1
|
Sivakumar R, Lim N, Park SK, Lee NY. Curcumin - a natural colorant-based pH indicator for molecular diagnostics. Analyst 2025; 150:1632-1641. [PMID: 40095609 DOI: 10.1039/d4an01570c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Loop-mediated isothermal amplification (LAMP) provides highly selective and sensitive DNA amplification and generates hydrogen ions as a byproduct under weakly buffered conditions, causing the solutions' pH to decrease from the initial basic to an acidic environment. This distinctive feature allows the color of the amplified DNA solution to change readily when suitable pH indicators are employed. In this study, curcumin, a biodegradable, non-toxic, and natural colorant, was used as a pH indicator to visually identify LAMP-amplified Staphylococcus aureus (S. aureus) and Streptococcus pneumoniae (S. pneumoniae). Curcumin (10 mM) displayed a unique color difference between negative (red) and positive (yellow) samples, and the detection process was completed within 30 s, demonstrating the effectiveness of using curcumin for on-site diagnostics. Under optimum conditions, curcumin enabled S. aureus and S. pneumoniae detection as low as 10 fg μL-1 and 1 pg μL-1, respectively, due to its unique halochromic properties. Owing to its adaptability, ease of use, and rapid visual detection, the introduced colorimetric pH-based LAMP method can be employed as a practical alternative to conventional colorimetry for infectious pathogen identification in both laboratory and field settings.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nahyung Lim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Seung Kyun Park
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| |
Collapse
|
2
|
Wang M, Song J, Li Y, Sun J, Zhou L, Sun Z, Zhang A, Zhuang G, Xia P, Zhang G, Wu Y. Modification of African classical swine fever p30 protein with magnetic nanoparticles and establishment of a novel rapid detection method. Int J Biol Macromol 2025; 292:139169. [PMID: 39732248 DOI: 10.1016/j.ijbiomac.2024.139169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
African swine fever has caused huge losses to the global pig industry. In the absence of effective vaccines, reliable detection methods are crucial. The p30 protein of ASFV is often used as a target for detection due to its high antigenicity in the early stage of virus replication. In this study, we modified the p30 protein using magnetic nanoparticles to increase its specific surface area and suspension in solution. Based on this modified p30 protein, we optimized the experimental steps to determine the best reaction conditions and then established a double probe competitive ELISA method. The established detection method can produce results within 45 min, with repeatability between and within batches <15 %, and it does not react with other pathogens, which demonstrates high specificity. In conclusion, we modified the ASFV p30 protein with magnetic nanoparticles and established a rapid, ultra-sensitive, and convenient detection method for ASF based on the modified p30. This also provides a new reference for the rapid detection of other veterinary diseases.
Collapse
Affiliation(s)
- Mengxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jinxing Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yanze Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Junru Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhuoya Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Angke Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoqing Zhuang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Pingan Xia
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Zhengzhou 450046, China.
| | - Yanan Wu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Novi VT, Meher AK, Abbas A. Visualization methods for loop mediated isothermal amplification (LAMP) assays. Analyst 2025; 150:588-599. [PMID: 39895350 DOI: 10.1039/d4an01287a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Recent advances in nucleic acid (NA) detection techniques have significantly enhanced the diagnosis of diseases caused by a range of pathogens. These NA-based methods that target specific gene sequences for identification offer high specificity. Despite the effectiveness of polymerase chain reaction (PCR), its requirement for sophisticated laboratory settings and expensive equipment restricts its accessibility, particularly in resource-limited settings. As an alternative, isothermal nucleic acid amplification methods are highly sought after due to their rapid, sensitive, and specific detection ability. Among these, loop mediated isothermal amplification (LAMP) stands out due to its simplicity, reliability, and cost-effectiveness. LAMP operates without the need for varied temperature cycles, employing a simple heating block to maintain a constant temperature, thus facilitating onsite rapid testing. In LAMP, the detection step is critical as it shows the outcome of the assay. In order to make the LAMP technique user-friendly and applicable for large scale testing, it is critical to have visual detection where the results can be observed with the naked eye. This review focuses on recent developments of LAMP visualization techniques, including the more common fluorescence, turbidity, and gel electrophoresis methods, as well as innovations in colorimetric techniques applying novel transduction methods such as nanoparticles and digital tools. Additionally, various practical applications of LAMP are discussed.
Collapse
Affiliation(s)
- Vinni Thekkudan Novi
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA..
| | - Anil Kumar Meher
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA..
| | - Abdennour Abbas
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA..
| |
Collapse
|
4
|
Liu Y, Rasheed U, Shan B, Lu Q, Chen S, Meng K, Qin A, Mo G. A Rapid PCR-LAMP Assay for the Early Detection of Lasiodiplodia theobromae from Basal Stem Rot-Infected Passion Fruit Plants. Mol Biotechnol 2025:10.1007/s12033-024-01363-8. [PMID: 39820854 DOI: 10.1007/s12033-024-01363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/15/2024] [Indexed: 01/19/2025]
Abstract
Lasiodiplodia theobromae is an emerging threat and the main pathogenic fungi associated with basal stem rot of passion fruit in Guangxi Zhuang Autonomous Region, China. Current pathogen identification protocols are labor-intensive and time-consuming, emphasizing the need for more efficient methods to enable precise surveillance of L. theobromae for early detection and warning. The present study sought to develop a rapid colorimetric LAMP assay for early detection and surveillance of L. theobromae in passion fruit plants. For that, amplifications of ITS locus were performed on fungal genomic DNA using conventional PCR, with the specific primer pair ITS1 and ITS4. The hydroxy naphthol blue (HNB)-dependent colorimetric LAMP assay was then optimized by varying primer sets, inner primers concentration, reaction temperatures and incubation time. A microbial lysis buffer was employed to extract genomic DNA from stems infected with L. theobromae. The prime LAMP primer set targeting the ITS region of L. theobromae was designed and an HNB based colorimetric LAMP assay was optimized. Various optimization parameters were evaluated, with the optimal conditions determined as 1.6 μM of each FIB and BIP, 0.2 μM of each F3 and B3, and incubation at 65 °C for 40 min. This ITS-based LAMP assay could effectively distinguish L. theobromae from less dominant pathogens in passion fruits with a detection limit of 3 pg for ITS locus amplicons. Our proposed method utilizing a microbial lysis buffer enables rapid and cost-effective detection of L. theobromae DNA in early-infected passion fruit plants, eliminating the need for microbial cultivation and DNA purification.
