1
|
Yang F, Yue J, Wang Q, Zha W, Zhou Y, Yuan J, Li L, Sun Q, Liu L. Frateuria hangzhouensis sp. nov. Isolated from Soil of Moso Bamboo Forest in Hangzhou, China. Curr Microbiol 2025; 82:263. [PMID: 40293513 DOI: 10.1007/s00284-025-04232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/05/2025] [Indexed: 04/30/2025]
Abstract
A novel bacterium, designated STR12T, was isolated from the soil of a moso bamboo (Phyllostachys edulis) forest in Hangzhou, China. The strain was a Gram-stain-negative, rod-shaped, motile bacterium; the colonies of which were yellow, round, flat, sticky, and non-moist with a smooth margin after cultivation for 3 days at 28 °C. The strain grew at temperatures between 15 and 37 °C (optimum, 28 °C), pH values from 4.0 to 8.0 (optimum, pH 7.0), and salinities ranging from 0 to 5% (w/v) NaCl (optimum, 1%). Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the strain was grouped within a cluster of the genus Frateuria, showing the highest similarity with Frateuria flava MAH-13T (97.7%). The genome of strain STR12T was 3.74 Mb in length with a G+C content of 67.9%. Genome comparisons of strain STR12T with other species within the genus Frateuria revealed that the range of average nucleotide identity, DNA-DNA hybridization, and average amino acid identity values were 73.9-85.9%, 20.8-30.7%, and 62.7-86.7%, respectively, all of those were below the respective prokaryotic species delineation thresholds. The predominant quinone in strain STR12T was ubiquinone-8 and the major fatty acids were iso-C15:0, iso-C16:0, iso-C17:0, and Summed Feature 9. Polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, and one unidentified phosphoglycolipid. On basis of the finding of phylogenetic, physiological, and chemotaxonomic analyses, we proposed the name Frateuria hangzhouensis sp. nov. for the novel species in the genus Frateuria, of which the type strain was strain STR12T (= ACCC 61897T = GDMCC 1.2964T = JCM 35226T).
Collapse
Affiliation(s)
- Fu Yang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, 100091, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinjun Yue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, China
| | - Qin Wang
- Forestry Administration of Anji, Zhejiang, 313300, China
| | - Weiwei Zha
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, 100091, China
| | - Yanxu Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, 100091, China
| | - Jinling Yuan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, China
| | - Lubin Li
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, 100091, China
| | - Qiwu Sun
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, 100091, China
| | - Lei Liu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, 100091, China.
| |
Collapse
|
2
|
Przewodowska D, Alster P, Madetko-Alster N. Role of the Intestinal Microbiota in the Molecular Pathogenesis of Atypical Parkinsonian Syndromes. Int J Mol Sci 2025; 26:3928. [PMID: 40362171 PMCID: PMC12071724 DOI: 10.3390/ijms26093928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/13/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
The role of the intestinal microbiota and its influence on neurodegenerative disorders has recently been extensively explored, especially in the context of Parkinson's disease (PD). In particular, its role in immunomodulation, impact on inflammation, and participation in the gut-brain axis are under ongoing investigations. Recent studies have revealed new data that could be important for exploring the neurodegeneration mechanisms connected with the gut microbiota, potentially leading to the development of new methods of treatment. In this review, the potential roles of the gut microbiota in future disease-modifying therapies were discussed and the properties of the intestinal microbiota-including its impacts on metabolism and short-chain fatty acids and vitamins-were summarized, with a particular focus on atypical Parkinsonian syndromes. This review focused on a detailed description of the numerous mechanisms through which the microbiota influences neurodegenerative processes. This review explored potentially important connections between the gut microbiota and the evolution and progression of atypical Parkinsonian syndromes. Finally, a description of recently derived results regarding the microbiota alterations in atypical Parkinsonian syndromes in comparison with results previously described in PD was also included.
