1
|
Kim SY, Bharanidharan R, Im S, Kim KH, Oh J, Kim HJ, Lee J, Ranaweera KKTN, Jeong JW, Oh JS, Lee SH, Baik M. Effects of dietary rumen undegradable protein:rumen degradable protein ratio on nitrogen metabolism in Hanwoo steers. Anim Biosci 2025; 38:1182-1193. [PMID: 40045628 PMCID: PMC12061585 DOI: 10.5713/ab.24.0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 05/09/2025] Open
Abstract
OBJECTIVE We investigated the effects of dietary rumen undegradable protein (RUP): rumen degradable protein (RDP) ratio on growth performance, nitrogen (N) metabolism, and rumen and blood parameters in Hanwoo (Korean cattle) steers. METHODS Eight Hanwoo steers (average body weight, 393 kg) were allocated to two groups and fed with a high RUP:RDP ratio (46.9:53.1 based on crude protein) or a low RUP:RDP ratio (30.6:69.4) concentrate with iso-crude protein content in a 2×2 Latin square design in two successive periods. RESULTS The high RUP:RDP group had higher (p<0.01) average daily gain, and lower (p<0.05) ruminal ammonia and plasma urea N concentrations than the low RUP:RDP group. The high RUP:RDP group had lower (p<0.05) urinary N excretion and urinary N per N intake and higher (p<0.1) tendency of retained N than the low RUP:RDP group. The high RUP:RDP group had higher (p<0.1) tendency of N utilization efficiency (retained N per N intake: 28.7% vs. 25.5%) than the low RUP:RDP group. The high RUP:RDP group had a lower (p<0.1) tendency of urinary N per total N excretion, but a higher tendency of fecal N per total N excretion. CONCLUSION A high ratio of dietary RUP:RDP may improve N utilization efficiency by reducing urinary N excretion, which may be beneficial for the environment through reducing atmospheric ammonia emissions.
Collapse
Affiliation(s)
- Sang Yeob Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul,
Korea
| | - Rajaraman Bharanidharan
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang,
Korea
| | - Seyun Im
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul,
Korea
| | - Kyoung Hoon Kim
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang,
Korea
| | - Joonpyo Oh
- Cargill Animal Nutrition Korea, Seongnam,
Korea
| | - Hyun Jin Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul,
Korea
| | - Jaesung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul,
Korea
| | | | - Jin Woo Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul,
Korea
| | - Jun Seok Oh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul,
Korea
| | - Sang Hyun Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul,
Korea
| | - Myunggi Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul,
Korea
| |
Collapse
|
2
|
Wang Z, Wu Q, Shen W, Wan F, He J, Liu L, Tang S, Tan Z. Cooling redistributed endotoxin across different biofluids via modulating the ruminal microbiota and metabolome without altering quorum sensing signal levels in heat-stressed beef bulls. Anim Microbiome 2025; 7:38. [PMID: 40269989 PMCID: PMC12016233 DOI: 10.1186/s42523-025-00400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Cooling is one of the most common and economical methods to ameliorate heat stress (HS), and it has been discovered to alter the lipopolysaccharide (LPS) endotoxin level in ruminants. However, whether the endotoxin variation induced by cooling relates to the quorum sensing (QS) within the ruminal microflora remains unknown. The current study was consequently performed to examine whether cooling could influence the endotoxin distribution across different biofluids, ruminal microbiota, and ruminal metabolisms through affecting the QS of rumen microorganisms in beef cattle exposed to HS. Thirty-two Simmental bulls were used as experimental animals and randomly assigned to either the control (CON) group, or the mechanical ventilation and water spray (MVWS) treatment. The temperature-humidity index (THI) was recorded throughout this trial, and samples of the rumen liquid, blood, and urine were collected. RESULTS Cooling significantly lowered (P < 0.05) the temperature-humidity index (THI), ruminal endotoxin, and endotoxin concentration and excretion in urine, and significantly raised endotoxin level in blood (P < 0.05), but did not change the ruminal concentrations of QS signals including 3-OXO-C6-HSL and the AI-2 (P > 0.05). The linear discriminant analysis effect size (LEfSe) analysis revealed that Prevotellaceae, Rikenellaceae, Monoglobales and their affiliated members, as well as other bacterial taxa were significantly differently (P < 0.05) enriched between the two treatments. The Tax4Fun2 prediction suggested that QS function was upregulated in MVWS compared to CON. The metabolomic analysis indicated that cooling altered the ruminal metabolism profile and downregulated the pathways of lysine degradation, phenylalanine, tyrosine and tryptophan biosynthesis, and ubiquinone and other terpenoid-quinone biosynthesis. The significant (P < 0.05) correlations of the differential bacteria and metabolites with endotoxin and QS molecules were also demonstrated through Spearman analysis. CONCLUSIONS Based on the results of this trial, it could be speculated that the cooling reshaped the endotoxin distribution across different biofluids through manipulating ruminal microbiota and metabolome, which might involve the participation of QS. Further investigations are warranted to disclose and verify the mechanisms for those correlations found in this study.
Collapse
Affiliation(s)
- Zuo Wang
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Qingyang Wu
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Weijun Shen
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
| | - Fachun Wan
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Jianhua He
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Shaoxun Tang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Zhiliang Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| |
Collapse
|
3
|
Yan Z, Liu Z, Zhou C, Tan Z. Anti-Nutritional Factors of Plant Protein Feeds for Ruminants and Methods for Their Elimination. Animals (Basel) 2025; 15:1107. [PMID: 40281941 PMCID: PMC12024329 DOI: 10.3390/ani15081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
In recent years, the rapid development of the ruminant feeding industry and the limited availability and rising prices of traditional protein feed ingredients have renewed the focus on protein feeds in ruminant diets. Plant protein feeds are a core component of protein feeds for ruminants; however, the utilisation of both conventional and non-conventional plant protein feeds is limited by the presence of anti-nutritional factors (ANFs). In order to maximise the use of plant protein feeds and to promote their application in ruminant production, it is important to have a comprehensive understanding of the types and nature of their ANFs, their anti-nutritional mechanisms, and current effective methods of eliminating ANFs. Therefore, the types, anti-nutritional mechanisms, and elimination methods of ANFs in major plant protein feeds for ruminants are initially summarised in this review, which provides a reference for anti-nutritional factor elimination and the production of full-price compound feeds for ruminants.
Collapse
Affiliation(s)
- Zhiyong Yan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.Y.); (Z.L.); (Z.T.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Forage Breeding-by-Design and Utilization, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zixin Liu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.Y.); (Z.L.); (Z.T.)