Collapse
Affiliation(s)
- Ying Liu
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001, Guangxi, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits/Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Usman Rasheed
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001, Guangxi, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits/Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Bin Shan
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001, Guangxi, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits/Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Qinyu Lu
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001, Guangxi, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits/Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Shimiao Chen
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001, Guangxi, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits/Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Kaikai Meng
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001, Guangxi, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits/Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Aiying Qin
- Guangxi Vocational and Technical College, Nanning, 530226, Guangxi, China.
| | - Ganhui Mo
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001, Guangxi, China.
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits/Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China.
| |
Collapse
|
5
|
Guo SX, Zhang Q, Bai NN, Yue PY, Niu JP, Yin CC, Yue AQ, Du WJ, Zhao JZ. Swift and portable detection of soybean mosaic virus SC7 through RNA extraction and loop-mediated isothermal amplification using lateral flow device. Front Microbiol 2025; 15:1478218. [PMID: 39831125 PMCID: PMC11739293 DOI: 10.3389/fmicb.2024.1478218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The soybean mosaic disease-caused by the soybean mosaic virus (SMV)-significantly impacts soybean quality and yield. Among its various strains, SMV-SC7 is prevalent in China. Therefore, rapid and accurate diagnosis is deemed critical to mitigate the spread of SMV-SC7. In this study, a simple and rapid magnetic bead-based RNA extraction method was optimized. Furthermore, a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay that requires no specialized equipment such as PCR Amplifier was proposed, employing a lateral flow device (LFD) for visual interpretation of SMV-SC7. The RT-LAMP-LFD approach facilitated specificity testing of SMV-SC7. Moreover, the limit of detection (LOD) of this method was as low as 10-5 ng (2.4 copies). The sensitivity of RT-LAMP-LFD was 10-fold higher than that of the colorimetric RT-LAMP method. In 194 field samples tested, the RT-LAMP-LFD detection of the SMV-SC7 had accuracy of 98.45% in comparison to RT-qPCR. In conclusion, the assay exhibited high specificity, sensitivity, and rapidity, enabling economical and portable detection of SMV-SC7 and providing technical support to identify SMV-SC7-infected soybeans.
Collapse
Affiliation(s)
- Shui-Xian Guo
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Qing Zhang
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Nan-Nan Bai
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pei-Yao Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jing-Ping Niu
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Cong-Cong Yin
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ai-Qin Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wei-Jun Du
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jin-Zhong Zhao
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
6
|
Zhu Y, Zhang M, Jie Z, Guo S, Zhu Z, Tao SC. Strategic nucleic acid detection approaches for diagnosing African swine fever (ASF): navigating disease dynamics. Vet Res 2024; 55:131. [PMID: 39375775 PMCID: PMC11460097 DOI: 10.1186/s13567-024-01386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease caused by African swine fever virus (ASFV) and leads to significant economic losses in the pig farming industry. Given the absence of an effective vaccine or treatment, the mortality rate of ASF is alarmingly close to 100%. Consequently, the ability to rapidly and accurately detect ASFV on site and promptly identify infected pigs is critical for controlling the spread of this pandemic. The dynamics of the ASF virus load and antibody response necessitate the adoption of various detection strategies at different stages of infection, a topic that has received limited attention to date. This review offers detailed guidance for choosing appropriate ASF diagnostic techniques tailored to the clinical manifestations observed from the acute to chronic phases, including asymptomatic cases. We comprehensively summarize and evaluate the latest advancements in ASFV detection methods, such as CRISPR-based diagnostics, biosensors, and microfluidics. Additionally, we address the challenges of false negatives or positives due to ASF variants or the use of injected live attenuated vaccines. This review provides an exhaustive list of diagnostic tests suitable for detecting each stage of symptoms and potential target genes for developing new detection methods. In conclusion, we highlight the current challenges and future directions in ASFV detection, underscoring the need for continued research and innovation in this field.
Collapse
Affiliation(s)
- Yuanshou Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, 200240, China
| | - Shujuan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Khamsingnok P, Rapichai W, Rattanasrisomporn A, Rungsuriyawiboon O, Choowongkomon K, Rattanasrisomporn J. Comparison of PCR, Nested PCR, and RT-LAMP for Rapid Detection of Feline Calicivirus Infection in Clinical Samples. Animals (Basel) 2024; 14:2432. [PMID: 39199965 PMCID: PMC11350671 DOI: 10.3390/ani14162432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Feline calicivirus (FCV) is a highly contagious virus that causes upper respiratory tract disease, commonly known as cat flu. It is widely distributed worldwide and poses a major threat to feline health. Therefore, it is essential to find an efficient and rapid method for detecting FCV. In this study, the colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay, using neutral red as an indicator, was developed and validated to target the ORF2 gene of FCV for the first time. Additionally, the study compared the diagnostic abilities of polymerase chain reaction (PCR), nested PCR, and RT-LAMP assays for detecting FCV in clinical samples. The optimized RT-LAMP amplification was carried out at 56.3 °C. The technique visually detected FCV within 70 min, with a limit of detection of 14.3 × 101 copies/µL, and showed no cross-reactivity with other feline pathogens. Out of 54 oropharyngeal swab samples, 17 tested positive for FCV using both nested PCR and RT-LAMP, while only one tested positive using conventional PCR. The positivity rate was higher with nested PCR and RT-LAMP (31.48%) compared to conventional PCR (1.85%). Consequently, these results demonstrated the effectiveness of the colorimetric RT-LAMP assay developed in this study as an alternative for diagnosing FCV in cats.
