmán I, Ceruso M, Pepe T, Sánchez G. Presence of Potentially Infectious Human Enteric Viruses and Antibiotic Resistance Genes in Mussels from the Campania Region, Italy: Implications for Consumer's Safety. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:28. [PMID: 40372520 DOI: 10.1007/s12560-025-09635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/13/2025] [Indexed: 05/16/2025]
Abstract
This study presents a comprehensive assessment of viral contamination and antibiotic resistance genes (ARGs) presence in mussels (Mytilus galloprovincialis) (n = 60) collected from retail stores in the Campania region (Italy). High prevalence of human noroviruses (HuNoV) genogroup I (GI) (77%) and genogroup II (GII) (40%), rotaviruses (RV) (60%), and astroviruses (HAstV) (25%) was found, with average levels of 4.34, 5.09, 5.05, and 4.00 Log genome copies (GC)/g, respectively. All samples tested negative for hepatitis A and E viruses. Viral faecal contamination indicators, including somatic coliphages (88%, 3.62 mean Log plaque forming units (PFU)/100 g) and crAssphage (50%, 3.72 mean Log GC/g), showed strong correlations (ρ > 0.65, p-value < 0.05) with HuNoV GII, HAstV, and RV concentrations in mussels. The study also investigated the presence of respiratory viruses, with all samples testing negative for SARS-CoV-2, respiratory syncytial virus, and influenza A virus.Furthermore, a capsid-integrity RT-qPCR assay was applied to selected positive samples, confirming the presence of potentially infectious viruses and underscoring the associated risks to consumers.Additionally, ARGs were detected by qPCR, targeting beta-lactams, quinolones, and chloramphenicol resistance genes in both the total and the bacteriophage fractions of selected samples.Overall, this study emphasizes the importance of continued surveillance and strategic interventions to mitigate public health risks associated with the consumption of contaminated bivalve molluscan shellfish (BMS), which may imply the dissemination of infectious enteric viruses and ARGs within communities.
Collapse
Affiliation(s)
- Iolanda Venuti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, N. 1, 80137, Naples, Italy
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Marina Ceruso
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, N. 1, 80137, Naples, Italy
| | - Tiziana Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, N. 1, 80137, Naples, Italy
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
2
|
Malham SK, Taft H, Farkas K, Ladd CJT, Seymour M, Robins PE, Jones DL, McDonald JE, Le Vay L, Jones L. Multi-scale influences on Escherichia coli concentrations in shellfish: From catchment to estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125476. [PMID: 39647770 DOI: 10.1016/j.envpol.2024.125476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Sustainability of bivalve shellfish farming relies on clean coastal waters, however, high levels of faecal indicator organisms (FIOs, e.g. Escherichia coli) in shellfish results in temporary closure of shellfish harvesting beds to protect human health, but with economic consequences for the shellfish industry. Active Management Systems which can predict FIO contamination may help reduce shellfishery closures. This study evaluated predictors of E. coli concentrations in two shellfish species, the blue mussel (Mytilus edulis) and the Pacific oyster (Crassostrea gigas), at different spatial and temporal scales, within 12 estuaries in England and Wales. We aimed to: (i) identify consistent catchment-scale or within-estuary predictors of elevated E. coli levels in shellfish, (ii) evaluate whether high river flows associated with rainfall events were a significant predictor of shellfish E. coli concentrations, and the time lag between these events and E. coli accumulation, and (iii) whether operation of Combined Sewer Overflows (CSO) is associated with higher E. coli concentrations in shellfish. A cross-catchment analysis gave a good predictive model for contamination management (R2 = 0.514), with positive relationships between E. coli concentrations and river flow (p = 0.001), turbidity (p = 0.002) and nitrate (p = 0.042). No effect was observed for catchment area, the number of point source discharges, or agricultural land use type. 64% of all shellfish beds showed a significant relationship between E. coli and river flow, with typical lag-times of 1-3 days. Detailed analysis of the Conwy estuary indicated that E. coli counts were consistently higher when the CSO had been active the previous week. In conclusion, we demonstrate that real-time river flow and water quality data may be used to predict potential risk of E. coli contamination in shellfish at the catchment level, however, further refinement (coupling to fine-scale hydrodynamic models) is needed to make accurate predictions for individual shellfish beds within estuaries.
