1
|
Ivanova M, Laage Kragh M, Szarvas J, Tosun ES, Holmud NF, Gmeiner A, Amar C, Guldimann C, Huynh TN, Karpíšková R, Rota C, Gomez D, Aboagye E, Etter A, Centorame P, Torresi M, De Angelis ME, Pomilio F, Okholm AH, Xiao Y, Kleta S, Lüth S, Pietzka A, Kovacevic J, Pagotto F, Rychli K, Zdovc I, Papić B, Heir E, Langsrud S, Møretrø T, Brown P, Kathariou S, Stephan R, Tasara T, Dalgaard P, Njage PMK, Fagerlund A, Aarestrup F, Truelstrup Hansen L, Leekitcharoenphon P. Large-scale phenotypic and genomic analysis of Listeria monocytogenes reveals diversity in the sensitivity to quaternary ammonium compounds but not to peracetic acid. Appl Environ Microbiol 2025; 91:e0182924. [PMID: 40035557 PMCID: PMC12016499 DOI: 10.1128/aem.01829-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Listeria monocytogenes presents a significant concern for the food industry due to its ability to persist in the food processing environment. One of the factors contributing to its persistence is decreased sensitivity to disinfectants. Our objective was to assess the diversity of L. monocytogenes sensitivity to food industry disinfectants by testing the response of 1,671 L. monocytogenes isolates to quaternary ammonium compounds (QACs) and 414 isolates to peracetic acid (PAA) using broth microdilution and growth curve analysis assays, respectively, and to categorize the isolates into sensitive and tolerant. A high phenotype-genotype concordance (95%) regarding tolerance to QACs was obtained by screening the genomes for the presence of QAC tolerance-associated genes bcrABC, emrE, emrC, and qacH. Based on this high concordance, we assessed the QAC genes' dissemination among publicly available L. monocytogenes genomes (n = 39,196). Overall, QAC genes were found in 23% and 28% of the L. monocytogenes collection in this study and in the global data set, respectively. bcrABC and qacH were the most prevalent genes, with bcrABC being the most detected QAC gene in the USA, while qacH dominated in Europe. No significant differences (P > 0.05) in the PAA tolerance were detected among isolates belonging to different lineages, serogroups, clonal complexes, or isolation sources, highlighting limited variation in the L. monocytogenes sensitivity to this disinfectant. The present work represents the largest testing of L. monocytogenes sensitivity to important food industry disinfectants at the phenotypic and genomic level, revealing diversity in the tolerance to QACs while all isolates showed similar sensitivity to PAA. IMPORTANCE Contamination of Listeria monocytogenes within food processing environments is of great concern to the food industry due to challenges in eradicating the isolates once they become established and persistent in the environment. Genetic markers associated with increased tolerance to certain disinfectants have been identified, which alongside other biotic and abiotic factors can favor the persistence of L. monocytogenes in the food production environment. By employing a comprehensive large-scale phenotypic testing and genomic analysis, this study significantly enhances the understanding of the L. monocytogenes tolerance to quaternary ammonium compounds (QACs) and the genetic determinants associated with the increased tolerance. We provide a global overview of the QAC genes prevalence among public L. monocytogenes sequences and their distribution among clonal complexes, isolation sources, and geographical locations. Additionally, our comprehensive screening of the peracetic acid (PAA) sensitivity shows that this disinfectant can be used in the food industry as the lack of variation in sensitivity indicates reliable effect and no apparent possibility for the emergence of tolerance.
Collapse
Affiliation(s)
- Mirena Ivanova
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Martin Laage Kragh
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Judit Szarvas
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Elif Seyda Tosun
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Natacha Friis Holmud
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Alexander Gmeiner
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Corinne Amar
- Public Health England, National Infection Service, London, United Kingdom
| | - Claudia Guldimann
- Chair for Food Safety and Analytics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - TuAnh N. Huynh
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Renáta Karpíšková
- Department of Public Health, Masaryk University, Medical Faculty, Brno, Czech Republic
| | | | | | | | | | - Patrizia Centorame
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | - Maria Elisabetta De Angelis
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | | | - Yinghua Xiao
- Arla Innovation Center, Arla Foods amba, Aarhus N, Denmark
| | - Sylvia Kleta
- German Federal Institute for Risk Assessment (BfR), National Reference Laboratory for Listeria monocytogenes (NRL-Lm), Berlin, Germany
| | - Stefanie Lüth
- German Federal Institute for Risk Assessment (BfR), National Reference Laboratory for Listeria monocytogenes (NRL-Lm), Berlin, Germany
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Listeria monocytogenes, Graz, Austria
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, Oregon, USA
| | - Franco Pagotto
- Listeriosis Reference Service, Food Directorate, Bureau of Microbial Hazards, Ottawa, Ontario, Canada
| | - Kathrin Rychli
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Even Heir
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Trond Møretrø
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Phillip Brown
- North Carolina State University, Raleigh, North Carolina, USA
| | | | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Paw Dalgaard
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Patrick Murigu Kamau Njage
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Frank Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Lisbeth Truelstrup Hansen
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
2
|
Liu X, Shi T, Li J, Wu H, Zhao Q, Fang Z, Liang Y, Xiao Q, Chen M, Dong Q, Zhang H. pLM33 provides tolerance of persistent Listeria monocytogenes ST5 to various stress conditions and also enhances its virulence. Food Microbiol 2025; 126:104675. [PMID: 39638448 DOI: 10.1016/j.fm.2024.104675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
Listeria monocytogenes is a major foodborne pathogen. In our previous study, we found that L. monocytogenes ST5 and ST121 strains were dominant in two food plants of Shanghai. Genetic characterization revealed that the environmental tolerance of these strains was attributable to the plasmids pLM33 and pLM5578. To further evaluate the function of L. monocytogenes plasmids, we selected ST5 and ST121 wild-type strains, and used their plasmid-cured strains as controls to conduct tolerance tests. In addition, we analyzed 108 L. monocytogenes strains isolated from four major food categories in Shanghai. Our results showed that compared with the plasmid-cured strain, the ST5 strain carrying pLM33 showed higher tolerance to environmental stress conditions, including low acid, high salt, oxidizing, and high-temperature conditions; as well as higher virulence. Furthermore, we found that the plasmid carriage rate of food isolates was 97.22%, with the highest carriage rate of 68.57% for pLM5578, followed by 24.76% for pLM33. Notably, all L. monocytogenes ST5 isolates from ready-to-eat food products (n = 11) carried plasmids, suggesting that contamination of these food products may pose a serious risk to human health. In summary, the results of this study broaden our understanding regarding the role of L. monocytogenes plasmids in stress responses.