Collapse
Affiliation(s)
- Piyamat Khamsingnok
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Witsanu Rapichai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Amonpun Rattanasrisomporn
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Oumaporn Rungsuriyawiboon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand;
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Jatuporn Rattanasrisomporn
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
8
|
Zhuang L, Gong J, Zhang P, Zhang D, Zhao Y, Yang J, Liu G, Zhang Y, Shen Q. Research progress of loop-mediated isothermal amplification in the detection of Salmonella for food safety applications. DISCOVER NANO 2024; 19:124. [PMID: 39105889 PMCID: PMC11303641 DOI: 10.1186/s11671-024-04075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Salmonella, the prevailing zoonotic pathogen within the Enterobacteriaceae family, holds the foremost position in global bacterial poisoning incidents, thereby signifying its paramount importance in public health. Consequently, the imperative for expeditious and uncomplicated detection techniques for Salmonella in food is underscored. After more than two decades of development, loop-mediated isothermal amplification (LAMP) has emerged as a potent adjunct to the polymerase chain reaction, demonstrating significant advantages in the realm of isothermal amplification. Its growing prominence is evident in the increasing number of reports on its application in the rapid detection of Salmonella. This paper provides a systematic exposition of the technical principles and characteristics of LAMP, along with an overview of the research progress made in the rapid detection of Salmonella using LAMP and its derivatives. Additionally, the target genes reported in various levels, including Salmonella genus, species, serogroup, and serotype, are summarized, aiming to offer a valuable reference for the advancement of LAMP application in Salmonella detection. Finally, we look forward to the development direction of LAMP and expect more competitive methods to provide strong support for food safety applications.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
9
|
Çelik A, Çakar D, Derviş S, Morca AF, Akıllı Şimşek S, Romon-Ochoa P, Özer G. New Detection Methods for Cryphonectria Hypovirus 1 (CHV1) through SYBR Green-Based Real-Time PCR and Loop-Mediated Isothermal Amplification (LAMP). Viruses 2024; 16:1203. [PMID: 39205177 PMCID: PMC11360611 DOI: 10.3390/v16081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Some mycoviruses can be considered as effective biocontrol agents, mitigating the impact of phytopathogenic fungi and consequently reducing disease outbreaks while promoting plant health. Cryphonectria parasitica, the causal agent of chestnut blight and a highly destructive pathogen, experienced a notable decrease in its virulence with the identification of cryphonectria hypovirus 1 (CHV1), a naturally occurring biocontrol agent. In this study, two innovative diagnostic protocols designed for the accurate and efficient detection of CHV1 are introduced. The ORF A and ORF B regions of CHV1 are targeted by these techniques, which employ colorimetric loop-mediated isothermal amplification (LAMP) with 2 Colorimetric LAMP Master Mix and real-time quantitative PCR (qPCR) with SYBR Green chemistry, respectively. The LAMP assay presents a discernible color transition, changing from pink to yellow after a 35 min incubation period. Comparative analysis, when assessed against two established reverse transcription-PCR (RT-PCR) techniques, reveals a significant enhancement in sensitivity for both the LAMP approach, which offers a tenfold increase, and the qPCR method, which showcases a remarkable 100-fold sensitivity improvement. Throughout the comparison phase, it was evident that the RT-PCR, LAMP, and qPCR procedures displayed superior performance compared to the Bavendamm test, relying on phenol oxidase activity, effectively distinguishing hypovirulent strains. Consequently, this study introduces two pioneer diagnostic assays for highly sensitive CHV1 detection, representing a substantial advancement in the realm of CHV1 surveillance techniques. These methodologies hold significant promise for enhancing research endeavors in the domain of the biological control of C. parasitica.
Collapse
Affiliation(s)
- Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| | - Deniz Çakar
- Central Research Laboratory Application and Research Center, Çankırı Karatekin University, Çankırı 18100, Türkiye
| | - Sibel Derviş
- Department of Plant Protection, Faculty of Kızıltepe Agricultural Sciences and Technologies, Mardin Artuklu University, Mardin 47000, Türkiye
- Department of Plant and Animal Production, Vocational School of Kızıltepe, Mardin Artuklu University, Mardin 47000, Türkiye
| | - Ali Ferhan Morca
- Directorate of Plant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., Yenimahalle, Ankara 06172, Türkiye
| | - Seçil Akıllı Şimşek
- Department of Biology, Faculty of Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye
| | - Pedro Romon-Ochoa
- Forest Research, Plant Pathology Department, Alice Holt Research Station, Farnham GU10 4LH, UK
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| |
Collapse
|
10
|
Hu Z, Lai R, Tian X, Guan R, Li X. A duplex fluorescent quantitative PCR assay to distinguish the genotype I, II and I/II recombinant strains of African swine fever virus in China. Front Vet Sci 2024; 11:1422757. [PMID: 38895720 PMCID: PMC11183790 DOI: 10.3389/fvets.2024.1422757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
African swine fever (ASF) is a severe, hemorrhagic, and highly contagious disease caused by the African swine fever virus (ASFV) in both domestic pigs and wild boars. In China, ASFV has been present for over six years, with three genotypes of strains prevalent in field conditions: genotype I, genotype II, and genotype I/II recombinant strains. In order to differentiate among these three ASFV genotypes, a duplex fluorescent quantitative PCR method was established using specific probes and primers designed based on viral genes MGF_110-1L and O61R from ASFV strains reported in the GenBank database. Following optimization of reaction conditions, a duplex fluorescent quantitative PCR method was successfully developed. This method demonstrated no cross-reactivity with porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome virus (PRRSV), classic swine fever virus (CSFV), porcine pseudorabies virus (PRV), porcine circovirus 2 (PCV2), porcine circovirus 3 (PCV3), highlighting its specificity. Sensitivity analysis revealed that the limits of detection (LODs) of this method were 2.95 × 10-1 copies/μL for the MGF_110-1L gene and 2.95 × 100 copies/μL for the O61R gene. The inter- and intra-group coefficients of variation were both <1%, indicating high reproducibility. In summary, the establishment of this duplex fluorescent quantitative PCR method not only addresses the identification of the ASFV recombinant strains but also allows for simultaneous identification of the three epidemic genotype strains.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- College of Animal Science, Xichang University, Xichang, China
| | - Ranran Lai
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Xiaogang Tian
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Ran Guan
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- College of Animal Science, Xichang University, Xichang, China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- China Agriculture Research System-Yangling Comprehensive Test Station, Yangling Besun Agricultural Industry Group Corporation Co., Ltd., Xianyang, China