Collapse
Affiliation(s)
- Dominika Przewodowska
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland;
| | | | - Natalia Madetko-Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland;
| |
Collapse
|
3
|
Prattico C, Gonzalez E, Dridi L, Jazestani S, Low KE, Abbott DW, Maurice CF, Castagner B. Identification of novel fructo-oligosaccharide bacterial consumers by pulse metatranscriptomics in a human stool sample. mSphere 2025; 10:e0066824. [PMID: 39699190 PMCID: PMC11774028 DOI: 10.1128/msphere.00668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Dietary fibers influence the composition of the human gut microbiota and directly contribute to its downstream effects on host health. As more research supports the use of glycans as prebiotics for therapeutic applications, the need to identify the gut bacteria that metabolize glycans of interest increases. Fructo-oligosaccharide (FOS) is a common diet-derived glycan that is fermented by the gut microbiota and has been used as a prebiotic. Despite being well studied, we do not yet have a complete picture of all FOS-consuming gut bacterial taxa. To identify new bacterial consumers, we used a short exposure of microbial communities in a stool sample to FOS or galactomannan as the sole carbon source to induce glycan metabolism genes. We then performed metatranscriptomics, paired with whole metagenomic sequencing, and 16S amplicon sequencing. The short incubation was sufficient to cause induction of genes involved in carbohydrate metabolism, like carbohydrate-active enzymes (CAZymes), including glycoside hydrolase family 32 genes, which hydrolyze fructan polysaccharides like FOS and inulin. Interestingly, FOS metabolism transcripts were notably overexpressed in Blautia species not previously reported to be fructan consumers. We therefore validated the ability of different Blautia species to ferment fructans by monitoring their growth and fermentation in defined media. This pulse metatranscriptomics approach is a useful method to find novel consumers of prebiotics and increase our understanding of prebiotic metabolism by CAZymes in the gut microbiota. IMPORTANCE Complex carbohydrates are key contributors to the composition of the human gut microbiota and play an essential role in the microbiota's effects on host health. Understanding which bacteria consume complex carbohydrates, or glycans, provides a mechanistic link between dietary prebiotics and their beneficial health effects, an essential step for their therapeutic application. Here, we used a pulse metatranscriptomics pipeline to identify bacterial consumers based on glycan metabolism induction in a human stool sample. We identified novel consumers of fructo-oligosaccharide among Blautia species, expanding our understanding of this well-known glycan. Our approach can be applied to identify consumers of understudied glycans and expand our prebiotic repertoire. It can also be used to study prebiotic glycans directly in stool samples in distinct patient populations to help delineate the prebiotic mechanism.
Collapse
Affiliation(s)
- Catherine Prattico
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Lharbi Dridi
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Shiva Jazestani
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Kristin E. Low
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - D. Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada
| | - Bastien Castagner
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Li Y, Wu F, Wang Y, Li B, Prabhakaran P, Zhou W, Han Y, Sun-Waterhouse D, Li D, Li F. Sesamin Alleviates Allergen-Induced Diarrhea by Restoring Gut Microbiota Composition and Intestinal Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1965-1981. [PMID: 39772607 DOI: 10.1021/acs.jafc.4c10158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Food allergens are the key triggers of allergic diarrhea, causing damage to the immune-rich ileum. This weakens the mucosal barrier and tight junctions, increases intestinal permeability, and exacerbates allergen exposure, thereby worsening the condition. Sesamin, a natural lignan isolated from sesame seed, has shown potential in regulating immune responses, but its effects on intestinal health remain unclear. In this study, we constructed an ovalbumin (OVA)-induced allergic diarrhea mouse model, which demonstrated increased mast cell degranulation, reduced tight junction integrity, and impaired intestinal barrier function. Pro-inflammatory cytokines were significantly increased in the ileum, along with unbalanced cluster of differentiation 4 (CD4+) T-cell immunity, altered gut microbiota composition, and disrupted bacterial metabolism. Sesamin treatment significantly alleviated intestinal damage by modulating gut microbiota abundance, enhancing short-chain fatty acid (SCFA) production, and increasing SCFA receptor expression. This study suggests that sesamin may be a promising therapeutic candidate for allergic diarrhea and intestinal injury.