Collapse
Affiliation(s)
- Xin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Tianqi Shi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Jiaming Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Qing Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zhixin Fang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Yingying Liang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Quan Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| |
Collapse
|
3
|
Lambrechts K, Gouws P, Rip D. Genetic diversity of Listeria monocytogenes from seafood products, its processing environment, and clinical origin in the Western Cape, South Africa using whole genome sequencing. AIMS Microbiol 2024; 10:608-643. [PMID: 39219753 PMCID: PMC11362271 DOI: 10.3934/microbiol.2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Listeria monocytogenes is a concern in seafood and its food processing environment (FPE). Several outbreaks globally have been linked to various types of seafood. Genetic profiling of L. monocytogenes is valuable to track bacterial contamination throughout the FPE and in understanding persistence mechanisms, with limited studies from South Africa. Forty-six L. monocytogenes isolates from origins: Fish/seafood products (n = 32) (salmon, smoked trout, fresh hake, oysters), the FPE (n = 6), and clinical (n = 8) were included in this study. Lineage typing, antibiotic susceptibility testing, and screening for two genes (bcrABC and emrC) conferring sanitizer tolerance was conducted. The seafood and FPE isolates originated from seven different factories processing various seafood products with undetermined origin. All clinical isolates were categorized as lineage I, and seafood and FPE isolates were mostly categorized into lineage II (p < 0.01). Seafood and FPE isolates (53%) carried the bcrABC gene cassette and one fish isolate, the emrC gene. A subset, n = 24, was grouped into serotypes, sequence types (STs), and clonal complexes (CCs) with whole genome sequencing (WGS). Eight CCs and ten STs were identified. All clinical isolates belonged to serogroup 4b, hypervirulent CC1. CC121 was the most prevalent in isolates from food and the FPE. All isolates carried Listeria pathogenicity islands (LIPI) 1 and 2. LIPI-3 and LIPI-4 were found in certain isolates. We identified genetic determinants linked to enhanced survival in the FPE, including stress survival islets (SSI) and genes conferring tolerance to sanitizers. SSI-1 was found in 44% isolates from seafood and the FPE. SSI-2 was found in all the ST121 seafood isolates. Isolates (42%) harbored transposon Tn1688_qac (ermC), conferring tolerance to quaternary ammonium compounds. Five plasmids were identified in 13 isolates from seafood and the FPE. This is the first One Health study reporting on L. monocytogenes genetic diversity, virulence and resistance profiles from various types of seafood and its FPE in South Africa.
Collapse
Affiliation(s)
| | | | - Diane Rip
- Department of Food Science, Stellenbosch University, 7602, South Africa
| |
Collapse
|
4
|
Daza Prieto B, Pietzka A, Martinovic A, Ruppitsch W, Zuber Bogdanovic I. Surveillance and genetic characterization of Listeria monocytogenes in the food chain in Montenegro during the period 2014-2022. Front Microbiol 2024; 15:1418333. [PMID: 39149205 PMCID: PMC11324475 DOI: 10.3389/fmicb.2024.1418333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Listeria monocytogenes is an ubiquitous foodborne pathogen that represents a serious threat to public health and the food industry. Methods In this study Whole Genome Sequencing (WGS) was used to characterize 160 L. monocytogenes isolates obtained from 22,593 different food sources in Montenegro during the years 2014-2022. Results Isolates belonged to 21 different clonal complexes (CCs), 22 sequence types (STs) and 73 core genome multilocus sequence types (cgMLST) revealing a high diversity. The most prevalent STs were ST8 (n = 29), ST9 (n = 31), ST121 (n = 19) and ST155 (n = 20). All isolates carried virulence genes (VGs), 111 isolates carried mobile genetic elements (MGEs) (ranging from 1 to 7 MGEs) and 101 isolates carried plasmids (ranging from 1 to 3 plasmids). All isolates carried the intrinsic resistance genes fosX and lin. None of the isolates carried acquired antimicrobial resistance genes (ARGs). Discussion/conclusion Continuous monitoring and surveillance of L. monocytogenes is needed for improving and ameliorating the public health.
Collapse
Affiliation(s)
- Beatriz Daza Prieto
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Ariane Pietzka
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Aleksandra Martinovic
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Ivana Zuber Bogdanovic
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
- Diagnostic Veterinary Laboratory, Podgorica, Montenegro
| |
Collapse
|
5
|
Manqele A, Adesiyun A, Mafuna T, Pierneef R, Moerane R, Gcebe N. Virulence Potential and Antimicrobial Resistance of Listeria monocytogenes Isolates Obtained from Beef and Beef-Based Products Deciphered Using Whole-Genome Sequencing. Microorganisms 2024; 12:1166. [PMID: 38930548 PMCID: PMC11205329 DOI: 10.3390/microorganisms12061166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterial pathogen that threatens the food chain and human health. In this study, whole-genome sequencing (WGS) was used for the genomic characterization of L. monocytogenes (n = 24) from beef and beef-based products. Multilocus Sequence Type (MLST) analysis revealed that ST204 of CC204 was the most common sequence type (ST). Other sequence types detected included ST1 and ST876 of CC1, ST5 of CC5, ST9 of CC9, ST88 of CC88, ST2 and ST1430 of CC2, and ST321 of CC321. Genes encoding for virulence factors included complete LIPI-1 (pfrA-hly-plcA-plcB-mpl-actA) from 54% (13/24) of the isolates of ST204, ST321, ST1430, and ST9 and internalin genes inlABC that were present in all the STs. All the L. monocytogenes STs carried four intrinsic/natural resistance genes, fosX, lin, norB, and mprF, conferring resistance to fosfomycin, lincosamide, quinolones, and cationic peptides, respectively. Plasmids pLGUG1 and J1776 were the most detected (54% each), followed by pLI100 (13%) and pLM5578 (7%). The prophage profile, vB_LmoS_188, was overrepresented amongst the isolates, followed by LP_101, LmoS_293_028989, LP_030_2_021539, A006, and LP_HM00113468. Listeria genomic island 2 (LGI-2) was found to be present in all the isolates, while Listeria genomic island 3 (LGI-3) was present in a subset of isolates (25%). The type VII secretion system was found in 42% of the isolates, and sortase A was present in all L. monocytogenes genomes. Mobile genetic elements and genomic islands did not harbor any virulence, resistance, or environmental adaptation genes that may benefit L. monocytogenes. All the STs did not carry genes that confer resistance to first-line antibiotics used for the treatment of listeriosis. The characterization of L. monocytogenes in our study highlighted the environmental resistance and virulence potential of L. monocytogenes and the risk posed to the public, as this bacterium is frequently found in food and food processing environments.