| |
Collapse
|
11
|
Nak-On S, Sabaijai M, Raksaman A, Panich W, Tejangkura T, Chontananarth T. Visualization and development of colorimetric loop-mediated isothermal amplification for the rapid detection and diagnosis of paramphistome infection: colorimetric PAR-LAMP. Parasitol Res 2024; 123:126. [PMID: 38326433 DOI: 10.1007/s00436-024-08150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Colorimetric detection can be applied to differentiate between positive and negative conditions. It can be coupled with loop-mediated isothermal amplification to diagnose rumen fluke or paramphistome infection, also called colorimetric PAR-LAMP. This study conducted LAMP using three candidate indicator dyes, namely malachite green (MLG), methyl green (MTG), and neutral red (NTR), and the results were observed by the naked eye. The dye concentration was optimized to obtain the most pronounced positive-negative result discrimination. Subsequently, we conducted target sensitivity tests using the DNA of Fischoederius elongatus at different concentrations. To validate the detection accuracy, the result was confirmed by gel electrophoresis. The sensitivity test presented the lowest detectable DNA concentration or limit of detection (LOD), with 1 pg for MLG, 0.5 ng for MTG, and 50 pg for NTR. Different LODs revealed inhibition of LAMP reaction and reduced efficiency of result presentation for colorimetric-based detection, particularly NTR and MTG. For MLG-LAMP, we observed no cross-reaction of non-target DNA and improved reaction with the DNA of Fischoederius cobboldi and Calicophoron sp., with multi-detection. In addition, naked eye observation and agarose gel electrophoresis (AGE) evaluation of the MLG-LAMP results showed a moderate and strong agreement with LAMP-AGE and microscopic examinations. Based on our results, colorimetric PAR-LAMP is a rapid, comfortable, and point-of-care procedure for the diagnosis of paramphistome infection.
Collapse
Affiliation(s)
- Sirapat Nak-On
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Metawee Sabaijai
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Awika Raksaman
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Wasin Panich
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thanawan Tejangkura
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
- Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
- Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
12
|
Saejung W, Khumtong K, Rapichai W, Ratanabunyong S, Rattanasrisomporn A, Choowongkomon K, Rungsuriyawiboon O, Rattanasrisomporn J. Detection of feline immunodeficiency virus by neutral red-based loop-mediated isothermal amplification assay. Vet World 2024; 17:72-81. [PMID: 38406374 PMCID: PMC10884571 DOI: 10.14202/vetworld.2024.72-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Feline immunodeficiency virus (FIV) is a retroviral pathogen globally responsible for immunodeficiency disease in cats. However, the current diagnosis based on antibody detection has limitations and can also produce false-positive results. This study aimed to develop a one-pot loop-mediated isothermal amplification (LAMP) process integrated with neutral red (NR-LAMP) assay for detection of FIV proviral DNA. Materials and Methods We developed a one-pot, gag gene-based NR-LAMP for convenient, rapid, specific, and sensitive colorimetric inspection of FIV proviral DNA. Results The developed NR-LAMP was capable of amplifying at an optimum temperature of 65°C for 40 min. No cross-amplification was detected between FIV and other feline viruses tested, indicating the high specificity (98.44%) of the novel FIV-LAMP primer. Our NR-LAMP assay has a detection limit of 4.2 × 101 copies/μL. A total of 80 clinical samples with a background of FIV infection were collected and tested using the proposed method. The NR-LAMP assay showed a high sensitivity of 100% compared to conventional polymerase chain reaction assay. Conclusion These results support the suitability of NR-LAMP as a potential future alternative clinical molecular approach for further use in the diagnosis of FIV-infected cats.
Collapse
Affiliation(s)
- Wichayet Saejung
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Kotchaporn Khumtong
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Witsanu Rapichai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Siriluk Ratanabunyong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Amonpun Rattanasrisomporn
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| | | | - Oumaporn Rungsuriyawiboon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Jatuporn Rattanasrisomporn
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
13
|
Hu Z, Tian X, Lai R, Wang X, Li X. Current detection methods of African swine fever virus. Front Vet Sci 2023; 10:1289676. [PMID: 38144466 PMCID: PMC10739333 DOI: 10.3389/fvets.2023.1289676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly contagious and notifiable animal disease in domestic pigs and wild boars, as designated by the World Organization for Animal Health (WOAH). The effective diagnosis of ASF holds great importance in promptly controlling its spread due to its increasing prevalence and the continuous emergence of variant strains. This paper offers a comprehensive review of the most common and up-to-date methods established for various genes/proteins associated with ASFV. The discussed methods primarily focus on the detection of viral genomes or particles, as well as the detection of ASFV associated antibodies. It is anticipated that this paper will serve as a reference for choosing appropriate diagnostic methods in diverse application scenarios, while also provide direction for the development of innovative technologies in the future.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
- China Agriculture Research System-Yangling Comprehensive Test Station, Xianyang, China
| | - Xiaogang Tian
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
| | - Ranran Lai
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
- China Agriculture Research System-Yangling Comprehensive Test Station, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd., Chengdu, China
| |
Collapse
|
14
|
Lim JW, Vu TTH, Le VP, Yeom M, Song D, Jeong DG, Park SK. Advanced Strategies for Developing Vaccines and Diagnostic Tools for African Swine Fever. Viruses 2023; 15:2169. [PMID: 38005846 PMCID: PMC10674204 DOI: 10.3390/v15112169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
African swine fever (ASF) is one of the most lethal infectious diseases affecting domestic pigs and wild boars of all ages. Over a span of 100 years, ASF has continued to spread over continents and adversely affects the global pig industry. To date, no vaccine or treatment has been approved. The complex genome structure and diverse variants facilitate the immune evasion of the ASF virus (ASFV). Recently, advanced technologies have been used to design various potential vaccine candidates and effective diagnostic tools. This review updates vaccine platforms that are currently being used worldwide, with a focus on genetically modified live attenuated vaccines, including an understanding of their potential efficacy and limitations of safety and stability. Furthermore, advanced ASFV detection technologies are presented that discuss and incorporate the challenges that remain to be addressed for conventional detection methods. We also highlight a nano-bio-based system that enhances sensitivity and specificity. A combination of prophylactic vaccines and point-of-care diagnostics can help effectively control the spread of ASFV.