Collapse
Affiliation(s)
- Yu Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Fan Wu
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Yongli Wang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Bo Li
- Jinan Vocational College of Nursing, Jinan 250102, China
| | - Pranesha Prabhakaran
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Wenbo Zhou
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yu Han
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
- School of Chemical Sciences, The University of Auckland, Auckland 92019, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Feng Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
5
|
Murphy MA, Brown DG, Bell RS, Weis AM, Barrios LA, Stephens WZ, Round JL. Draft genome of a human gut-derived Blautia sp. that ameliorates colitis and colitis-associated sociability deficits in mice. Microbiol Resour Announc 2025; 14:e0072624. [PMID: 39611664 PMCID: PMC11737165 DOI: 10.1128/mra.00726-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/16/2024] [Indexed: 11/30/2024] Open
Abstract
Blautia is a genus of anaerobic, gram-positive bacteria commonly found in mammalian gastrointestinal tracts. Yet, how variations among different Blautia strains can impact host health is poorly understood. We present a Blautia sp. genome isolated from human feces whose supplementation to mice can ameliorate colitis severity and associated sociability deficits.
Collapse
Affiliation(s)
- Michaela A. Murphy
- Department of Pathology, Division of Microbiology and Immunology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - D. Garrett Brown
- Department of Pathology, Division of Microbiology and Immunology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Rickesha S. Bell
- Department of Pathology, Division of Microbiology and Immunology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Allison M. Weis
- Department of Pathology, Division of Microbiology and Immunology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Logan A. Barrios
- Department of Pathology, Division of Microbiology and Immunology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - W. Zac Stephens
- Department of Pathology, Division of Microbiology and Immunology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - June L. Round
- Department of Pathology, Division of Microbiology and Immunology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Byrne A, Diener C, Brown BP, Maust BS, Feng C, Alinde BL, Gibbons SM, Koch M, Gray CM, Jaspan HB, Nyangahu DD. Neonates exposed to HIV but uninfected exhibit an altered gut microbiota and inflammation associated with impaired breast milk antibody function. MICROBIOME 2024; 12:261. [PMID: 39707483 PMCID: PMC11662858 DOI: 10.1186/s40168-024-01973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Infants exposed to HIV but uninfected have altered immune profiles which include heightened systemic inflammation. The mechanism(s) underlying this phenomenon is unknown. Here, we investigated differences in neonatal gut bacterial and viral microbiome and associations with inflammatory biomarkers in plasma. Further, we tested whether HIV exposure impacts antibody-microbiota binding in neonatal gut and whether antibodies in breast milk impact the growth of commensal bacteria. RESULTS Neonates exposed to HIV but uninfected (nHEU) exhibited altered gut bacteriome and virome compared to unexposed neonates (nHU). In addition, HIV exposure differentially impacted IgA-microbiota binding in neonates. The relative abundance of Blautia spp. in the whole stool or IgA-bound microbiota was positively associated with plasma concentrations of C-reactive protein. Finally, IgA from the breast milk of mothers living with HIV displayed a significantly lower ability to inhibit the growth of Blautia coccoides which was associated with inflammation in nHEU. CONCLUSION nHEU exhibits profound alterations in gut bacterial microbiota with a mild impact on the enteric DNA virome. Elevated inflammation in nHEU could be due to a lower capacity of breast milk IgA from mothers living with HIV to limit growth the of gut bacteria associated with inflammation. Video Abstract.
Collapse
Affiliation(s)
- Audrey Byrne
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Christian Diener
- Institute For Systems Biology, Seattle, WA, 98109, USA
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Bryan P Brown
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Colin Feng
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Berenice L Alinde
- Stellenbosch University, Cape Town, South Africa
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Sean M Gibbons
- Institute For Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Meghan Koch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, Seattle, WA, 98195, USA
| | - Clive M Gray
- Stellenbosch University, Cape Town, South Africa
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Heather B Jaspan
- Seattle Children's Research Institute, Seattle, WA, USA
- Division of Immunology, University of Cape Town, Cape Town, South Africa
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Donald D Nyangahu
- Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA.
- Department of Pharmacology, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA.
- Center for Advanced Biotechnology and Medicine, The State University of New Jersey, RutgersPiscataway, NJ, 08854, USA.