- State Key Laboratory of Forage Breeding-by-Design and Utilization, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chuanshe Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.Y.); (Z.L.); (Z.T.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Forage Breeding-by-Design and Utilization, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhiliang Tan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.Y.); (Z.L.); (Z.T.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Forage Breeding-by-Design and Utilization, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Yuelushan Laboratory, Changsha 410125, China
| |
Collapse
|
4
|
Zhou R, Weng S, He J. Bacterial Infection Disrupts the Intestinal Bacterial Community and Facilitates the Enrichment of Pathogenic Bacteria in the Intestines of Penaeus vannamei. Microorganisms 2025; 13:864. [PMID: 40284700 PMCID: PMC12029295 DOI: 10.3390/microorganisms13040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Pathogenic infections can reshape the intestinal microbiota of aquatic animals, thereby impacting their health status. In this study, we aimed to investigate whether Vibrio parahaemolyticus infection induces dysbiosis in the intestinal bacterial community of Penaeus vannamei and to assess the associated ecological risks. Our findings revealed the deterministic processes in intestinal bacterial community assembly during bacterial infections, indicating that host selection, i.e., host immune response post-infection, has a significant influence on intestinal microbes. More importantly, we found that bacterial infection reshaped the intestinal community by reducing the relative abundance of probiotic Ruegeria species (e.g., R. atlantica, R. lacuscaerulensis, R. conchae, R. profundi, R. arenilitoris, R. pomeroyi) and increasing the relative abundance of Vibrio species (V. harveyi, V. sinaloensis, V. coralliilyticus, and V. brasiliensis). Significant negative correlations were observed between the relative abundance of these Ruegeria species and the relative abundance of Vibrio species. Moreover, the control P. vannamei contained a substantially higher number of keystone species belonging to Ruegeria in the bacterial community network, whereas bacterial infection individuals had few or no keystone species belonging to Ruegeria, with keystone species belonging to Vibrio becoming more prominent. Thus, the significant increase in Vibrio species abundance in the P. vannamei intestine following bacterial infection was associated with the marked reduction in Ruegeria species. Our findings will provide valuable insights into the complex interactions among bacterial infection, intestinal microbiota, and host health, and they provide guidance for the development of probiotics in promoting the healthy culture of P. vannamei.
Collapse
Affiliation(s)
- Renjun Zhou
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Life Sciences/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Life Sciences/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Jiao C, Cui C, Qi Y, Zhang M, Zhao P, Chen S, Wang X, Hu J, Shi B, Liu T, Zhao Z, Zhao F. Effects of partial silage replacement with corn stover pellets on the rumen microbiota and serum metabolome of breeding cows. Front Microbiol 2025; 16:1533851. [PMID: 40071207 PMCID: PMC11895767 DOI: 10.3389/fmicb.2025.1533851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Straw pellet ration replacing part of silage is of great significance for farmers to save farming costs and solve the lack of feed resources. A comprehensive analysis of rumen microbial and serum metabolite compositions is conducted to promote the development of the modern breeding cows-feeding industry. Methods In this study, 18 healthy 2-year-old Simmental breeding cows weighing 550 ± 20 kg were selected and randomly divided into two groups. They were fed under the same feeding conditions for 70 days, of which 8 in the control (CON) group were fed 65% roughage (100% silage) + 35% concentrate, and 10 in the treatment (TRT) group were fed 65% roughage (50% corn stover pellets +50% silage) + 35% concentrate, and milk quality, serum immunity indexes, serum metabolomes, rumen fermentation parameters, rumen Microorganisms. Results The results showed that there was no significant difference in production performance between the two groups of breeding cows fed hay and Corn stover pellet feed (p < 0.05); Immunoglobulin A (IgA) was significantly higher in TRT compared to CON (p < 0.05), and there was no significant difference in Immunoglobulin G (IgG) and Immunoglobulin M (IgM) between the two groups (p > 0.05); a total of 92 differential metabolites were screened out in the serum metabolomics analysis, among them, L-valine, L-leucine, L-arginine, L-cysteine, L-tyrosine, and L-tryptophan were up-regulated; In rumen fermentation parameters there was no significant difference between CON and TRT in rumen pH, rumen ammonia nitrogen (NH3-N) content, rumen Acetic/Propionic concentration (p > 0.05), and the concentration of Acetic, Propionic, butyric and Total volatile fatty acids (TVFA) in CON was significantly lower than that in TRT (p < 0.05). Among the rumen microorganisms, the dominant groups were Thick-walled Firmicutes, Bacteroidota, Prevotella and Ruminalococcus. In the correlation analysis between rumen fermentation parameters and rumen microorganisms, Propionic and TVFA showed a significant positive correlation with Prevotella (p < 0.05), butyric showed a highly significant positive correlation with Prevotella (p < 0.01), and propionic butyric, and TVFA showed a positive correlation with Bacteroides (p < 0.05); L-cysteine was significantly positively correlated with Prevotella and Anaeroplasma (p < 0.05) and Eubaterium in rumen microbial-serum metabolite correlation analysis (p < 0.01). Conclusion The microbial and metabolomic analyses provide us with essential data support to further provide a scientific basis for breeding cows feeding through the feeding pattern of straw pellets instead of silage, which will help breeding cows farming in future research.