Collapse
Affiliation(s)
- Ayanda Manqele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| | - Abiodun Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Department of Basic Veterinary Sciences, University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | - Thendo Mafuna
- Department of Biochemistry, University of Johannesburg, Johannesburg 20062028, South Africa
| | - Rian Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- SARChI Chair: Marine Microbiomics, microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Nomakorinte Gcebe
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| |
Collapse
|
6
|
Gana J, Gcebe N, Pierneef RE, Chen Y, Moerane R, Adesiyun AA. Whole Genome Sequence Analysis of Listeria monocytogenes Isolates Obtained from the Beef Production Chain in Gauteng Province, South Africa. Microorganisms 2024; 12:1003. [PMID: 38792832 PMCID: PMC11123765 DOI: 10.3390/microorganisms12051003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The study used whole-genome sequencing (WGS) and bioinformatics analysis for the genomic characterization of 60 isolates of Listeria monocytogenes obtained from the beef production chain (cattle farms, abattoirs, and retail outlets) in Gauteng province, South Africa. The sequence types (STs), clonal complexes (CCs), and the lineages of the isolates were determined using in silico multilocus sequence typing (MLST). We used BLAST-based analyses to identify virulence and antimicrobial genes, plasmids, proviruses/prophages, and the CRISPR-Cas system. The study investigated any association of the detected genes to the origin in the beef production chain of the L. monocytogenes isolates. Overall, in 60 isolates of Listeria monocytogenes, there were seven STs, six CCs, forty-four putative virulence factors, two resistance genes, one plasmid with AMR genes, and three with conjugative genes, one CRISPR gene, and all 60 isolates were positive for proviruses/prophages. Among the seven STs detected, ST204 (46.7%) and ST2 (21.7%) were the most prominent, with ST frequency varying significantly (p < 0.001). The predominant CC detected were CC2 (21.7%) and CC204 (46.7%) in lineages I and II, respectively. Of the 44 virulence factors detected, 26 (across Listeria Pathogenicity Islands, LIPIs) were present in all the isolates. The difference in the detection frequency varied significantly (p < 0.001). The two AMR genes (fosX and vga(G)) detected were present in all 60 (100%) isolates of L. monocytogenes. The only plasmid, NF033156, was present in three (5%) isolates. A CRISPR-Cas system was detected in six (10%), and all the isolates carried proviruses/prophages. The source and sample type significantly affected the frequencies of STs and virulence factors in the isolates of L. monocytogenes. The presence of fosX and vga(G) genes in all L. monocytogenes isolates obtained from the three industries of the beef production chain can potentially cause therapeutic implications. Our study, which characterized L. monocytogenes recovered from the three levels in the beef production chain, is the first time genomics was performed on this type of data set in the country, and this provides insights into the health implications of Listeria.
Collapse
Affiliation(s)
- James Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
- Department of Agricultural Education, Federal College of Education, Kontagora 923101, Niger State, Nigeria
| | - Nomakorinte Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa;
| | - Rian Edward Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa;
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- Microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5001 Campus Dr. Room 4E-007/Mailstop HFS-710, College Park, MD 20740, USA;
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
| | - Abiodun Adewale Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine 685509, Trinidad and Tobago
| |
Collapse
|
7
|
Jiménez-Edeza M, Galván-Gordillo SV, Pacheco-Arjona R, Castañeda-Ruelas GM. Genomic Approach of Listeria monocytogenes Strains Isolated from Deli-Meats in Mexico. Curr Microbiol 2024; 81:145. [PMID: 38632127 DOI: 10.1007/s00284-024-03680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis worldwide. In México, L. monocytogenes has been identified as a hazard of deli-meats. However, the genomic analysis that supports the transmission of L. monocytogenes strains via deli-meats and its role as a source for virulence and resistance genes is lacking. Here, we present four high-quality genome drafts of L. monocytogenes strains isolated from deli-meats in Mexico. In silico typing was used to determine the serotype, lineage, clonal complexes (CC), and multilocus sequence (ST). Also, comparative genomics were performed to explore the diversity, virulence, mobile elements, antimicrobial resistant and stress survival traits. The genome sequence size of these strains measured 3.05 ± 0.07 Mb with a mean value of 37.9%G+C. All strains belonged to linage I, which was divided into two groups: 4b, CC2, ST1 (n = 3) and 1/2b, CC5, ST5 (n = 1). The pangenome and core genome contained 3493 and 2625 genes, respectively. The strains harbor the L. monocytogenes pathogenicity island-1 (LIPI-1) and the same multidrug resistance pattern (fosX, norB, mprF, lin) via in silico analysis. Comparative analysis delineated the genomes as essentially syntenic, whose genomic differences were due to phage insertion. These results expand what is known about the biology of the L. monocytogenes strains isolated from deli-meats in Mexico and warns of the risk that these strains belong to epidemic linage and harbor virulence genes linked to human disease.