- Department of Human Pathology, Egerton University, Nakuru, Kenya.
| |
Collapse
|
7
|
Xing H, Zhang Y, Li R, Ruzicka HM, Hain C, Andersson J, Bozdogan A, Henkel M, Knippschild U, Hasler R, Kleber C, Knoll W, Kissmann AK, Rosenau F. A Blautia producta specific gFET-based aptasensor for quantitative monitoring of microbiome quality. NANOSCALE HORIZONS 2024; 10:124-134. [PMID: 39420595 DOI: 10.1039/d4nh00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The use of health-relevant bacteria originating from human microbiomes for the control or therapy of diseases, including neurodegenerative disorders or diabetes, is currently gaining increasing importance in medicine. Directed and successful engineering of microbiomes via probiotic supplementation requires subtle, precise as well as, more importantly, easy, fast and convenient monitoring of its success, e.g., in patients' gut. Based on a previously described polyclonal SELEX aptamer library evolved against the human gut bacterium Blautia producta, we finally isolated three individual aptamers that proved their performance concerning affinity, specificity and robustness in reliably labeling the target bacterium and in combination with "contaminating" control bacteria. Using biofunctionalization molecules on gFETs, we could specifically quantify 101-106 cells per mL, retrace their number in mixtures and determine aptamer Kd-values around 2 nM. These measurements were possible even in the context of a real human stool sample. Our results qualify gFETs in combination with BL2, BL7 and BL8 aptamers as a promising foundation for the construction of respective sensing devices, which will open new avenues towards developing an intended monitoring technique for probiotic therapy and microbiome engineering approaches.
Collapse
Affiliation(s)
- Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Yiting Zhang
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Runliu Li
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Hans-Maximilian Ruzicka
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Christopher Hain
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Jakob Andersson
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Anil Bozdogan
- Division of Clinical Virology, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Roger Hasler
- Danube Private University, Faculty of Medicine and Dentistry, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Christoph Kleber
- Danube Private University, Faculty of Medicine and Dentistry, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Wolfgang Knoll
- Danube Private University, Faculty of Medicine and Dentistry, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
8
|
González-Reguero D, Robas-Mora M, Alonso MR, Fernández-Pastrana VM, Lobo AP, Gómez PAJ. Induction of phytoextraction, phytoprotection and growth promotion activities in Lupinus albus under mercury abiotic stress conditions by Peribacillus frigoritolerans subsp., mercuritolerans subsp. nov. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117139. [PMID: 39368152 DOI: 10.1016/j.ecoenv.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Strain SAICEUPBMT was isolated from soils of Almadén (Ciudad Real, Spain), subjected to a high mercury concentration. SAICEUPBMT significantly increased aerial plant weight, aerial plant length and the development of secondary roots under mercury stress; increased twice the absorption of mercury by the plant, while favoring its development in terms of biomass. Similarly, plants inoculated with SAICEUPBMT and grown in soils contaminated with mercury, express a lower activity of antioxidant enzymes; catalase enzymes (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) for defense against ROS (reactive oxygen species). Whole genome analysis showed that ANI (95. 96 %), dDDH (72.9 %), AAI (93.3 %) and TETRA (0.99) values were on the thresholds established for differentiation a subspecies. The fatty acids analysis related the strain with the Peribacillus frigoritolerans species. And the synapomorphic analysis reveals a common ancestor with analysis related the strain with the Peribacillus frigoritolerans species. Results from genomic analysis together with differences in phenotypic features and chemotaxonomic analysis support the proposal of strain SAICEUPBMT as the type strain of a novel subspecies for which the name Peribacillus frigoritolerans subps. mercuritolerans sp. nov is proposed. The absence of virulence genes and transmissible resistance mechanisms reveals its safety for agronomic uses, under mercury stress conditions. The ability of Peribacillus frigoritolerans subsp. mercuritolerans subsp. nov to improve plant development was tested in a Lupinus albus model, demonstrating a great potential for plant phytoprotection against mercury stress.