Collapse
Affiliation(s)
- Jong-Woo Lim
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Thi Thu Hang Vu
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| | - Van Phan Le
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 131000, Vietnam;
| | - Minjoo Yeom
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Daesub Song
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Bio-Analytical Science Division, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| |
Collapse
|
15
|
Hong Y, Ma B, Li J, Shuai J, Zhang X, Xu H, Zhang M. Triplex-Loop-Mediated Isothermal Amplification Combined with a Lateral Flow Immunoassay for the Simultaneous Detection of Three Pathogens of Porcine Viral Diarrhea Syndrome in Swine. Animals (Basel) 2023; 13:1910. [PMID: 37370420 DOI: 10.3390/ani13121910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), porcine bocavirus (PBoV), and porcine rotavirus (PoRV) are associated with porcine viral diarrhea. In this study, triplex loop-mediated isothermal amplification (LAMP) combined with a lateral flow dipstick (LFD) was established for the simultaneous detection of PEDV, PoRV, and PBoV. The PEDV-gp6, PoRV-vp6, and PBoV-vp1 genes were selected to design LAMP primers. The amplification could be carried out at 64 °C using a miniature metal bath within 30 min. The triplex LAMP-LFD assay exhibited no cross-reactions with other porcine pathogens. The limits of detection (LODs) of PEDV, PoRV, and PBoV were 2.40 × 101 copies/μL, 2.89 × 101 copies/μL, and 2.52 × 101 copies/μL, respectively. The consistency between rt-qPCR and the triplex LAMP-LFD was over 99% in field samples testing. In general, the triplex LAMP-LFD assay was suitable for the rapid and simultaneous detection of the three viruses in the field.
Collapse
Affiliation(s)
- Yi Hong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Hanyue Xu
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
16
|
Arnuphapprasert A, Nugraheni YR, Aung A, Asada M, Kaewthamasorn M. Detection of Babesia bovis using loop-mediated isothermal amplification (LAMP) with improved thermostability, sensitivity and alternative visualization methods. Sci Rep 2023; 13:1838. [PMID: 36725982 PMCID: PMC9892585 DOI: 10.1038/s41598-023-29066-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Bovine babesiosis is one of the most economically important tick-borne diseases in tropical and subtropical countries. A conventional microscopic diagnosis is typically used because it is inexpensive and expeditious. However, it is highly dependent on well-trained microscopists and tends to be incapable of detecting subpatent and chronic infections. Here, we developed a novel nucleic acid-based amplification method using loop-mediated isothermal amplification (LAMP) in conjunction with a colori-fluorometric dual indicator for the rapid and accurate detection of Babesia bovis based on the mitochondrial cytochrome b gene. We aimed to improve the thermostability, sensitivity, specificity, and alternative visualization of LAMP-based methods. We assessed its diagnostic performance compared to two conventional PCR agarose gel electrophoresis (PCR-AGE) methods. The thermostability of LAMP reaction mixtures and DNA templates in variable conditions was also assessed. In addition, we evaluated alternative visualization methods using different light sources including neon, LED, and UV lights. We found that the LAMP-neon was ten times more sensitive than the PCR-AGE, while the LAMP-LED and LAMP-UV were 1,000 times more sensitive. The current LAMP method showed no cross-amplification with uninfected cattle DNA or other common blood parasites in cattle, including Babesia bigemina, Theileria orientalis, Anaplasma marginale, and Trypanosoma evansi. In addition, the developed LAMP method has good thermostability and the potential for on-site utility as B. bovis DNA could still be detected up to 72 h after initial preparation. Our findings suggested that the developed LAMP method provides an alternative approach for B. bovis detection with sensitivity higher than PCR-AGE diagnostics, high specificity, and the flexibility to use neon, LED, and UV light sources for positive signal observations.
Collapse
Affiliation(s)
- Apinya Arnuphapprasert
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yudhi Ratna Nugraheni
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aung Aung
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
17
|
Sensitive and rapid detection of Babesia species in dogs by recombinase polymerase amplification with lateral flow dipstick (RPA-LFD). Sci Rep 2022; 12:20560. [PMID: 36446883 PMCID: PMC9707278 DOI: 10.1038/s41598-022-25165-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Canine babesiosis is a tick-borne disease caused by Babesia spp., which infects and destroys healthy erythrocytes, leading to mortality and morbidity in dogs. The diagnosis of babesiosis is tedious and time-consuming, especially in latent and chronic infections. Here, a recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) assay was developed for rapid and accurate detection of Babesia spp. in canine blood specimens based on the 18S rRNA region. The RPA-LFD assay using rpaBab264 gave specificity to Babesia spp. in dogs (B. vogeli and B. gibsoni) without cross-amplification to other parasites (apicomplexans and non-apicomplexans), with detection limit of at least 22.5 copies/μl (0.1 fg/µl) at 40 °C for at least 10 min. The whole process of DNA amplification by RPA and readout by LFD did not exceed 30 min. To determine the performance of the RPA-LFD assay, a total of 30 clinical samples was examined and compared with conventional PCR (cPCR) and multiplex HRM (mHRM). Eight dogs (26.67%) were detected as positive by RPA-LFD, while seven and six were found positive by cPCR and mHRM, respectively. RPA-LFD and cPCR showed high agreement with Babesia spp. detection with kappa > 0.9. We confirmed that the dogs were infected by B. vogeli from sequences of positive PCR results. Our findings suggested that RPA-LFD using the rpaBab264 assay offered a rapid, accurate, cost-effective and simple method for Babesia spp. detection that is feasibly applicable to be rapid kit at a pet hospital or point-of-care testing.