Collapse
Affiliation(s)
- Chenyue Jiao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changze Cui
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Youpeng Qi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Meixian Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengcheng Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaopeng Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiangyan Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Linxia Beef Cattle Industry Development Research Institute, Linxia, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Linxia Beef Cattle Industry Development Research Institute, Linxia, China
| | - Ting Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Linxia Beef Cattle Industry Development Research Institute, Linxia, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Linxia Beef Cattle Industry Development Research Institute, Linxia, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Linxia Beef Cattle Industry Development Research Institute, Linxia, China
| |
Collapse
|
6
|
Shaopeng C, Changze C, Youpeng Q, Baohong M, Meixian Z, Chenyue J, Chune Z, Xiangyan W, Jiang H, Bingang S, Xueming M, Zhidong Z, Xiaolan Z. Studies on fatty acids and microbiota characterization of the gastrointestinal tract of Tianzhu white yaks. Front Microbiol 2025; 15:1508468. [PMID: 39895933 PMCID: PMC11784337 DOI: 10.3389/fmicb.2024.1508468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/09/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction The gut microbiota significantly influences the host's production performance and health status, with different gastrointestinal tissues exhibiting functional diversity reflected in their microbial diversity. Methods In this study, five adult male Tianzhu white yaks (4.5 years old) were selected and fed under the same nutritional conditions. After the feeding experiment, the yaks were slaughtered, and chyme samples were collected from the rumen, abomasum, jejunum, and colon for 16S rRNA full-length sequencing and volatile fatty acid analysis. Results The results showed that the microbial composition and diversity of the rumen and abomasum were similar, with close genetic distances and functional projections. In contrast, the jejunum and colon had distinct microbial compositions and diversity compared to the rumen and abomasum. At the phylum level, the dominant phyla in the rumen, abomasum, and colon were Firmicutes and Bacteroidetes, while in the jejunum, the dominant phyla were Firmicutes and Proteobacteria. The abundance of Firmicutes differed significantly between the jejunum (87.24%) and the rumen (54.67%), abomasum (67.70%), and colon (65.77%). Similarly, Bacteroidetes showed significant differences between the jejunum (2.21%) and the rumen (36.54%), abomasum (23.81%), and colon (28.12%). At the genus level, Rikenellaceae_RC9_gut_group and Christensenellaceae_R-7_group were dominant in both the rumen and abomasum. In the jejunum, Romboutsia and Paeniclostridium were dominant, while Rikenellaceae_RC9_gut_group and UCG-005 were the dominant genera in the colon. At the species level, rumen_bacterium_g_Rikenellaceae_RC9_gut_group and rumen_bacterium_g_Christensenellaceae_R-7_group were dominant in both the rumen and abomasum, while Clostridium_sp._g_Romboutsia and bacterium_g_Paeniclostridium were unique to the jejunum. Ruminococcaceae_bacterium_g_UCG-005 and bacterium_g_Rikenellaceae_RC9_gut_group were unique to the colon. KEGG functional prediction of the microbiota indicated that the dominant functions in the rumen, abomasum, colon, and jejunum were amino acid metabolism, glycan biosynthesis and metabolism, carbohydrate metabolism, and membrane transport, respectively, reflecting the digestive functions of these organs. Volatile fatty acid analysis showed that the concentrations of acetic acid, propionic acid, and butyric acid in the rumen were significantly higher than those in the abomasum, jejunum, and colon (p < 0.05). Among these, the propionic acid concentration in the jejunum was significantly lower than in the abomasum and colon. Additionally, correlation analysis results indicated that acetic acid and butyric acid were significantly positively correlated with the ruminal bacterial community (p < 0.05). The total volatile fatty acid concentration was highest in the rumen, decreased to less than one-fifth of the rumen's total volatile fatty acid concentration in the abomasum and jejunum, and then reached a second peak in the colon. Conclusion This study explored the microbial composition and differential bacterial genera in the rumen and intestines of Tianzhu white yak, comparing the differences in volatile fatty acid levels and microbial composition and function across different regions. This is important for understanding their gastrointestinal microbiota's spatial heterogeneity.
Collapse
Affiliation(s)
- Chen Shaopeng
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Cui Changze
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qi Youpeng
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Mi Baohong
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhang Meixian
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiao Chenyue
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhu Chune
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wang Xiangyan
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Hu Jiang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Linxia Beef Cattle Industry Development Research Institute, Linxia, China
| | - Shi Bingang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Linxia Beef Cattle Industry Development Research Institute, Linxia, China
| | - Ma Xueming
- Livestock Industry Development Center of Hezheng County, Hezheng, Gansu, China
| | - Zhao Zhidong
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Linxia Beef Cattle Industry Development Research Institute, Linxia, China
| | - Zhang Xiaolan
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Feng X, Du Y, Luan J, Lu S, Yang D, Fang S, Liu Y, Yang X, Lin L, Yang L, Geng C. Growth Performance, Apparent Digestibility, Serum Indices, and Fecal Bacterial Community Diversity in Yanbian Cattle Fed Diets With Fermented Spent Mushroom Substrate From Pleurotus Eryngii Instead of Brewers Spent Grain. Anim Sci J 2025; 96:e70059. [PMID: 40235352 DOI: 10.1111/asj.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
This experiment was to evaluate the effect of fermented spent mushroom substrate from Pleurotus eryngii (FSMPE) instead of brewers spent grain (BSG) on growth performance, apparent digestibility, serum indices, and fecal bacterial community of Yanbian cattle. Thirty heifers were randomly divided into three groups: T0 group (control group, fed a diet without FSMPE); T1 group (fed a diet with FSMPE instead of 50% BSG); T2 group (fed a diet with FSMPE instead of 100% BSG). The results showed that replacing BSG with FSMPE increased nutrient intake (except ether extract), average daily gain and economic efficiency, among which T1 group had the best effect. The apparent digestibility of dry matter, organic matter, crude protein, and neutral detergent fiber in the T1 group was not affected by FSMPE, but decreased significantly in the T2 group. In addition, FSMPE instead of BSG improved the serum biochemical and antioxidant indices of cattle. Meanwhile, FSMPE not only had no adverse effects on the bacterial diversity, but also improved the abundance of certain cellulose-degrading bacteria and potentially probiotic bacteria in rectal feces. These findings showed that replacing 50% BSG with FSMPE had positive effects on growth performance, economic efficiency, and health status of Yanbian cattle.
Collapse
Affiliation(s)
- Xin Feng
- Agricultural College, Yanbian University, Yanji, China
| | - Yunlong Du
- Agricultural College, Yanbian University, Yanji, China
| | - Jiaming Luan
- Agricultural College, Yanbian University, Yanji, China
| | - Shihui Lu
- Agricultural College, Yanbian University, Yanji, China
| | - Dongxu Yang
- Agricultural College, Yanbian University, Yanji, China
| | - Shibin Fang
- Agricultural College, Yanbian University, Yanji, China
| | - Yutong Liu
- Agricultural College, Yanbian University, Yanji, China
| | - Xiaoxue Yang
- Agricultural College, Yanbian University, Yanji, China
| | - Lingzhu Lin
- Agricultural College, Yanbian University, Yanji, China
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chunyin Geng
- Agricultural College, Yanbian University, Yanji, China
- Ministry of Education, Engineering Research Center of North-East Cold Region Beef Cattle Science and Technology Innovation, Yanbian University, Yanji, China
| |
Collapse
|
8
|
Hou D, Yin B, Wang S, Li H, Weng S, Jiang X, Li H, Li C, He J, Huang Z. Intestine bacterial community affects the growth of the Pacific white shrimp (Litopenaeus vannamei). Appl Microbiol Biotechnol 2024; 108:59. [PMID: 38180551 DOI: 10.1007/s00253-023-12897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 01/06/2024]
Abstract
Increasing evidence suggests that intestine microorganisms are closely related to shrimp growth, but there is no existing experiment to prove this hypothesis. Here, we compared the intestine bacterial community of fast- and slow-growing shrimp at the same developmental stage with a marked difference in body size. Our results showed that the intestine bacterial communities of slow-growing shrimp exhibited less diversity but were more heterogeneous than those of fast-growing shrimp. Uncultured_bacterium_g_Candidatus Bacilloplasma, Tamlana agarivorans, Donghicola tyrosinivorans, and uncultured_bacterium_f_Flavobacteriaceae were overrepresented in the intestines of fast-growing shrimp, while Shimia marina, Vibrio sp., and Vibrio campbellii showed the opposite trends. We further found that the bacterial community composition was significantly correlated with shrimp length, and some bacterial species abundances were found to be significantly correlated with shrimp weight and length, including T. agarivorans and V. campbellii, which were chosen as indicators for a reverse gavage experiment. Finally, T. agarivorans was found to significantly promote shrimp growth after the experiment. Collectively, these results suggest that intestine bacterial community could be important factors in determining the growth of shrimp, indicating that specific bacteria could be tested in further studies against shrimp growth retardation. KEY POINTS: • A close relationship between intestine bacterial community and shrimp growth was proven by controllable experiments. • The bacterial signatures of the intestine were markedly different between slow- and fast-growing shrimp, and the relative abundances of some intestine bacterial species were correlated significantly with shrimp body size. • Reverse gavage by Tamlana agarivorans significantly promoted shrimp growth.