Collapse
Affiliation(s)
- Maribel Jiménez-Edeza
- Laboratorio de Investigación y Diagnóstico Microbiológico, Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, 80013, Sinaloa, Mexico
| | | | - Ramón Pacheco-Arjona
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, 97315, Yucatan, Mexico
| | - Gloria Marisol Castañeda-Ruelas
- Laboratorio de Investigación y Diagnóstico Microbiológico, Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, 80013, Sinaloa, Mexico.
| |
Collapse
|
8
|
Møretrø T, Wagner E, Heir E, Langsrud S, Fagerlund A. Genomic analysis of Listeria monocytogenes CC7 associated with clinical infections and persistence in the food industry. Int J Food Microbiol 2024; 410:110482. [PMID: 37977076 DOI: 10.1016/j.ijfoodmicro.2023.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Listeria monocytogenes clonal complex 7 (CC7), belonging to lineage II, is the most common subtype among clinical listeriosis isolates in Norway, and is also commonly found in Norwegian food industry and outdoor environments. In the present study, the relative prevalence of CCs among clinical isolates of L. monocytogenes in European countries during 2010-2015 was determined. Then, phylogenomic and comparative genomic analyses was performed for 115 Norwegian and 255 international reference genomes from various sources, to examine potential explanations underlying the high prevalence of CC7 among Norwegian listeriosis cases. Selected isolates were also compared using in vitro virulence assays. The results showed a high relative prevalence of CC7 in clinical isolates from Norway and the neighboring Nordic countries Sweden and Finland. In contrast to in most other European countries, lineage II dominated among clinical isolates in these countries. Phylogenetic analysis of the 370 CC7 isolates separated the genomes into four clades, with the majority of Norwegian isolates (69 %) clustered in one of these clades, estimated to have diverged from the other clades around year 1830. The Norwegian isolates within this clade were widely distributed in different habitats; several (poultry) meat processing factories, a salmon processing plant, in nature, farms, and slugs, and among human clinical isolates. In particular, one pervasive CC7 clone was found across three poultry processing plants and one salmon processing plant, and also included three clinical isolates. All analysed CC7 isolates harbored the same set of 72 genes involved in both general and specific stress responses. Divergence was observed for plasmid-encoded genes including genes conferring resistance against arsenic (Tn554-arsCBADR), cadmium (cadA1C1 and cadA2C2), and the biocide benzalkonium chloride (bcrABC). No significant difference in prevalence of these genes was seen between isolates from different habitats or sources. Virulence attributes were highly conserved among the CC7 isolates. In vitro virulence studies of five representative CC7 isolates revealed a virulence potential that, in general, was not significantly lower than that of the control strain EGDe, with isolate-dependent differences that could not be correlated with genetic determinants. The study shows that CC7 is widespread in Norway, and that a pervasive CC7 clone was present in food processing plants. The study highlights the importance of CC7 and lineage II strains in causing listeriosis and shows that more research is needed to understand the reasons behind geographical differences in CC prevalence.
Collapse
Affiliation(s)
- Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway.
| | - Eva Wagner
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Annette Fagerlund
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| |
Collapse
|
9
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
10
|
Tibbs-Cortes BW, Schultz DL, Schmitz-Esser S. Closed genome sequences of two Listeria monocytogenes ST121 strains. Microbiol Resour Announc 2023; 12:e0075023. [PMID: 37768047 PMCID: PMC10586163 DOI: 10.1128/mra.00750-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
We performed Oxford Nanopore and Illumina sequencing to generate accurate, closed genomes for the Listeria monocytogenes strains 6179 and L58-55. The new assemblies were generally similar to the previous Illumina-based assemblies, but additional rRNA operons and repeat regions were identified in the new assembly for strain 6179.
Collapse
Affiliation(s)
- Bienvenido W. Tibbs-Cortes
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Dylan L. Schultz
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
11
|
Centorotola G, Ziba MW, Cornacchia A, Chiaverini A, Torresi M, Guidi F, Cammà C, Bowa B, Mtonga S, Magambwa P, D’Alterio N, Scacchia M, Pomilio F, Muuka G. Listeria monocytogenes in ready to eat meat products from Zambia: phenotypical and genomic characterization of isolates. Front Microbiol 2023; 14:1228726. [PMID: 37711697 PMCID: PMC10498467 DOI: 10.3389/fmicb.2023.1228726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
The contamination of ready to eat foods (RTE) products due to Listeria monocytogenes could compromise the products safety becoming a great risk for the consumers. The high presence of L. monocytogenes in RTE products has been described worldwide, but few data are available about these products from African countries. The aims of this study were to report the presence of L. monocytogenes in Zambian RTE products, providing genomic characterization and data on similarity with African circulating strains using whole genome sequencing (WGS). A total of 304 RTE products, produced by different Zambian manufacturers, were purchased at retail, from major supermarkets located in Lusaka, Zambia, comprising 130 dairy and 174 meat products. L. monocytogenes was detected only in 18 (10.3%) RTE meat products of the 174 samples tested. The MLST analysis grouped the 18 L. monocytogenes isolates in 7 clonal complexes (CCs): CC1 (n = 5), CC2 (n = 4), CC9 (n = 4), CC5 (n = 2), CC121 (n = 1), CC155 (n = 1), and CC3 (n = 1). According to the cgMLST results, several clusters were detected, in particular belonging to hyper-virulent clones CC1 and CC2. Regarding the virulence factors, a complete L. monocytogenes Pathogenicity Island 3 (LIPI-3) was present both in the CC1 and CC3, in addition to LIPI-1. Several resistance genes and mobile genetic elements were detected, including Stress Islands, the bcrABC cassette and Tn6188_qac transposon, plasmids and intact prophages. Despite being a first preliminary work with a limited number of samples and isolates, this study helped to increase existing knowledge on contaminated RTE products in Zambia, confirming the presence of hyper-virulent L. monocytogenes CCs, which could play an important role in human diseases, posing a public health concern for consumers.