Collapse
Affiliation(s)
- Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5 A, UKB, UK.
| | - Helen Taft
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Cai J T Ladd
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5 A, UKB, UK; School of Biosciences, Geography and Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Mathew Seymour
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Peter E Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5 A, UKB, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - James E McDonald
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lewis Le Vay
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5 A, UKB, UK
| | - Laurence Jones
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd, LL57 2UW, UK; Liverpool Hope University, Department of Geography and Environmental Science, Hope Park, Liverpool, L16 9JD, UK
| |
Collapse
|
3
|
de Abreu Corrêa A, Huaman MED, Siciliano GM, Silva RRE, Zaganelli JL, Pinto AMV, Dos Santos AL, Vieira CB. First investigation of Ostreid herpesvirus-1 and human enteric viruses in a major scallop production area in Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1186. [PMID: 39520519 DOI: 10.1007/s10661-024-13331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Bivalve mollusks may be affected by numerous infectious diseases, which cause high mortality rates and economic burdens for producers. Another challenge for bivalve aquaculture is the protection of farms from human contamination, such as sewage and stormwater discharges. Ilha Grande Bay (IGB), located in Rio de Janeiro state, is the largest Brazilian producer of scallops (Nodipecten nodosus). This region has recently suffered a mass mortality of mollusks, and several environmental contaminants have been reported in the area. To contribute to the elucidation of scallop collapse and better characterize the human impacts, this study assessed the circulation of mollusk (Ostreid herpesvirus-1 [OsHV-1]) and human (mastadenovirus [HAdV] and norovirus GII) viral pathogens in waters and animals produced at IGB. Neither water nor animals were positive for OsHV-1. However, of the 7 points analyzed, 5 points showed contamination by HAdV or norovirus. HAdV and norovirus were detected in 5.5 and 6.9% of the analyzed water samples, respectively, in concentrations ranging from 2.39 × 103 to 1 × 105 genome copies/L. One scallop sample was positive for norovirus (4.5%). These results demonstrate human contamination in the region, presenting a risk of consumer contamination, and a non-association between OsHV-1 and the mass mortality described in scallops.
Collapse
Affiliation(s)
- Adriana de Abreu Corrêa
- Department of Microbiology and Parasitology (MIP), Federal Fluminense University (UFF), Rio de Janeiro, Niterói, Brazil.
| | - Maria Eduarda Dias Huaman
- Department of Microbiology and Parasitology (MIP), Federal Fluminense University (UFF), Rio de Janeiro, Niterói, Brazil
| | - Gabriel Mascarenhas Siciliano
- Department of Microbiology and Parasitology (MIP), Federal Fluminense University (UFF), Rio de Janeiro, Niterói, Brazil
| | - Renan Ribeiro E Silva
- Ilha Grande Bay Eco-Development Institute (IED-BIG), Rio de Janeiro, Angra dos Reis, Brazil
| | - José Luiz Zaganelli
- Ilha Grande Bay Eco-Development Institute (IED-BIG), Rio de Janeiro, Angra dos Reis, Brazil
| | - Ana Maria Viana Pinto
- Department of Microbiology and Parasitology (MIP), Federal Fluminense University (UFF), Rio de Janeiro, Niterói, Brazil
| | - Antonia Lúcia Dos Santos
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, de Janeiro, Brazil
| | - Carmen Baur Vieira
- Department of Microbiology and Parasitology (MIP), Federal Fluminense University (UFF), Rio de Janeiro, Niterói, Brazil
| |
Collapse
|
4
|
Desdouits M, Reynaud Y, Philippe C, Guyader FSL. A Comprehensive Review for the Surveillance of Human Pathogenic Microorganisms in Shellfish. Microorganisms 2023; 11:2218. [PMID: 37764063 PMCID: PMC10537662 DOI: 10.3390/microorganisms11092218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Bivalve molluscan shellfish have been consumed for centuries. Being filter feeders, they may bioaccumulate some microorganisms present in coastal water, either naturally or through the discharge of human or animal sewage. Despite regulations set up to avoid microbiological contamination in shellfish, human outbreaks still occur. After providing an overview showing their implication in disease, this review aims to highlight the diversity of the bacteria or enteric viruses detected in shellfish species, including emerging pathogens. After a critical discussion of the available methods and their limitations, we address the interest of technological developments using genomics to anticipate the emergence of pathogens. In the coming years, further research needs to be performed and methods need to be developed in order to design the future of surveillance and to help risk assessment studies, with the ultimate objective of protecting consumers and enhancing the microbial safety of bivalve molluscan shellfish as a healthy food.