Collapse
Affiliation(s)
- Dongwei Hou
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bin Yin
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sheng Wang
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haoyang Li
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiewu Jiang
- Guangdong Hisenor Group Co., Ltd, Guangzhou, People's Republic of China
| | - Hui Li
- Guangdong Hisenor Group Co., Ltd, Guangzhou, People's Republic of China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China.
| | - Zhijian Huang
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China.
| |
Collapse
|
9
|
Cheng Y, Zhang H, Zhang J, Duan H, Yin Y, Li Y, Mao S. Effects of fermented rice husk powder on growth performance, rumen fermentation, and rumen microbial communities in fattening Hu sheep. Front Vet Sci 2024; 11:1503172. [PMID: 39664900 PMCID: PMC11631883 DOI: 10.3389/fvets.2024.1503172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction This study aimed to examine the effects of fermented rice husk powder feed on growth performance, apparent nutrient digestibility, and rumen microbial communities in fattening Hu sheep. Methods Twenty-one male Hu sheep with similar body weights (32.68 ± 1.59 kg) were randomly assigned to three groups: a control group (CON) receiving a TMR with soybean straw, a rice husk powder group (RH), and a fermented rice husk powder group (FHR). Results The results indicated that the FHR group exhibited a significant increase in ADG and FBW of Hu sheep compared to the other two groups (p < 0.05). The digestibility of CP and EE was significantly higher in the CON and FHR groups than in the RH group (p < 0.01). Furthermore, the digestibility of DM in the CON group was higher than in the FHR and RH groups (p < 0.01). The FHR group showed lower NDF and ADF digestibility compared to the CON group, but higher than the RH group (p < 0.05). Additionally, serum ALB and ALT levels in the CON group were elevated compared to those in the two groups (p < 0.05). The rumen concentrations of TVFA, butyrate, and valerate in the FHR group were significantly elevated compared to the other two groups (p < 0.05). At the genus level, the relative abundances of Rikenellaceae RC9 gut group, Succinimonas, UCG-010_norank, UCG-005, p-251-o5_norank, and Lachnospiraceae AC2044 group were significantly diminished in the FHR group compared to the CON group (p < 0.05). In contrast, the relative abundance of Succinivibrio was significantly higher (p < 0.05), while the abundances of Eubacterium coprostanoligenes group_norank and Quinella were significantly lower (p < 0.05) in the RH group compared to the CON group. Spearman correlation analysis revealed negative correlations between the Rikenellaceae RC9 gut group and propionate, butyrate, and TVFA, as well as between Prevotellaceae UCG-003 and both propionate and TVFA. Conversely, Ruminococcus showed a positive correlation with propionate and TVFA. Discussion In conclusion, replacing 15% of soybean straw with fermented rice husk powder feed modified the rumen microbiota and improved the growth performance of fattening Hu sheep.
Collapse
Affiliation(s)
- Yanming Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Han Zhang
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiawei Zhang
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongwei Duan
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Yufeng Li
- Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Zhang J, Guan F, Huang S, Ma Y, Wen S, Jin W, Mao S. Fermented soybean meal modified the rumen microbiota and increased the serum prolactin level in lactating Holstein cows. Front Vet Sci 2024; 11:1498639. [PMID: 39606655 PMCID: PMC11599173 DOI: 10.3389/fvets.2024.1498639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
This study aimed to investigate the effects of fermented soybean meal (FSM) on milk production, blood parameters, and rumen fermentation and microbial community in dairy cows. In this study, 48 healthy Holstein cows (parity, 3.0 ± 0.6; days in milk, 86.0 ± 6.7) were used. Cows were randomly assigned into four groups (CON, T-200, T-400, and T-600) with 12 cows per group. Cows in CON were not supplemented with FSM. Cows in T-200, T-400, and T-600 were supplemented with 200, 400, and 600 g/head/day FSM, respectively. This study lasted 5 weeks (1-week adaptation and 4-week treatment). The results showed that FSM did not affect milk yield and milk components (p > 0.05). In the serum, FSM greatly increased prolactin (p < 0.01), and a dosage effect was observed. Aspartate aminotransferase and total protein were the highest in the T-400 (p < 0.05), and triglycerides was the lowest in T-200 (p < 0.05), and there was no difference for the 3 measurements between the other 3 groups (p > 0.05). In the rumen, FSM did not affect pH, microbial crude protein, acetate, propionate, butyrate, valerate, total volatile fatty acids and the ratio of acetate:propionate (p > 0.05), only changed NH3-N, isobutyrate and isovalerate (p < 0.05). The results of the rumen bacterial 16S rRNA genes sequencing showed that FSM decreased the richness (p < 0.05) and evenness (p < 0.05) of the bacterial communities. PCoA analysis showed that FSH altered the rumen bacterial community (ANOSIM, R = 0.108, p = 0.002). In the relative abundance of phyla, FSM increased Firmicutes (p = 0.015) and Actinobacteriota (p < 0.01) and Patescibacteria (p = 0.012), decreased Bacteroidota (p = 0.024). In the relative abundance of genera, FSM increased Christensenellaceae R-7 group (p = 0.011), Lactococcus (p < 0.01), Candidatus Saccharimonas (p < 0.01), Olsenella (p < 0.01), decreased Muribaculaceae_norank (p < 0.01). Conclusively, supplemented FSM altered the rumen fermentation parameters and bacterial community, and increased serum prolactin level in lactating Holstein cows. These findings may provide an approach to keep the peak of lactation in dairy cows.