Collapse
Affiliation(s)
- Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maureen Wakwamba Ziba
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Benson Bowa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Samson Mtonga
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Phelly Magambwa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Nicola D’Alterio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Massimo Scacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Geoffrey Muuka
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| |
Collapse
|
12
|
Ramadan H, Al-Ashmawy M, Soliman AM, Elbediwi M, Sabeq I, Yousef M, Algammal AM, Hiott LM, Berrang ME, Frye JG, Jackson CR. Whole-genome sequencing of Listeria innocua recovered from retail milk and dairy products in Egypt. Front Microbiol 2023; 14:1160244. [PMID: 37234542 PMCID: PMC10206011 DOI: 10.3389/fmicb.2023.1160244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
The similarity of the Listeria innocua genome with Listeria monocytogenes and their presence in the same niche may facilitate gene transfer between them. A better understanding of the mechanisms responsible for bacterial virulence requires an in-depth knowledge of the genetic characteristics of these bacteria. In this context, draft whole genome sequences were completed on five L. innocua isolated from milk and dairy products in Egypt. The assembled sequences were screened for antimicrobial resistance and virulence genes, plasmid replicons and multilocus sequence types (MLST); phylogenetic analysis of the sequenced isolates was also performed. The sequencing results revealed the presence of only one antimicrobial resistance gene, fosX, in the L. innocua isolates. However, the five isolates carried 13 virulence genes involved in adhesion, invasion, surface protein anchoring, peptidoglycan degradation, intracellular survival, and heat stress; all five lacked the Listeria Pathogenicity Island 1 (LIPI-1) genes. MLST assigned these five isolates into the same sequence type (ST), ST-1085; however, single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed 422-1,091 SNP differences between our isolates and global lineages of L. innocua. The five isolates possessed an ATP-dependent protease (clpL) gene, which mediates heat resistance, on a rep25 type plasmids. Blast analysis of clpL-carrying plasmid contigs showed approximately 99% sequence similarity to the corresponding parts of plasmids of L. monocytogenes strains 2015TE24968 and N1-011A previously isolated from Italy and the United States, respectively. Although this plasmid has been linked to L. monocytogenes that was responsible for a serious outbreak, this is the first report of L. innocua containing clpL-carrying plasmids. Various genetic mechanisms of virulence transfer among Listeria species and other genera could raise the possibility of the evolution of virulent strains of L. innocua. Such strains could challenge processing and preservation protocols and pose health risks from dairy products. Ongoing genomic research is necessary to identify these alarming genetic changes and develop preventive and control measures.
Collapse
Affiliation(s)
- Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Maha Al-Ashmawy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed M. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Animal Health Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Islam Sabeq
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Tukh, Qalyubia, Egypt
| | - Mona Yousef
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Lari M. Hiott
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Mark E. Berrang
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| |
Collapse
|
13
|
Ji S, Song Z, Luo L, Wang Y, Li L, Mao P, Ye C, Wang Y. Whole-genome sequencing reveals genomic characterization of Listeria monocytogenes from food in China. Front Microbiol 2023; 13:1049843. [PMID: 36726565 PMCID: PMC9885130 DOI: 10.3389/fmicb.2022.1049843] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Listeria monocytogenes is a foodborne bacterium that could persist in food and food processing environments for a long time. Understanding the population structure and genomic characterization of foodborne L. monocytogenes is essential for the prevention and control of listeriosis. Methods A total of 322 foodborne L. monocytogenes isolates from 13 geographical locations and four food sources in China between 2000 and 2018 were selected for whole-genome sequencing. Results In silico subtyping divided the 322 isolates into five serogroups, 35 sequence types (STs), 26 clonal complexes (CCs) and four lineages. Serogroup IIa was the most prevalent serogroup and ST9 was the most prevalent ST of foodborne L. monocytogenes strains isolated in China. The in-depth phylogenetic analysis on CC9 revealed that ST122 clone might be original from ST9 clone. Furthermore, 23 potentially relevant clusters were identified by pair-wised whole-genome single nucleotide polymorphism analysis, indicating that persistent- and/or cross-contamination had occurred in markets in China. ST8 and ST121 were the second and third top STs of L. monocytogenes in China, which had heterogeneity with that of L. monocytogenes isolates from other countries. The antibiotic resistance genes aacA4, tetM, tetS, dfrG carried by different mobile elements were found in L. monocytogenes strains. One lineage II strain carrying Listeria Pathogenicity Island 3 was first reported. In addition, a novel type of premature stop codon in inlA gene was identified in this study. Discussion These findings revealed the genomic characteristics and evolutionary relationship of foodborne L. monocytogenes in China on a scale larger than previous studies, which further confirmed that whole-genome sequencing analysis would be a helpful tool for routine surveillance and source-tracing investigation.
Collapse
Affiliation(s)
- Shunshi Ji
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zexuan Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yiqian Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingling Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pan Mao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China,Changyun Ye, ✉
| | - Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China,*Correspondence: Yan Wang, ✉
| |
Collapse
|
14
|
Cardenas-Alvarez MX, Zeng H, Webb BT, Mani R, Muñoz M, Bergholz TM. Comparative Genomics of Listeria monocytogenes Isolates from Ruminant Listeriosis Cases in the Midwest United States. Microbiol Spectr 2022; 10:e0157922. [PMID: 36314928 PMCID: PMC9769944 DOI: 10.1128/spectrum.01579-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Ruminants are a well-known reservoir for Listeria monocytogenes. In addition to asymptomatic carriage of the pathogen, ruminants can also acquire listeriosis and develop clinical manifestations in the form of neurologic or fetal infections, similar to those occurring in humans. Genomic characterization of ruminant listeriosis cases in Europe have identified lineage 1 and 2 strains associated with infection, as well as clonal complexes (CCs) that are commonly isolated from human cases of listeriosis; however, there is little information on the diversity of L. monocytogenes from ruminant listeriosis in the United States. In this study, we characterized and compared 73 L. monocytogenes isolates from ruminant listeriosis cases from the Midwest and the Upper Great Plains collected from 2015 to 2020. Using whole-genome sequence data, we classified the isolates and identified key virulence factors, stress-associated genes, and mobile genetic elements within our data set. Our isolates belonged to three different lineages: 31% to lineage 1, 53% to lineage 2, and 15% to lineage 3. Lineage 1 and 3 isolates were associated with neurologic infections, while lineage 2 showed a greater frequency of fetal infections. Additionally, the presence of mobile elements, virulence-associated genes, and stress and antimicrobial resistance genes was evaluated. These genetic elements are responsible for most of the subgroup-specific features and may play a key role in the spread of hypervirulent clones, including the spread of hypervirulent CC1 clone commonly associated with disease in humans, and may explain the increased frequency of certain clones in the area. IMPORTANCE Listeria monocytogenes affects humans and animals, causing encephalitis, septicemia, and abortions, among other clinical outcomes. Ruminants such as cattle, goats, and sheep are the main carriers contributing to the maintenance and dispersal of this pathogen in the farm environment. Contamination of food products from farms is of concern not only because many L. monocytogenes genotypes found there are associated with human listeriosis but also as a cause of significant economic losses when livestock and food products are affected. Ruminant listeriosis has been characterized extensively in Europe; however, there is limited information about the genetic diversity of these cases in the United States. Identification of subgroups with a greater ability to spread may facilitate surveillance and management of listeriosis and contribute to a better understanding of the genome diversity of this pathogen, providing insights into the molecular epidemiology of ruminant listeriosis in the region.