Collapse
|
18
|
Cao G, Qiu Y, Long K, Xiong Y, MeimeiShi, JunYang, Li Y, Nie F, Huo D, Hou C. Carbon nanodots combined with loop-mediated isothermal amplification (LAMP) for detection of African swine fever virus (ASFV). Mikrochim Acta 2022; 189:342. [PMID: 35997837 PMCID: PMC9396581 DOI: 10.1007/s00604-022-05390-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/19/2022] [Indexed: 12/03/2022]
Abstract
The spread of African swine fever virus (ASFV) caused huge economic costs, so early detection is particularly important. Here, we established a fluorescence biosensor based on carbon nanodots (CNDs) and loop-mediated isothermal amplification (LAMP) to ultra-sensitively detect ASFV. LAMP with high efficiency produced a large amount of pyro phosphoric acid and caused pH change in a short time. CNDs with strong light stability had a large fluorescence response at the emission wavelength of 585.5 nm to small pH change by the excitation wavelength of 550 nm. The biosensor realized “turn-off–on” mode for ASFV detection with the detection limit as low as 15.21 copies μL−1. In addition, the biosensor had high accuracy in the actual sample assay. Therefore, the biosensor achieved rapid, sensitive, low-cost, and simple detection for ASFV. Moreover, the biosensor broadened the detection pathway of LAMP as a tool with great development prospect.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yue Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Keyi Long
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - MeimeiShi
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Chongqing Customs, Chongqing Customs Technology Center, Chongqing, 400020, People's Republic of China
| | - JunYang
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Chongqing Customs, Chongqing Customs Technology Center, Chongqing, 400020, People's Republic of China
| | - Yingguo Li
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Chongqing Customs, Chongqing Customs Technology Center, Chongqing, 400020, People's Republic of China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Chongqing Customs, Chongqing Customs Technology Center, Chongqing, 400020, People's Republic of China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China. .,Chongqing Key Laboratory of Bio-Perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
19
|
Development of Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Detecting Feline Coronavirus. Animals (Basel) 2022; 12:ani12162075. [PMID: 36009664 PMCID: PMC9405184 DOI: 10.3390/ani12162075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Feline coronavirus infecting domestic cats can cause feline infectious peritonitis (FIP), a fatal infectious disease. Several relevant clinical diagnoses and molecular methods are complicated and often ambiguous for veterinarians. In this work developed a rapid, sensitive, specific, and easy-to-visualize colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with a novel LAMP primer set that has high specificity was developed using neutral red as an indicator dye. This proposed procedure could reliably detect FCoV RNA from effusion fluids comparable to the conventional PCR method. Considering these advantages, the RT-LAMP developed here has great potential on FIP-associated FCoV surveillance. Together with other sophisticated molecular diagnostic tools, this method can further be exploited in clinical laboratories to inspect suspected cats with effusive FIP. Abstract Feline infectious peritonitis (FIP) is a worldwide fatal disease caused by a mutant feline coronavirus (FCoV). Simple and efficient molecular detection methods are needed. Here, sensitive, specific, rapid, and reliable colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect the ORF1a/1b gene of FCoV from cats with suspected FIP using neutral red as an indicator. Novel LAMP primers were specifically designed based on the gene of interest. The isothermal assay could visually detect FCoV at 58 °C for 50 min. The RT-LAMP assay was highly specific and had no cross-reactivity with other related feline viruses. The detection limit of FCoV detection by RT-LAMP was 20 fg/µL. A blind clinical test (n = 81) of the developed RT-LAMP procedure was in good agreement with the conventional PCR method. In the light of its performance specificity, sensitivity, and easy visualization, this neutral-red-based RT-LAMP approach would be a fruitful alternative molecular diagnostic tool for veterinary inspection of FCoV when combined with nucleotide sequencing or specific PCR to affirm the highly virulent FIP-associated FCoV.
Collapse
|
20
|
Wang S, Shen H, Lin Q, Huang J, Zhang C, Liu Z, Sun M, Zhang J, Liao M, Li Y, Zhang J. Development of a Cleaved Probe-Based Loop-Mediated Isothermal Amplification Assay for Rapid Detection of African Swine Fever Virus. Front Cell Infect Microbiol 2022; 12:884430. [PMID: 35719327 PMCID: PMC9204333 DOI: 10.3389/fcimb.2022.884430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
African Swine Fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and lethal viral disease of pigs. However, commercial vaccines are not yet available, and neither are drugs to prevent or control ASF. Therefore, rapid, accurate on-site diagnosis is urgently needed for detection during the early stages of ASFV infection. Herein, a cleaved probe-based loop-mediated isothermal amplification (CP-LAMP) detection method was established. Based on the original primer sets, we targeted the ASFV 9GL gene sequence to design a probe harboring a ribonucleotide insertion. Ribonuclease H2 (RNase H2) enzyme activity can only be activated when the probe is perfectly complementary, resulting in hydrolytic release of a quencher moiety, and consequent signal amplification. The method displayed robust sensitivity, with copy number detection as low as 13 copies/µL within 40 min at constant temperature (62°C). Visualization of the fluorescence product was employed using a self-designed 3D-printed visualization function cassette, and the CP-LAMP method achieved specific identification and visual detection of ASFV. Moreover, coupling the dual function cassette and smartphone quantitation makes the CP-LAMP assay first user-friendly, cost-effective, portable, rapid, and accurate point-of-care testing (POCT) platform for ASFV.