Collapse
Affiliation(s)
- Jiyou Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Guan
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shana Huang
- Inner Mongolia Agriculture and Animal Husbandry Technology Extension Center, Hohhot, China
| | - Yumin Ma
- Jiangsu Jiahui Biotechnology Co., Ltd., Haian, China
| | - Shibao Wen
- Shanghai Menon Animal Nutrition Technology Co., Ltd., Shanghai, China
| | - Wei Jin
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Lambo MT, Ma H, Zhang H, Song P, Mao H, Cui G, Dai B, Li Y, Zhang Y. Mechanism of action, benefits, and research gap in fermented soybean meal utilization as a high-quality protein source for livestock and poultry. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:130-146. [PMID: 38357571 PMCID: PMC10864219 DOI: 10.1016/j.aninu.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
Animal nutritionists have incessantly worked towards providing livestock with high-quality plant protein feed resources. Soybean meal (SBM) has been an essential and predominantly adopted vegetable protein source in livestock feeding for a long time; however, several SBM antinutrients could potentially impair the animal's performance and growth, limiting its use. Several processing methods have been employed to remove SBM antinutrients, including fermentation with fungal or bacterial microorganisms. According to the literature, fermentation, a traditional food processing method, could improve SBM's nutritional and functional properties, making it more suitable and beneficial to livestock. The current interest in health-promoting functional feed, which can enhance the growth of animals, improve their immune system, and promote physiological benefits more than conventional feed, coupled with the ban on the use of antimicrobial growth promoters, has caused a renewed interest in the use of fermented SBM (FSBM) in livestock diets. This review details the mechanism of SBM fermentation and its impacts on animal health and discusses the recent trend in the application and emerging advantages to livestock while shedding light on the research gap that needs to be critically addressed in future studies. FSBM appears to be a multifunctional high-quality plant protein source for animals. Besides removing soybean antinutrients, beneficial bioactive peptides and digestive enzymes are produced during fermentation, providing probiotics, antioxidants, and immunomodulatory effects. Critical aspects regarding FSBM feeding to animals remain uncharted, such as the duration of fermentation, the influence of feeding on digestive tissue development, choice of microbial strain, and possible environmental impact.
Collapse
Affiliation(s)
- Modinat T. Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haokai Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haosheng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Peng Song
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd, Shanghai 200137, China
| | - Hongxiang Mao
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd, Shanghai 200137, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baisheng Dai
- College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Liu M, Wang T, Wang L, Xiao H, Li J, Duan C, Gao L, Liu Y, Yan H, Zhang Y, Ji S. Core microbiota for nutrient digestion remained and ammonia utilization increased after continuous batch culture of rumen microbiota in vitro. Front Microbiol 2024; 15:1331977. [PMID: 38328430 PMCID: PMC10848171 DOI: 10.3389/fmicb.2024.1331977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction This study aimed to investigate the digestive function, urea utilization ability, and bacterial composition changes in rumen microbiota under high urea (5% urea in diet) over 23 days of continuous batch culture in vitro. Methods The gas production, dry matter digestibility, and bacterial counts were determined for the continuously batch-cultured rumen fluid (CRF). The changes in fermentation parameters, NH3-N utilization efficiency, and microbial taxa were analyzed in CRF and were compared with that of fresh rumen fluid (RF), frozen rumen fluid (FRF, frozen rumen fluid at -80°C for 1 month), and the mixed rumen fluid (MRF, 3/4 RF mixed with 1/4 CRF) with in vitro rumen fermentation. Results The results showed that the dry matter digestibility remained stable while both the microbial counts and diversity significantly decreased over the 23 days of continuous batch culture. However, the NH3-N utilization efficiency of the CRF group was significantly higher than that of RF, FRF, and MRF groups (p < 0.05), while five core genera including Succinivibrio, Prevotella, Streptococcus, F082, and Megasphaera were retained after 23 days of continuous batch culture. The NH3-N utilization efficiency was effectively improved after continuous batch culture in vitro, and Streptococcus, Succinivibrio, Clostridium_sensu_stricto_1, p.251.o5, Oxalobacter, Bacteroidales_UCG.001, and p.1088.a5_gut_group were identified to explain 75.72% of the variation in NH3-N utilization efficiency with the RandomForest model. Conclusion Thus, core bacterial composition and function retained under high urea (5% urea in diet) over 23 days of continuous batch culture in vitro, and bacterial biomarkers for ammonia utilization were illustrated in this study. These findings might provide potential applications in improving the efficiency and safety of non-protein nitrogen utilization in ruminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Yan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shoukun Ji
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
13
|
Manlapig JJD, Kondo M, Ban-Tokuda T, Matsui H. Effect of rice bran fermented with Ligilactobacillus equi on in vitro fermentation profile and microbial population. Anim Sci J 2024; 95:e13955. [PMID: 38769748 DOI: 10.1111/asj.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
This study was conducted to assess the effects of fermented rice bran (FRB) with Ligilactobacillus equi on ruminal fermentation using an in vitro system. Oat hay, corn starch, and wheat bran were used as substrate for control. Ten percent of wheat bran was replaced with rice bran (RB), rice bran fermented with distilled water, and rice bran fermented with L. equi for T1, T2, and T3, respectively. The experimental diets were mixed with buffered rumen fluid from wethers under nitrogen gas and incubated for 24 h at 39°C. The fermentation profile and microbial population were analyzed after the incubations. The results revealed that the RB and FRB (with or without L. equi) significantly reduced the gas, methane (CH4), and CH4 per dry matter digested (p < 0.001). Total short-chain fatty acid was also reduced in T1 and T2 in comparison with the control (p < 0.001). Propionate proportion was increased while butyrate proportion was reduced in response to treatment addition in cultures (p < 0.001). Anaerobic fungi and Fibrobacter succinogenes abundance were decreased in treatments (p < 0.001). Overall, CH4 production in vitro can be reduced by RB and FRB supplementation as a result of the reduction of fiber-degrading microorganisms and a decrease in gas production.
Collapse
Affiliation(s)
- Jamal James D Manlapig
- Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Makoto Kondo
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | | | - Hiroki Matsui
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| |
Collapse
|
14
|
Lee S, Ryu CH, Back YC, Lee SD, Kim H. Effect of Fermented Concentrate on Ruminal Fermentation, Ruminal and Fecal Microbiome, and Growth Performance of Beef Cattle. Animals (Basel) 2023; 13:3622. [PMID: 38066972 PMCID: PMC10705080 DOI: 10.3390/ani13233622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 05/07/2024] Open
Abstract
The impact of fermented concentrate on the growth and rumen health of beef cattle remains an area of emerging research. This study aimed to assess the influence of a fermented concentrate (TRT) compared to a conventional concentrate (CON) on the growth, rumen fermentation characteristics, and microbiota composition in Korean cattle. Using a crossover design, eight cattle were alternately fed TRT and CON diets, with subsequent analysis of feed components, rumen fermentation parameters, and microbial profiles. TRT and CON diets did not differ significantly in their effect on animal growth metrics. However, the TRT diet was associated with reduced digestibility of rapidly degradable carbohydrates and modified rumen fermentation patterns, as evidenced by an elevated pH and increased acetate-to-propionate ratio (p < 0.05). Furthermore, the TRT diet increased the abundance of lactic acid bacteria, Bacillus, and yeast and organic acid levels in the rumen (p < 0.05). Moreover, Lachnospiraceae and Bacteroidales populations in the rumen and fecal Akkermansia abundance increased in the TRT group compared to the CON group. These microbial changes suggest a potential enhancement of the immune system and overall health of the host. Further research on the long-term implications of incorporating fermented concentrate into cattle diets is warranted.