Collapse
Affiliation(s)
- Maria X. Cardenas-Alvarez
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Hui Zeng
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Brett T. Webb
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, North Dakota, USA
| | - Rinosh Mani
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, Michigan, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Teresa M. Bergholz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
15
|
Anast JM, Etter AJ, Schmitz‐Esser S. Comparative analysis of Listeria monocytogenes plasmid transcriptomes reveals common and plasmid-specific gene expression patterns and high expression of noncoding RNAs. Microbiologyopen 2022; 11:e1315. [PMID: 36314750 PMCID: PMC9484302 DOI: 10.1002/mbo3.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Recent research demonstrated that some Listeria monocytogenes plasmids contribute to stress survival. However, only a few studies have analyzed gene expression patterns of L. monocytogenes plasmids. In this study, we identified four previously published stress-response-associated transcriptomic data sets which studied plasmid-harboring L. monocytogenes strains but did not include an analysis of the plasmid transcriptomes. The four transcriptome data sets encompass three distinct plasmids from three different L. monocytogenes strains. Differential gene expression analysis of these plasmids revealed that the number of differentially expressed (DE) L. monocytogenes plasmid genes ranged from 30 to 45 with log2 fold changes of -2.2 to 6.8, depending on the plasmid. Genes often found to be DE included the cadmium resistance genes cadA and cadC, a gene encoding a putative NADH peroxidase, the putative ultraviolet resistance gene uvrX, and several uncharacterized noncoding RNAs (ncRNAs). Plasmid-encoded ncRNAs were consistently among the highest expressed genes. In addition, one of the data sets utilized the same experimental conditions for two different strains harboring distinct plasmids. We found that the gene expression patterns of these two L. monocytogenes plasmids were highly divergent despite the identical treatments. These data suggest plasmid-specific gene expression responses to environmental stimuli and differential plasmid regulation mechanisms between L. monocytogenes strains. Our findings further our understanding of the dynamic expression of L. monocytogenes plasmid-encoded genes in diverse environmental conditions and highlight the need to expand the study of L. monocytogenes plasmid genes' functions.
Collapse
Affiliation(s)
- Justin M. Anast
- Department of Animal ScienceIowa State UniversityAmesIowaUSA
- Interdepartmental Microbiology Graduate ProgramIowa State UniversityAmesIowaUSA
| | - Andrea J. Etter
- Department of Nutrition and Food SciencesThe University of VermontBurlingtonVermontUSA
| | - Stephan Schmitz‐Esser
- Department of Animal ScienceIowa State UniversityAmesIowaUSA
- Interdepartmental Microbiology Graduate ProgramIowa State UniversityAmesIowaUSA
| |
Collapse
|
16
|
Pervasive Listeria monocytogenes Is Common in the Norwegian Food System and Is Associated with Increased Prevalence of Stress Survival and Resistance Determinants. Appl Environ Microbiol 2022; 88:e0086122. [PMID: 36005805 PMCID: PMC9499026 DOI: 10.1128/aem.00861-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the diversity, distribution, persistence, and prevalence of stress survival and resistance genes of Listeria monocytogenes clones dominating in food processing environments in Norway, genome sequences from 769 L. monocytogenes isolates from food industry environments, foods, and raw materials (512 of which were sequenced in the present study) were subjected to whole-genome multilocus sequence typing (wgMLST), single-nucleotide polymorphism (SNP), and comparative genomic analyses. The data set comprised isolates from nine meat and six salmon processing facilities in Norway collected over a period of three decades. The most prevalent clonal complex (CC) was CC121, found in 10 factories, followed by CC7, CC8, and CC9, found in 7 factories each. Overall, 72% of the isolates were classified as persistent, showing 20 or fewer wgMLST allelic differences toward an isolate found in the same factory in a different calendar year. Moreover, over half of the isolates (56%) showed this level of genetic similarity toward an isolate collected from a different food processing facility. These were designated as pervasive strains, defined as clusters with the same level of genetic similarity as persistent strains but isolated from different factories. The prevalence of genetic determinants associated with increased survival in food processing environments, including heavy metal and biocide resistance determinants, stress response genes, and inlA truncation mutations, showed a highly significant increase among pervasive isolates but not among persistent isolates. Furthermore, these genes were significantly more prevalent among the isolates from food processing environments compared to in isolates from natural and rural environments (n = 218) and clinical isolates (n = 111) from Norway. IMPORTANCEListeria monocytogenes can persist in food processing environments for months to decades and spread through the food system by, e.g., contaminated raw materials. Knowledge of the distribution and diversity of L. monocytogenes is important in outbreak investigations and is essential to effectively track and control this pathogen in the food system. The present study presents a comprehensive overview of the prevalence of persistent clones and of the diversity of L. monocytogenes in Norwegian food processing facilities. The results demonstrate extensive spread of highly similar strains throughout the Norwegian food system, in that 56% of the 769 collected isolates from food processing factories belonged to clusters of L. monocytogenes identified in more than one facility. These strains were associated with an overall increase in the prevalence of plasmids and determinants of heavy metal and biocide resistance, as well as other genetic elements associated with stress survival mechanisms and persistence.
Collapse
|
17
|
Guidi F, Lorenzetti C, Centorotola G, Torresi M, Cammà C, Chiaverini A, Pomilio F, Blasi G. Atypical Serogroup IVb-v1 of Listeria monocytogenes Assigned to New ST2801, Widely Spread and Persistent in the Environment of a Pork-Meat Producing Plant of Central Italy. Front Microbiol 2022; 13:930895. [PMID: 35832815 PMCID: PMC9271897 DOI: 10.3389/fmicb.2022.930895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we characterized 84 Listeria monocytogenes (Lm) strains having an atypical IVb-v1 profile and isolated in a meat producing plant of Central Italy. They were assigned to the new MLST type ST2801 (CC218). The new ST was widespread in the food-producing environment where it was able to persist for over a year even after cleaning and sanitation. Cluster analysis identified three main clusters genetically close to each other (0-22 allelic differences and 0-28 SNPs) from two different cgMLST types, suggesting a common source. The coexistence of closely related clusters over time could be the result of a different evolution path starting from a common ancestor first introduced in the plant and/or the consequence of the repetitive reintroduction of closely related clones probably by raw materials. All the strains presented several determinants for heavy metals resistance, stress response, biofilm production, and multidrug efflux pumps with no significant differences among the clusters. A total of 53 strains carried pLI100 and the j1776 plasmids, while in one strain, the pLM33 was found in addition to pLI100. Only the strains carrying plasmids presented cadA and cadC for cadmium resistance and the mco gene encoding a multicopper oxidase and gerN for an additional Na+/H+-K+ antiporter. All the strains presented a virulence profile including a full-length inlA gene and the additional LIPI-3. The isolation of a new ST with a large pattern of stress-adaptation genes and able to persist is an important contribution to deepening the current knowledge on the uncommon IVb-v1 and in general on the genomic diversity of Lm.