Collapse
Affiliation(s)
| | | | | | - Françoise S. Le Guyader
- Ifremer, Unité Microbiologie Aliment Santé et Environnement, RBE/LSEM, 44311 Nantes, France; (M.D.); (Y.R.); (C.P.)
| |
Collapse
|
5
|
Caetano S, Correia C, Vidal AFT, Matos A, Ferreira C, Cravo A. Fate of microbial contamination in a South European Coastal Lagoon (Ria Formosa) under the influence of treated effluents dispersal. J Appl Microbiol 2023; 134:lxad166. [PMID: 37516448 DOI: 10.1093/jambio/lxad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
AIM Assessment of the fate of microbial contamination driven from treated wastewater disposal at a highly productive zone on a South European coastal lagoon (Ria Formosa). METHODS AND RESULTS Microbial indicators of contamination (Total coliforms, Escherichia coli, and Enterococci) were evaluated monthly during September 2018-September 2020 at three study areas (Faro, Olhão, and Tavira) under different wastewater discharge flows and hydrodynamic conditions. Additional data on E. coli monitoring in bivalves, available from the national institution responsible for their surveillance was also considered. The maximum microbial contamination was found at Faro, the highest-load and less-flushed study area, contrasting the lowest contamination at Olhão, a lower-load and strongly flushed area. The wastewater impact decreased along the spatial dispersal gradients and during high water, particularly at Faro and Tavira study areas, due to a considerable dilution effect. Microbial contamination at Olhão increased during the summer, while at the other study areas seasonal evidence was not clear. Data also indicate that E. coli in bivalves from bivalve production zones next to the three study areas reflected the differentiated impact of the wastewater treatment plants effluents on the water quality of those areas. CONCLUSIONS Effluent loads together with local hydrodynamics, water temperature, solar radiation, precipitation, and land runoff as well as seabirds populations and environmentally adapted faecal or renaturelized bacterial communities, contributed to microbial contamination of the study areas.
Collapse
Affiliation(s)
- Sandra Caetano
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
- School of Health (ESS), University of Algarve, Escola Superior de Saúde da Universidade do Algarve, Campus de Gambelas, Edifício 1, Piso 3, 8005-139 Faro, Portugal
| | - Cátia Correia
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Ana Flor Torres Vidal
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - André Matos
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Cristina Ferreira
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Alexandra Cravo
- CIMA, Centre of Marine and Environmental Research/ARNET-Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
- Sciences and Technology Faculty (FCT), University of Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| |
Collapse
|
6
|
Rowan NJ. Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162380. [PMID: 36841407 DOI: 10.1016/j.scitotenv.2023.162380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Safeguarding the seafood industry is important given its contribution to supporting our growing global population. However, shellfish are filter feeders that bioaccumulate microbial contaminants in their tissue from wastewater discharged into the same coastal growing environments leading to significant human disease outbreaks unless appropriately mitigated. Removal or inactivation of enteric viruses is very challenging particularly as human norovirus (hNoV) binds to specific histo-blood ligands in live oyster tissue that are consumed raw or lightly cooked. The regulatory framework that sets out use of clean seawater and UV disinfection is appropriate for bacterial decontamination at the post-harvest land-based depuration (cleaning) stage. However, additional non-thermal technologies are required to eliminate hNoV in live shellfish (particularly oysters) where published genomic studies report that low-pressure UV has limited effectiveness in inactivating hNoV. The use of the standard genomic detection method (ISO 15, 216-1:2017) is not appropriate for assessing the loss of infectious hNoV in treated live shellfish. The use of surrogate viral infectivity methods appear to offer some insight into the loss of hNoV infectiousness in live shellfish during decontamination. This paper reviews the use of existing and potentially other combinational treatment approaches to enhance the removal or inactivation of enteric viruses in live shellfish. The use of alternative and complementary novel diagnostic approaches to discern viable hNoV are discussed. The effectiveness and virological safety of new affordable hNoV intervention(s) require testing and validating at commercial shellfish production in conjunction with laboratory-based research. Appropriate risk management planning should encompass key stakeholders including local government and the wastewater industry. Gaining a mechanistic understanding of the relationship between hNoV response at molecular and structural levels in individually treated oysters as a unit will inform predictive modeling and appropriate treatment technologies. Global warming of coastal growing environments may introduce additional contaminant challenges (such as invasive species); thus, underscoring need to develop real-time ecosystem monitoring of growing environments to alert shellfish producers to appropriately mitigate these threats.