Collapse
Affiliation(s)
- Seul Lee
- Correspondence: ; Tel.: +82-63-238-7470
| | | | | | | | | |
Collapse
|
15
|
Wang Z, Li Q, Lan X, Shen W, Wan F, He J, Tang S, Tan Z. Evaluation of stirring time through a rumen simulation technique: Influences on rumen fermentation and bacterial community. Front Microbiol 2023; 14:1103222. [PMID: 36950158 PMCID: PMC10026382 DOI: 10.3389/fmicb.2023.1103222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Rumen motility is a key element that influences ruminant nutrition, whereas little is known about the effects of rumen contraction duration on rumen fermentation and ruminal microbiome. We previously reported that proper rotation speed of a rumen simulation technique (RUSITEC) system enhanced rumen fermentation and microbial protein (MCP) production. In the present study, different contraction durations and intervals were simulated by setting different stirring times and intervals of the stirrers in a RUSITEC system. The objective of this trial was to evaluate the influences of stirring time on rumen fermentation characteristics, nutrient degradation, and ruminal bacterial microbiota in vitro. Methods This experiment was performed in a 3 × 3 Latin square design, with each experimental period comprising 4 d for adjustment and 3 d for sample collection. Three stirring time treatments were set: the constant stir (CS), the intermittent stir 1 (each stir for 5 min with an interval of 2 min, IS1), and the intermittent stir 2 (each stir for 4 min with an interval of 3 min, IS2). Results The total volatile fatty acid (TVFA) concentration, valerate molar proportion, ammonia nitrogen level, MCP density, protozoa count, disappearance rates of dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber, emissions of total gas and methane, and the richness index Chao 1 for the bacterial community were higher (p < 0.05) in the IS1 when compared to those in the CS. The greatest TVFA, MCP, protozoa count, nutrient disappearance rates, gas productions, and bacterial richness indices of Ace and Chao 1 amongst all treatments were observed in the IS2. The relative abundance of the genus Treponema was enriched (p < 0.05) in CS, while the enrichment (p < 0.05) of Agathobacter ruminis and another two less known bacterial genera were identified in IS2. Discussion It could be concluded that the proper reduction in the stirring time might help to enhance the feed fermentation, MCP synthesis, gas production, and the relative abundances of specific bacterial taxa.
Collapse
Affiliation(s)
- Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Quan Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- *Correspondence: Weijun Shen,
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shaoxun Tang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhiliang Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
16
|
Wang Z, Zhao Y, Lan X, He J, Wan F, Shen W, Tang S, Zhou C, Tan Z, Yang Y. Tannic acid supplementation in the diet of Holstein bulls: Impacts on production performance, physiological and immunological characteristics, and ruminal microbiota. Front Nutr 2022; 9:1066074. [PMID: 36466399 PMCID: PMC9709124 DOI: 10.3389/fnut.2022.1066074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
This study was conducted to evaluate the influences of supplementing tannic acid (TA) at different doses on the production performance, physiological and immunological characteristics, and rumen bacterial microbiome of cattle. Forty-eight Holstein bulls were randomly allocated to four dietary treatments: the control (CON, basal diet), the low-dose TA treatment [TAL, 0.3% dry matter (DM)], the mid-dose TA treatment (TAM, 0.9% DM), and the high-dose TA treatment (TAH, 2.7% DM). This trial consisted of 7 days for adaptation and 90 days for data and sample collection, and samples of blood and rumen fluid were collected on 37, 67, and 97 d, respectively. The average daily gain was unaffected (P > 0.05), whilst the ruminal NH3-N was significantly decreased (P < 0.01) by TA supplementation. The 0.3% TA addition lowered (P < 0.05) the levels of ruminal isobutyrate, valerate, and tumor necrosis factor alpha (TNF-α), and tended to (P < 0.1) increase the gain to feed ratio. The digestibility of DM, organic matter (OM), and crude protein, and percentages of butyrate, isobutyrate, and valerate were lower (P < 0.05), while the acetate proportion and acetate to propionate ratio in both TAM and TAH were higher (P < 0.05) than the CON. Besides, the 0.9% TA inclusion lessened (P < 0.05) the concentrations of glucagon and TNF-α, but enhanced (P < 0.05) the interferon gamma (IFN-γ) level and Simpson index of ruminal bacteria. The 2.7% TA supplementation reduced (P < 0.05) the intake of DM and OM, and levels of malondialdehyde and thyroxine, while elevated (P < 0.05) the Shannon index of the rumen bacterial populations. Moreover, the relative abundances of the phyla Fibrobacteres and Lentisphaerae, the genera Fibrobacter and Bradyrhizobium, and the species Bradyrhizobium sp., Lachnospiraceae bacterium RM29, and Lachnospiraceae bacterium CG57 were highly significantly (q < 0.01) or significantly (q < 0.05) raised by adding 2.7% TA. Results suggested that the TA addition at 0.3% is more suitable for the cattle, based on the general comparison on the impacts of supplementing TA at different doses on all the measured parameters.
Collapse
Affiliation(s)
- Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuan Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chuanshe Zhou
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yanming Yang
- Jiurui Biology and Chemistry Co., Ltd., Zhangjiajie, Hunan, China
| |
Collapse
|
17
|
Fermented soybean meal modified the rumen microbiome to enhance the yield of milk components in Holstein cows. Appl Microbiol Biotechnol 2022; 106:7627-7642. [PMID: 36264306 DOI: 10.1007/s00253-022-12240-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
Abstract
The study was conducted to evaluate the rumen microbiota as well as the milk composition and milk component yields of Holstein cows supplemented with fermented soybean meal (FSBM). Eighteen Holstein cows in their 2nd parity with 54.38 ± 11.12 SD days in milking (DIM) were divided into two dietary groups (CON and TRT) of nine cows per group. The cows in the TRT group received 300 g of FSBM per cow per day in addition to the conventional diet, while each cow in the CON group was supplemented with 350 g of soybean meal (SBM) in their diet daily throughout the 28-day feeding trial. Rumen bacterial composition was detected via 16S rRNA sequencing, and the functional profiles of bacterial communities were predicted. Milk composition, milk yield, as well as rumen fermentation parameters, and serum biochemistry were also recorded. The inclusion of FSBM into the diets of Holstein cows increased the milk urea nitrogen (MUN), milk protein yield, fat corrected milk (FCM), and milk fat yield while the milk somatic cell count (SCC) was decreased. In the rumen, the relative abundances of Fibrobacterota, and Spirochaetota phyla were increased in the TRT group, while the percentage of Proteobacteria was lower. In addition, the supplementation of FSBM to Holstein cows increased the acetate percentage, rumen pH, and acetate to propionate ratio, while the proportion of propionate and propionate % was observed to decrease in the TRT group. The KEGG pathway and functional prediction revealed an upregulation in the functional genes associated with the biosynthesis of amino acids in the TRT group. This enrichment in functional genes resulted in an improved synthesis of several essential amino acids including lysine, methionine, and branch chain amino acids (BCAA) which might be responsible for the increased milk protein yield. Future studies should employ shotgun metagenomics, transcriptomics, and metabolomics technology to investigate the effects of FSBM on other rumen microbiomes and milk protein synthesis in the mammary gland in Holstein cows. KEY POINTS: • The supplementation of fermented soybean meal (FSBM) to Holstein cows modified the proportion of rumen bacteria. • Predicted metabolic pathways and functional genes of rumen bacteria revealed an enrichment in pathway and genes associated with biosynthesis of amino acids in the group fed FSBM. • The cows supplemented with FSBM record an improved rumen fermentation. • Cows supplemented with FSBM recorded an increased yield of milk protein and milk fat.