Collapse
Affiliation(s)
- Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati,” Perugia, Italy
| | - Cinzia Lorenzetti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati,” Perugia, Italy
| | - Gabriella Centorotola
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Marina Torresi
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Cesare Cammà
- Centro di Referenza Nazionale per Sequenze Genomiche di Microrganismi Patogeni, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Alexandra Chiaverini
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Francesco Pomilio
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati,” Perugia, Italy
| |
Collapse
|
18
|
Nonsynonymous Mutations in fepR Are Associated with Adaptation of Listeria monocytogenes and Other Listeria spp. to Low Concentrations of Benzalkonium Chloride but Do Not Increase Survival of L. monocytogenes and Other Listeria spp. after Exposure to Benzalkonium Chloride Concentrations Recommended for Use in Food Processing Environments. Appl Environ Microbiol 2022; 88:e0048622. [PMID: 35587542 PMCID: PMC9195947 DOI: 10.1128/aem.00486-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selection for Listeria monocytogenes strains that are tolerant to quaternary ammonium compounds (such as benzalkonium chloride [BC]) is a concern across the food industry, including in fresh produce processing environments. This study evaluated the ability of 67 strains of produce-associated L. monocytogenes and other Listeria spp. (“parent strains”) to show enhanced BC tolerance after serial passaging in increasing BC concentrations and to maintain this tolerance after substreaking in the absence of BC. After serial passaging in BC, 62/67 “BC passaged cultures” showed higher MICs (4 to 20 mg/L) than parent strains (2 to 6 mg/L). After the substreaking of two isolates from BC passaged cultures for each parent strain, 105/134 “adapted isolates” maintained MICs (4 to 6 mg/L) higher than parent strain MICs. These results suggested that adapted isolates acquired heritable adaptations that confer BC tolerance. Whole-genome sequencing and Sanger sequencing of fepR, a local repressor of the MATE family efflux pump FepA, identified nonsynonymous fepR mutations in 48/67 adapted isolates. The mean inactivation of adapted isolates after exposure to use-level concentrations of BC (300 mg/L) was 4.48 log, which was not significantly different from inactivation observed in parent strains. Serial passaging of cocultures of L. monocytogenes strains containing bcrABC or qacH did not yield adapted isolates that showed enhanced BC tolerance in comparison to that of monocultures. These results suggest that horizontal gene transfer either did not occur or did not yield isolates with enhanced BC tolerance. Overall, this study provides new insights into selection of BC tolerance among L. monocytogenes and other Listeria spp. IMPORTANCEListeria monocytogenes tolerance to quaternary ammonium compounds has been raised as a concern with regard to L. monocytogenes persistence in food processing environments, including in fresh produce packing and processing environments. Persistence of L. monocytogenes can increase the risk of product contamination, food recalls, and foodborne illness outbreaks. Our study shows that strains of L. monocytogenes and other Listeria spp. can acquire heritable adaptations that confer enhanced tolerance to low concentrations of benzalkonium chloride, but these adaptations do not increase survival of L. monocytogenes and other Listeria spp. when exposed to concentrations of benzalkonium chloride used for food contact surface sanitation (300 mg/L). Overall, these findings suggest that the emergence of benzalkonium chloride-tolerant Listeria strains in food processing environments is of limited concern, as even strains adapted to gain higher MICs in vitro maintain full sensitivity to the concentrations of benzalkonium chloride used for food contact surface sanitation.
Collapse
|
19
|
Chmielowska C, Korsak D, Chapkauskaitse E, Decewicz P, Lasek R, Szuplewska M, Bartosik D. Plasmidome of Listeria spp.-The repA-Family Business. Int J Mol Sci 2021; 22:ijms221910320. [PMID: 34638661 PMCID: PMC8508797 DOI: 10.3390/ijms221910320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteria of the genus Listeria (phylum Firmicutes) include both human and animal pathogens, as well as saprophytic strains. A common component of Listeria spp. genomes are plasmids, i.e., extrachromosomal replicons that contribute to gene flux in bacteria. This study provides an in-depth insight into the structure, diversity and evolution of plasmids occurring in Listeria strains inhabiting various environments under different anthropogenic pressures. Apart from the components of the conserved plasmid backbone (providing replication, stable maintenance and conjugational transfer functions), these replicons contain numerous adaptive genes possibly involved in: (i) resistance to antibiotics, heavy metals, metalloids and sanitizers, and (ii) responses to heat, oxidative, acid and high salinity stressors. Their genomes are also enriched by numerous transposable elements, which have influenced the plasmid architecture. The plasmidome of Listeria is dominated by a group of related replicons encoding the RepA replication initiation protein. Detailed comparative analyses provide valuable data on the level of conservation of these replicons and their role in shaping the structure of the Listeria pangenome, as well as their relationship to plasmids of other genera of Firmicutes, which demonstrates the range and direction of flow of genetic information in this important group of bacteria.
Collapse
Affiliation(s)
- Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
- Correspondence: (C.C.); (D.B.)
| | - Dorota Korsak
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Elvira Chapkauskaitse
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Robert Lasek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Magdalena Szuplewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
- Correspondence: (C.C.); (D.B.)
| |
Collapse
|
20
|
Anast JM, Schmitz-Esser S. Certain Listeria monocytogenes plasmids contribute to increased UVC ultraviolet light stress. FEMS Microbiol Lett 2021; 368:6367057. [PMID: 34498664 PMCID: PMC8457643 DOI: 10.1093/femsle/fnab123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Listeria monocytogenes is the causative agent of the highly fatal foodborne disease listeriosis and can persist in food production environments. Recent research highlights the involvement of L. monocytogenes plasmids in different stress response mechanisms, which contribute to its survival in food production facilities. Ultraviolet (UV) light in the UVC spectrum (200–280 nm) is used in food production to control microbial contamination. Although plasmid-encoded UV resistance mechanisms have been described in other bacteria, no research indicates that L. monocytogenes plasmids contribute to the UV stress response. The plasmids of L. monocytogenes strains 6179, 4KSM and R479a are genetically distinct and were utilized to study the roles of plasmids in the UV response. Wild-type and plasmid-cured variant cells were grown to logarithmic or late-stationary phase, plated on agar plates and exposed to UVC for 60 or 90 s, and colony-forming units (CFUs) were determined. CFUs of 6179 and 4KSM, bearing pLM6179 and p4KSM, respectively, were significantly (P-value < 0.05) higher than those of the plasmid-cured strains in both logarithmic and stationary phases. No difference in survival was observed for the R479a strain. Our data show for the first time that certain L. monocytogenes plasmids contribute to the survival of UVC light stress.