Collapse
Affiliation(s)
- Songqi Wang
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; The Research Center for African Swine Fever Prevention and Control; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haiyan Shen
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Foshan, China
| | - Qijie Lin
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; The Research Center for African Swine Fever Prevention and Control; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Huang
- College of Life Science and Engineering, Foshan University, Guangzhou, China
| | - Chunhong Zhang
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Foshan, China
| | - Zhicheng Liu
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Foshan, China
| | - Minhua Sun
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Foshan, China
| | - Jianfeng Zhang
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Foshan, China
| | - Ming Liao
- Maoming Branch Center of Guangdong Laboratory for LingNan Modern Agricultural Science and Technology; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Foshan, China
| | - Yugu Li
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; The Research Center for African Swine Fever Prevention and Control; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianmin Zhang
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; The Research Center for African Swine Fever Prevention and Control; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Cao G, Xiong Y, Nie F, Chen X, Peng L, Li Y, Yang M, Huo D, Hou C. Non-nucleic acid extraction and ultra-sensitive detection of African swine fever virus via CRISPR/Cas12a. Appl Microbiol Biotechnol 2022; 106:4695-4704. [PMID: 35715648 DOI: 10.1007/s00253-022-11999-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022]
Abstract
Early diagnosis of the African swine fever virus (ASFV) is the main preventive measure for ASFV. Here, we developed a fluorescent biosensor and lateral flow assay (LFA) strip based on direct PCR combined with CRISPR/Cas12a system for ASF. Direct PCR can simultaneously split samples and efficiently amplify without sacrificing sensitivity, which eliminated the steps of nucleic acid extraction. Furthermore, by the CRISPR/Cas12a, the biosensor addressed false positives caused by non-specific amplification and had high sensitivity with the actual limit of detection (LOD) of 7.6×10-4 ng·μL-1 (4 copies·μL-1). In addition, the strategy was built on the lateral flow assay (LFA) strip to achieve visual and portable detection for point-of-care testing. Moreover, the biosensor by a fluorometer and LFA strip showed a high accuracy to rival qPCR in actual sample detection. Therefore, the biosensor is an ultra-sensitive and specific tool that can replace traditional methods. KEY POINTS: • No nucleic acid extraction, direct PCR-simplified steps, and reduced time and cost • CRISPR/Cas12a solved the false positives caused by nonspecific amplification • The combination of the LFA strip and biosensor is more convenient for POC detection.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing, 400044, People's Republic of China
| | - Xiaolong Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Lan Peng
- Chongqing Medical and Pharmaceutical College Basic Department, Chongqing, 401331, People's Republic of China
| | - Yingguo Li
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing, 400044, People's Republic of China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China. .,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
22
|
Signal-enhanced visual strand exchange amplification detection of African swine fever virus by the introduction of multimeric G-quadruplex/hemin DNAzyme. ANAL SCI 2022; 38:675-682. [PMID: 35286648 DOI: 10.1007/s44211-022-00087-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 01/11/2023]
|
23
|
Qian S, Chen Y, Peng C, Wang X, Wu H, Che Y, Wang H, Xu J, Wu J. Dipstick-based rapid nucleic acids purification and CRISPR/Cas12a-mediated isothermal amplification for visual detection of African swine fever virus. Talanta 2022; 242:123294. [DOI: 10.1016/j.talanta.2022.123294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/26/2022]
|
24
|
Zhang J, Li M, Ou Y, Chen D, Ding Y, Zhang W, Li Y, Hou Q, Li X, Zhou L, Podgorska K, Zaberezhny AD, Szczotka-Bochniarz A, Liu Y, Wang Y. Development and Clinical Validation of a Potential Penside Colorimetric Loop-Mediated Isothermal Amplification Assay of Porcine Circovirus Type 3. Front Microbiol 2022; 12:758064. [PMID: 35095787 PMCID: PMC8790240 DOI: 10.3389/fmicb.2021.758064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Porcine circovirus type 3 (PCV3), a novel circovirus, imposes great burdens on the global pig industry. The penside tests for detecting PCV3 are critical for assessing the epidemiological status and working out disease prevention and control programs due to the unavailability of a commercial vaccine. A one-step molecular assay based on visual loop-mediated isothermal amplification (vLAMP) was developed for simple and rapid detection of PCV3. We compared its sensitivity and specificity with TaqMan quantitative real-time polymerase chain reaction (qPCR) and applied the developed assay in the epidemiological study of (n = 407) pooled swine sera collected from almost the entire mainland China during the years 2017–2018. We also explored the feasibility of the vLAMP assay for detecting raw samples without a prior DNA isolation step to expand its application capability. Results showed that the vLAMP assay could reliably detect the PCV3 cap gene with a detection limit of 10 DNA copies equal to that of the Taqman qPCR assay. In the epidemiological study, the PCV3 positive detection rate for 407 swine pooled sera detected by the vLAMP assay was 37.35% (152/407), whereas it was 39.01% (159/407) for Taqman qPCR. For the detection method without genome extraction, the results kept satisfactory specificity (100%) but displayed lower sensitivity (100% for CT < 32), indicating the direct detection is not sensitive enough to discriminate the samples with low viral loads. The one-step vLAMP is a convenient, rapid, and cost-effective diagnostic for penside detection and will enable the epidemiological surveillance of PCV3, which has widely spread in mainland China.