Collapse
|
18
|
Wang Z, Yin L, Liu L, Lan X, He J, Wan F, Shen W, Tang S, Tan Z, Yang Y. Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats. Front Vet Sci 2022; 9:1004841. [PMID: 36187804 PMCID: PMC9516568 DOI: 10.3389/fvets.2022.1004841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The present study was performed to evaluate the impacts of tannic acid (TA) supplementation at different levels on the growth performance, physiological, oxidative and immunological metrics, and ruminal microflora of Xiangdong black goats. Twenty-four goats were randomly assigned to four dietary treatments: the control (CON, basal diet), the low-dose TA group [TAL, 0.3 % of dry matter (DM)], the mid-dose TA group (TAM, 0.6 % of DM), and the high-dose TA group (TAH, 0.9 % of DM). Results showed that the growth performance was unaffected (P > 0.05) by adding TA, whilst the 0.3 % and 0.6 % TA supplementation significantly decreased (P < 0.05) the apparent digestibility of crude protein (CP) and ruminal NH3-N concentration, and raised (P < 0.05) the level of total volatile fatty acid (TVFA) in rumen. The increments of alanine aminotransferase (ALT), triglyceride (TG), cortisol (CORT), total antioxidant capacity (T-AOC), interleukin (IL)-1β, IL-6, and serumamyloid A (SAA), and decrements of globulin (GLB), immunoglobulin G (IgG), cholinesterase (CHE), glutathione reductase (GR), creatinine (CRE), growth hormone (GH), high-density lipoprotein cholesterol (HDLC), and insulin-like growth factor 1 (IGF-1) to different extents by TA addition were observed. Although the Alpha and Beta diversity of rumen bacterial community remained unchanged by supplementing TA, the relative abundance of the predominant genus Prevotella_1 was significantly enriched (P < 0.05) in TAL. It could hence be concluded that the TA supplementation in the present trial generally decreased CP digestion and caused oxidative stress and inflammatory response without influencing growth performance and ruminal microbiota diversity. More research is needed to explore the premium dosage and mechanisms of effects for TA addition in the diet of goats.
Collapse
Affiliation(s)
- Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lei Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanming Yang
- Jiurui Biology & Chemistry Co., Ltd., Zhangjiajie, China
| |
Collapse
|
19
|
Jize Z, Zhuoga D, Xiaoqing Z, Na T, Jiacuo G, Cuicheng L, Bandan P. Different feeding strategies can affect growth performance and rumen functions in Gangba sheep as revealed by integrated transcriptome and microbiome analyses. Front Microbiol 2022; 13:908326. [PMID: 36090079 PMCID: PMC9449551 DOI: 10.3389/fmicb.2022.908326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Due to the harsh environment in the Tibetan Plateau, traditional grazing greatly limits the growth potential of local animals and causes severe ecosystem degradation. This is an urgent issue to be solved, which requires alternative strategies for grazing animals in the Tibetan alpine pastoral livestock systems. This study aimed to investigate the effects of different feeding strategies on growth performance and ruminal microbiota-host interactions in the local breed of sheep (Gangba sheep). Thirty 9-month old Gangba sheep (n = 10 per group) were assigned to natural grazing (G), semi-grazing with supplementation (T), and barn feeding (F) groups (supplementation of concentrate and oat hay) based on body weight. At the end of the experiment (75 d), all sheep were weighed, rumen fluid was obtained from six sheep per group, and ruminal epithelium was obtained from 3 sheep per group. The results showed that: (1) Compared with the G and T groups, the F group significantly increased dry matter intake, average daily gain, and feed conversion ratio of animals. Additionally, Gangba sheep in the F group had higher concentrations of ruminal short-chain volatile fatty acids (VFAs), especially propionate and butyrate (P <0.05) than sheep in the G and T groups. (2) The principal coordinates analysis indicated a significant difference in bacterial composition among different feed strategies. More specifically, the relative abundance of propionate (unidentified F082 and Succiniclasticum) and butyrate-producing (Eubacterium_coprostanoligenes_group) genera were also observed to be increased in the F group, in which unidentified F082 was identified as a differential biomarker among the three groups according to linear discriminant analysis effect size analysis. (3) The dynamics of the rumen epithelial transcriptome revealed that ECM-receptor interactions, focal adhesion, and PI3K-Akt signaling pathways, which are critical in mediating many aspects of cellular functions such as cell proliferation and motility, were upregulated in the F group. In conclusion, under harsh conditions in the Tibetan alpine meadow, barn feeding increased ruminal VFAs concentrations (especially propionate and butyrate), which stimulated gene expression related to cell proliferation in rumen epithelium, appearing to be superior to natural grazing and semi-grazing in gaining body weight of the local Gangba sheep.
