1
|
Itoh Y, Miyamoto Y, Tokunaga M, Suzuki T, Takada A, Ninomiya A, Hishinuma T, Matsuda M, Yoneda Y, Oka M, Suzuki R, Matsuura Y, Okamoto T. Importin-7-dependent nuclear translocation of the Flavivirus core protein is required for infectious virus production. PLoS Pathog 2024; 20:e1012409. [PMID: 39146232 PMCID: PMC11326614 DOI: 10.1371/journal.ppat.1012409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Flaviviridae is a family of positive-stranded RNA viruses, including human pathogens, such as Japanese encephalitis virus (JEV), dengue virus (DENV), Zika virus (ZIKV), and West Nile virus (WNV). Nuclear localization of the viral core protein is conserved among Flaviviridae, and this feature may be targeted for developing broad-ranging anti-flavivirus drugs. However, the mechanism of core protein translocation to the nucleus and the importance of nuclear translocation in the viral life cycle remain unknown. We aimed to identify the molecular mechanism underlying core protein nuclear translocation. We identified importin-7 (IPO7), an importin-β family protein, as a nuclear carrier for Flaviviridae core proteins. Nuclear import assays revealed that core protein was transported into the nucleus via IPO7, whereas IPO7 deletion by CRISPR/Cas9 impaired their nuclear translocation. To understand the importance of core protein nuclear translocation, we evaluated the production of infectious virus or single-round-infectious-particles in wild-type or IPO7-deficient cells; both processes were significantly impaired in IPO7-deficient cells, whereas intracellular infectious virus levels were equivalent in wild-type and IPO7-deficient cells. These results suggest that IPO7-mediated nuclear translocation of core proteins is involved in the release of infectious virus particles of flaviviruses.
Collapse
Affiliation(s)
- Yumi Itoh
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Biofunctional Molecular Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Makoto Tokunaga
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tatsuya Suzuki
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akira Takada
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akinori Ninomiya
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomomi Hishinuma
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toru Okamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|