Collapse
Affiliation(s)
- Jie Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Miaomiao Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yunwen Ou
- Animal Disease Prevention and Control Center of Kaijiang County, Dazhou, China
| | - Danian Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yaozhong Ding
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weibing Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanjun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qian Hou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Luoyi Zhou
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Katarzyna Podgorska
- Department of Swine Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Alexei D Zaberezhny
- Federal State Budgetary Institution, All-Russian Research and Technological Institute of Biological Industry (VNITIBP), Moscow, Russia
| | | | - Yongsheng Liu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
25
|
Wu K, Zhang Y, Zeng S, Liu X, Li Y, Li X, Chen W, Li Z, Qin Y, Chen J, Fan S. Development and Application of RAA Nucleic Acid Test Strip Assay and Double RAA Gel Electrophoresis Detection Methods for ASFV and CSFV. Front Mol Biosci 2022; 8:811824. [PMID: 35174210 PMCID: PMC8841470 DOI: 10.3389/fmolb.2021.811824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is an acute, severe and hemorrhagic infectious disease caused by African swine fever virus (ASFV) infecting domestic pigs and wild boars. Since the outbreak of the disease in China in 2018, it has brought a great impact on China’s pig industry. Classical swine fever (CSF) is an acute contact infectious disease of pigs caused by classical swine fever virus (CSFV) infection. Clinically, acute CSF usually shows persistent high fever, anorexia, extensive congestion and bleeding of the skin and mucosa, which are similar to ASF. It is of great significance to prevent, control and accurately detect ASF and CSF in pig farms. In this study, Recombinase aided amplification (RAA) technology combined with a nucleic acid test strip (RAA-strip) was established for simple and specific detection of ASFV/CSFV. The sensitivity and preliminary clinical application results showed that the RAA test strip established in this study could detect recombinant plasmids containing ASFV/CSFV gene fragments as low as 103 copies/µL. The minimum detection limits of virus DNA/cDNA were 10 and 12 pg respectively, and there was no cross-reaction with other porcine viruses. The specificity of the method was good. We used 37–42 clinical samples to evaluate the performance of our established method, and the positive concordance rates with conventional PCR were 94.1 and 57.1%, respectively. In addition, ASFV and CSFV double RAA agarose gel electrophoresis detection methods were established. The results showed that the method had good specificity. The detection limit of this method is 106 copies for ASFV p72 gene recombinant plasmid and 105 copies for CSFV NS5B Gene recombinant plasmid. The use of this method for clinical material detection was consistent with the PCR method. In summary, the developed method of RAA-strip assay for ASFV and CSFV realized the visual detection of pathogens, and the developed method of dual RAA agarose gel electrophoresis assay for ASFV and CSFV realized the simultaneous detection of two pathogens in one reaction, with good specificity, high sensitivity and rapid reaction rate, which was expected to be clinically feasible for the differential diagnosis of ASF and CSF provided technical support.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuanyuan Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Jinding Chen, ; Shuangqi Fan,
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Jinding Chen, ; Shuangqi Fan,
| |
Collapse
|
26
|
FUJIMOTO M, KITAMURA H. Application of the colorimetric loop-mediated isothermal amplification (LAMP) technique for genotyping <i>Cre</i>-driver mice. J Vet Med Sci 2022; 84:507-510. [PMID: 35228407 PMCID: PMC9096032 DOI: 10.1292/jvms.21-0658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Cre-loxP system is widely used to investigate the cell-type specific
roles of genes of interest. Cre-driver mice are required for cell-type
specific knockout during the Cre-loxP reaction. To maintain
Cre-driver mouse strains, Polymerase chain reaction (PCR)-oriented
genotyping targeting the Cre gene cassette is usually conducted. In this
study, we instead applied a colorimetric loop-mediated isothermal amplification (LAMP)
method for Cre-genotyping. Among four sets of primers designed by the
in silico program, one set effectively amplified the
Cre cassette of three Cre-driver strains, but not of
C57BL/6 mice. This LAMP-oriented method reduces assay time by less than half compared to
the PCR-based method, and can be carried out using a conventional isothermal incubator.
Applying this LAMP method may accelerate genotyping of Cre-driver
mice.
Collapse
Affiliation(s)
- Masaki FUJIMOTO
- Laboratory of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University
| | - Hiroshi KITAMURA
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University
| |
Collapse
|
27
|
Kim JK, Kim HR, Kim DY, Kim JM, Kwon NY, Park JH, Park JY, Kim SH, Lee KK, Lee C, Joo HD, Lyoo YS, Park CK. A simple colorimetric detection of porcine epidemic diarrhea virus by reverse transcription loop-mediated isothermal amplification assay using hydroxynaphthol blue metal indicator. J Virol Methods 2021; 298:114289. [PMID: 34536488 DOI: 10.1016/j.jviromet.2021.114289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
A simple reverse transcription loop-mediated isothermal amplification combined with visual detection method (vRT-LAMP) assay was developed for rapid and specific detection of porcine epidemic diarrhea virus (PEDV) in this study, which overcomes the shortcomings of previously described RT-LAMP assays that require additional detection steps or pose a risk of cross-contamination. The assay results can be directly detected by the naked eye using hydroxynaphthol blue after incubating for 40 min at 62 °C. The assay specifically amplified PEDV RNA and no other viral nucleic acids. The limit of detection of the assay was less than 50 RNA copies per reaction, which was 100 times more sensitive than conventional reverse transcription polymerase chain reaction (RT-PCR) and comparable to real-time RT-PCR (RRT-PCR). In the clinical evaluation, the PEDV detection rate of vRT-LAMP was higher than that of RRT-PCR, showing 99 % concordance, with a kappa value (95 % confidence interval) of 0.97 (0.93-1.01). Considering the advantages of high sensitivity and specificity, simple and direct visual monitoring of the results, no possibility for cross-contamination, and being able to be used as low-cost equipment, the developed vRT-LAMP assay will be a valuable tool for detecting PEDV from clinical samples, even in resource-limited laboratories.
Collapse
Affiliation(s)
- Jae-Kyeom Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea; DIVA Bio Incorporation, Daegu, 41519, Republic of Korea
| | - Da-Young Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Min Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na-Young Kwon
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hoon Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Young Park
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Seong-Hee Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Kyoung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hoo-Don Joo
- DIVA Bio Incorporation, Daegu, 41519, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|