Collapse
Affiliation(s)
- Zhang Jize
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Deqing Zhuoga
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Zhang Xiaoqing
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- *Correspondence: Zhang Xiaoqing
| | - Ta Na
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Gesang Jiacuo
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Luosang Cuicheng
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Pingcuo Bandan
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| |
Collapse
|
20
|
Amin AB, Zhang L, Zhang J, Mao S. Metagenomic and Metabolomic Insights Into the Mechanism Underlying the Disparity in Milk Yield of Holstein Cows. Front Microbiol 2022; 13:844968. [PMID: 35668764 PMCID: PMC9163737 DOI: 10.3389/fmicb.2022.844968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/02/2022] [Indexed: 01/12/2023] Open
Abstract
This study was conducted to investigate the metabolic mechanism underlying the disparity in the milk yield of Holstein cows. Eighteen lactating Holstein cows in their second parity and 56 (±14.81 SD) days in milking (DIM) were selected from 94 cows. Based on the milk yield of the cows, they were divided into two groups of nine cows each, the high milk yield group (HP) (44.57 ± 2.11 kg/day) and the low milk yield group (LP) (26.71 ± 0.70 kg/day). The experimental cows were fed the same diet and kept under the same management system for more than 60 days. Rumen metagenomics revealed that two Archaea genera, one Bacteria genus, eight Eukaryota genera, and two Virus genera differ between the HP and LP groups. The analysis of metabolites in the rumen fluid, milk, and serum showed that several metabolites differed between the HP and LP groups. Correlation analysis between the predominant microbiota and milk yield-associated metabolites (MP-metabolites) revealed that four Bacteria and two Eukaryota genera have a positive relationship with MP-metabolites. Pathway enrichment analysis of the differential metabolites revealed that five pathways were enriched in all the samples (two pathways in the milk, two pathways in the serum, and one pathway in the rumen fluid). Further investigation revealed that the low milk yield observed in the LP group might be due to an upregulation in dopamine levels in the rumen fluid and milk, which could inhibit the release of prolactin or suppress the action of oxytocin in the udder resulting in reduced milk yield. On the other hand, the high milk yield in the HP group is attributed to an upregulation in citrulline, and N-acetylornithine, which could be used as substrates for energy metabolism in the citric acid cycle and ultimately gluconeogenesis.
Collapse
Affiliation(s)
- Abdulmumini B Amin
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,Laboratory for Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Centre for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,Department of Animal Science, Federal University Dutse, Dutse, Nigeria
| | - Lei Zhang
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,Laboratory for Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Centre for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - JiYou Zhang
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,Laboratory for Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Centre for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengyong Mao
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,Laboratory for Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Centre for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Wang Z, Yu Y, Shen W, Tan Z, Tang S, Yao H, He J, Wan F. Metabolomics Analysis Across Multiple Biofluids Reveals the Metabolic Responses of Lactating Holstein Dairy Cows to Fermented Soybean Meal Replacement. Front Vet Sci 2022; 9:812373. [PMID: 35647087 PMCID: PMC9136663 DOI: 10.3389/fvets.2022.812373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
This experiment was performed to reveal the metabolic responses of dairy cows to the replacement of soybean meal (SBM) with fermented soybean meal (FSBM). Twenty-four lactating Chinese Holstein dairy cattle were assigned to either the SBM group [the basal total mixed ration (TMR) diet containing 5.77% SBM] or the FSBM group (the experimental TMR diet containing 5.55% FSBM), in a completely randomized design. The entire period of this trial consisted of 14 days for the adjustment and 40 days for data and sample collection, and sampling for rumen liquid, blood, milk, and urine was conducted on the 34th and 54th day, respectively. When SBM was completely replaced by FSBM, the levels of several medium-chain FA in milk (i.e., C13:0, C14:1, and C16:0) rose significantly (p < 0.05), while the concentrations of a few milk long-chain FA (i.e., C17:0, C18:0, C18:1n9c, and C20:0) declined significantly (p < 0.05). Besides, the densities of urea nitrogen and lactic acid were significantly (p < 0.05) higher, while the glucose concentration was significantly (p < 0.05) lower in the blood of the FSBM-fed cows than in the SBM-fed cows. Based on the metabolomics analysis simultaneously targeting the rumen liquid, plasma, milk, and urine, it was noticed that substituting FSBM for SBM altered the metabolic profiles of all the four biofluids. According to the identified significantly different metabolites, 3 and 2 amino acid-relevant metabolic pathways were identified as the significantly different pathways between the two treatments in the rumen fluid and urine, respectively. Furthermore, glycine, serine, and threonine metabolism, valine, leucine, and isoleucine biosynthesis, and cysteine and methionine metabolism were the three key integrated different pathways identified in this study. Results mainly implied that the FSBM replacement could enhance nitrogen utilization and possibly influence the inflammatory reactions and antioxidative functions of dairy cattle. The differential metabolites and relevant pathways discovered in this experiment could serve as biomarkers for the alterations in protein feed and nitrogen utilization efficiency of dairy cows, and further investigations are needed to elucidate the definite roles and correlations of the differential metabolites and pathways.
Collapse
Affiliation(s)
- Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuannian Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Rudong Agriculture Bureau, Nantong, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- *Correspondence: Shaoxun Tang
| | - Hui Yao
- Nanshan Dairy Co., Ltd., Shaoyang, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Jianhua He
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Fachun Wan
| |
Collapse
|
22
|
Phesatcha K, Phesatcha B, Wanapat M. Mangosteen Peel Liquid-Protected Soybean Meal Can Shift Rumen Microbiome and Rumen Fermentation End-Products in Lactating Crossbred Holstein Friesian Cows. Front Vet Sci 2022; 8:772043. [PMID: 35146011 PMCID: PMC8821873 DOI: 10.3389/fvets.2021.772043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Rumen bypass protein can enhance protein availability in the lower gut. This study investigated the use of liquid-containing phytonutrients in dairy cows as a dietary additives to reduce rumen protein degradation. Four crossbred lactating Holstein Friesian cows (75% Holstein Friesian with 25% Thai native breed) with an initial body weight (BW) of 410 ± 20 kg were randomly assigned to a 2 × 2 factorial arrangement [two crude protein (CP) levels with soybean meal (SBM) or mangosteen peel liquid-protected soybean meal (MPLP)-SBM] in a 4 × 4 Latin square design experiment. Dietary treatments were as follows: T1 = SBM in low crude protein concentrate (LPC) (SBM-LPC); T2 = MPLP-SBM in LPC (MPLP-SBM-LPC); T3 = SBM in high crude protein concentrate (HPC) (SBM-HPC); T4 = MPLP-SBM in HPC (MPLP-SBM-HPC). Apparent digestibilities of organic matter (OM) and neutral detergent fiber (aNDF) were increased (p < 0.05) by CP level in the HPC diet (19% CP), with higher OM and aNDF digestibilities. High crude protein concentrate increased (p < 0.05) the propionic acid in the rumen but reduced (p < 0.05) the acetic acid-to-propionic acid ratio and methane (CH4) production. Rumen microbial populations of the total bacteria, Fibrobacter succinogenes and Butyrivibrio fibrisolvens were increased (p < 0.05) by HPC. Real-time PCR revealed a 30.6% reduction of rumen methanogens by the MPLP-SBM in HPC. Furthermore, efficiency of microbial nitrogen synthesis (EMNS) was 15.8% increased (p < 0.05) by the MPLP-SBM in HPC when compared to SBM-LPC. Milk yield and milk composition protein content were enhanced (p < 0.05) by both the CP level in concentrate and by MPLP inclusion. In this experiment, a high level of CP and the MPLP-SBM enhanced the ruminal propionate, shifted rumen microbiome, and enhanced milk yield and compositions.
Collapse
Affiliation(s)
- Kampanat Phesatcha
- Department of Animal Science, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Burarat Phesatcha
- Department of Agricultural Technology and Environment, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Metha Wanapat
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|