Collapse
Affiliation(s)
- Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone Campus, Ireland.
| |
Collapse
|
7
|
Stoppel SM, Duinker A, Khatri M, Lunestad BT, Myrmel M. Temperature Dependent Depuration of Norovirus GII and Tulane Virus from Oysters (Crassostrea gigas). FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:43-50. [PMID: 36656416 PMCID: PMC10006268 DOI: 10.1007/s12560-022-09547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Raw oysters are considered a culinary delicacy but are frequently the culprit in food-borne norovirus (NoV) infections. As commercial depuration procedures are currently unable to efficiently eliminate NoV from oysters, an optimisation of the process should be considered. This study addresses the ability of elevated water temperatures to enhance the elimination of NoV and Tulane virus (TuV) from Pacific oysters (Crassostrea gigas). Both viruses were experimentally bioaccumulated in oysters, which were thereafter depurated at 12 °C and 17 °C for 4 weeks. Infectious TuV and viral RNA were monitored weekly for 28 days by TCID50 and (PMAxx-) RT-qPCR, respectively. TuV RNA was more persistent than NoV and decreased by < 0.5 log10 after 14 days, while NoV reductions were already > 1.0 log10 at this time. For RT-qPCR there was no detectable benefit of elevated water temperatures or PMAxx for either virus (p > 0.05). TuV TCID50 decreased steadily, and reductions were significantly different between the two temperatures (p < 0.001). This was most evident on days 14 and 21 when reductions at 17 °C were 1.3-1.7 log10 higher than at 12 °C. After 3 weeks, reductions > 3.0 log10 were observed at 17 °C, while at 12 °C reductions did not exceed 1.9 log10. The length of depuration also had an influence on virus numbers. TuV reductions increased from < 1.0 log10 after seven days to > 4.0 log10 after 4 weeks. This implies that an extension of the depuration period to more than seven days, possibly in combination with elevated water temperatures, may be beneficial for the inactivation and removal of viral pathogens.
Collapse
Affiliation(s)
- Sarah M Stoppel
- Section for Seafood Hazards, Institute of Marine Research, Bergen, Norway.
| | - Arne Duinker
- Section for Seafood Hazards, Institute of Marine Research, Bergen, Norway
| | - Mamata Khatri
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Mette Myrmel
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
8
|
Li Y, Xue L, Gao J, Cai W, Zhang Z, Meng L, Miao S, Hong X, Xu M, Wu Q, Zhang J. A systematic review and meta-analysis indicates a substantial burden of human noroviruses in shellfish worldwide, with GII.4 and GII.2 being the predominant genotypes. Food Microbiol 2023; 109:104140. [DOI: 10.1016/j.fm.2022.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
|
9
|
Savini F, Giacometti F, Tomasello F, Pollesel M, Piva S, Serraino A, De Cesare A. Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss? Foods 2021; 10:2444. [PMID: 34681492 PMCID: PMC8535557 DOI: 10.3390/foods10102444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
In the latest One Health ECDC EFSA technical report, Norovirus in fish and fishery products have been listed as the agent/food pair causing the highest number of strong-evidence outbreaks in the EU in 2019. This review aims to identify data gaps that must be filled in order to increase knowledge on Norovirus in bivalve molluscs, perform a risk assessment and rank the key mitigation strategies for this biological hazard, which is relevant to public health. Virologic determinations are not included in any of the food safety and process hygiene microbiologic criteria reflected in the current European regulations. In addition, the Escherichia coli-based indices of acceptable faecal contamination for primary production, as well as the food safety criteria, do not appear sufficient to indicate the extent of Norovirus contamination. The qualitative risk assessment data collected in this review suggests that bivalve molluscs present a high risk to human health for Norovirus only when consumed raw or when insufficiently cooked. On the contrary, the risk can be considered negligible when they are cooked at a high temperature, while information is still scarce for non-thermal treatments.
Collapse
Affiliation(s)
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (F.S.); (F.T.); (M.P.); (S.P.); (A.S.); (A.D.C.)
| | | | | | | | | | | |
Collapse
|