Collapse
Affiliation(s)
- Justin M Anast
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
21
|
Castro H, Douillard FP, Korkeala H, Lindström M. Mobile Elements Harboring Heavy Metal and Bacitracin Resistance Genes Are Common among Listeria monocytogenes Strains Persisting on Dairy Farms. mSphere 2021; 6:e0038321. [PMID: 34232074 PMCID: PMC8386393 DOI: 10.1128/msphere.00383-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen and a resilient environmental saprophyte. Dairy farms are a reservoir of L. monocytogenes, and strains can persist on farms for years. Here, we sequenced the genomes of 250 L. monocytogenes isolates to investigate the persistence and mobile genetic elements (MGEs) of Listeria strains inhabiting dairy farms. We performed a single-nucleotide polymorphism (SNP)-based phylogenomic analysis to identify 14 monophyletic clades of L. monocytogenes persistent on the farms for ≥6 months. We found that prophages and other mobile genetic elements were, on average, more numerous among isolates in persistent than nonpersistent clades, and we demonstrated that resistance genes against bacitracin, arsenic, and cadmium were significantly more prevalent among isolates in persistent than nonpersistent clades. We identified a diversity of mobile elements among the 250 farm isolates, including three novel plasmids, three novel transposons, and a novel prophage harboring cadmium resistance genes. Several of the mobile elements we identified in Listeria were identical to the mobile elements of enterococci, which is indicative of recent transfer between these genera. Through a genome-wide association study, we discovered that three putative defense systems against invading prophages and plasmids were negatively associated with persistence on farms. Our findings suggest that mobile elements support the persistence of L. monocytogenes on dairy farms and that L. monocytogenes inhabiting the agroecosystem is a potential reservoir of mobile elements that may spread to the food industry. IMPORTANCE Animal-derived raw materials are an important source of L. monocytogenes in the food industry. Knowledge of the factors contributing to the pathogen's transmission and persistence on farms is essential for designing effective strategies against the spread of the pathogen from farm to fork. An increasing body of evidence suggests that mobile genetic elements support the adaptation and persistence of L. monocytogenes in the food industry, as these elements contribute to the dissemination of genes encoding favorable phenotypes, such as resilience against biocides. Understanding of the role of farms as a potential reservoir of these elements is needed for managing the transmission of mobile elements across the food chain. Because L. monocytogenes coinhabits the farm ecosystem with a diversity of other bacterial species, it is important to assess the degree to which genetic elements are exchanged between Listeria and other species, as such exchanges may contribute to the rise of novel resistance phenotypes.
Collapse
Affiliation(s)
- Hanna Castro
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - François P. Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Monitoring by a Sensitive Liquid-Based Sampling Strategy Reveals a Considerable Reduction of Listeria monocytogenes in Smeared Cheese Production over 10 Years of Testing in Austria. Foods 2021; 10:foods10091977. [PMID: 34574086 PMCID: PMC8471813 DOI: 10.3390/foods10091977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Most Austrian dairies and cheese manufacturers participated in a Listeria monitoring program, which was established after the first reports of dairy product-associated listeriosis outbreaks more than thirty years ago. Within the Listeria monitoring program, up to 800 mL of product-associated liquids such as cheese smear or brine are processed in a semi-quantitative approach to increase epidemiological sensitivity. A sampling strategy within cheese production, which detects environmental contamination before it results in problematic food contamination, has benefits for food safety management. The liquid-based sampling strategy was implemented by both industrial cheese makers and small-scale dairies located in the mountainous region of Western Austria. This report considers more than 12,000 Listeria spp. examinations of liquid-based samples in the 2009 to 2018 timeframe. Overall, the occurrence of L. monocytogenes in smear liquid samples was 1.29% and 1.55% (n = 5043 and n = 7194 tested samples) for small and industrial cheese enterprises, respectively. The liquid-based sampling strategy for Listeria monitoring at the plant level appears to be superior to solid surface monitoring. Cheese smear liquids seem to have good utility as an index of the contamination of cheese up to that point in production. A modelling or validation process should be performed for the new semi-quantitative approach to estimate the true impact of the method in terms of reducing Listeria contamination at the cheese plant level.
Collapse
|
23
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance in Listeria and Production of Antimicrobial and Virulence Factors. Int J Mol Sci 2021; 22:8141. [PMID: 34360905 PMCID: PMC8348566 DOI: 10.3390/ijms22158141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Some Listeria species are important human and animal pathogens that can be found in contaminated food and produce a variety of virulence factors involved in their pathogenicity. Listeria strains exhibiting multidrug resistance are known to be progressively increasing and that is why continuous monitoring is needed. Effective therapy against pathogenic Listeria requires identification of the bacterial strain involved, as well as determining its virulence factors, such as antibiotic resistance and sensitivity. The present study describes the use of liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to do a global shotgun proteomics characterization for pathogenic Listeria species. This method allowed the identification of a total of 2990 non-redundant peptides, representing 2727 proteins. Furthermore, 395 of the peptides correspond to proteins that play a direct role in Listeria pathogenicity; they were identified as virulence factors, toxins and anti-toxins, or associated with either antibiotics (involved in antibiotic-related compounds production or resistance) or resistance to toxic substances. The proteomic repository obtained here can be the base for further research into pathogenic Listeria species and facilitate the development of novel therapeutics for these pathogens.
Collapse
Affiliation(s)
- Ana G. Abril
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Mónica Carrera
- Marine Research Institute (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Montirón 154, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Pilar Calo-Mata
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|