Collapse
Affiliation(s)
- Daniel González-Reguero
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain.
| | - Marina Robas-Mora
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain.
| | - Miguel Ramón Alonso
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain
| | - Vanesa M Fernández-Pastrana
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain
| | - Agustín Probanza Lobo
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain
| | - Pedro A Jiménez Gómez
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain.
| |
Collapse
|
9
|
Li Y, Lee T, Marin K, Hua X, Srinivasan S, Fredricks DN, Lee JR, Ling W. SurvBal: compositional microbiome balances for survival outcomes. Bioinformatics 2024; 40:btae612. [PMID: 39404767 PMCID: PMC11639162 DOI: 10.1093/bioinformatics/btae612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/16/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
SUMMARY Identification of balances of bacterial taxa in relation to continuous and dichotomous outcomes is an increasingly frequent analytic objective in microbiome profiling experiments. SurvBal enables the selection of balances in relation to censored survival or time-to-event outcomes which are of considerable interest in many biomedical studies. The most commonly used survival models-the Cox proportional hazards and parametric survival models are included in the package, which are used in combination with step-wise selection procedures to identify the optimal associated balance of microbiome, i.e. the ratio of the geometric means of two groups of taxa's relative abundances. AVAILABILITY AND IMPLEMENTATION The SurvBal R package and Shiny app can be accessed at https://github.com/yinglia/SurvBal and https://yinglistats.shinyapps.io/shinyapp-survbal/.
Collapse
Affiliation(s)
- Ying Li
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| | - Teresa Lee
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
| | - Kai Marin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
| | - Xing Hua
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
| | - David N Fredricks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, United States
- Department of Medicine, University of Washington, Seattle, WA 98195, United States
| | - John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States
- Department of Transplantation Medicine, New York Presbyterian Hospital–Weill Cornell Medical Center, New York, NY 10065, United States
| | - Wodan Ling
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
10
|
Saadh MJ, Mustafa AN, Mustafa MA, S RJ, Dabis HK, Prasad GVS, Mohammad IJ, Adnan A, Idan AH. The role of gut-derived short-chain fatty acids in Parkinson's disease. Neurogenetics 2024; 25:307-336. [PMID: 39266892 DOI: 10.1007/s10048-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | | | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh-531162, India
| | - Imad Jassim Mohammad
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Ahmed Adnan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
11
|
Chanda W, Jiang H, Liu SJ. The Ambiguous Correlation of Blautia with Obesity: A Systematic Review. Microorganisms 2024; 12:1768. [PMID: 39338443 PMCID: PMC11433710 DOI: 10.3390/microorganisms12091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a complex and multifactorial disease with global epidemic proportions, posing significant health and economic challenges. Whilst diet and lifestyle are well-established contributors to the pathogenesis, the gut microbiota's role in obesity development is increasingly recognized. Blautia, as one of the major intestinal bacteria of the Firmicutes phylum, is reported with both potential probiotic properties and causal factors for obesity in different studies, making its role controversial. To summarize the current understanding of the Blautia-obesity correlation and to evaluate the evidence from animal and clinical studies, we used "Blautia" AND "obesity" as keywords searching through PubMed and SpringerLink databases for research articles. After removing duplicates and inadequate articles using the exclusion criteria, we observed different results between studies supporting and opposing the beneficial role of Blautia in obesity at the genus level. Additionally, several studies showed probiotic effectiveness at the species level for Blautia coccoides, B. wexlerae, B. hansenii, B. producta, and B. luti. Therefore, the current evidence does not demonstrate Blautia's direct involvement as a pathogenic microbe in obesity development or progression, which informs future research and therapeutic strategies targeting the gut Blautia in obesity management.
Collapse
Affiliation(s)
- Warren Chanda
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Pathology and Microbiology Department, School of Medicine and Health Sciences, Mulungushi University, Livingstone P.O. Box 60009, Zambia
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Liu W, Li C, Xie W, Fan Y, Zhang X, Wang Y, Li L, Zhang Z. The signature of the gut microbiota associated with psoriatic arthritis revealed by metagenomics. Ther Adv Musculoskelet Dis 2024; 16:1759720X241266720. [PMID: 39131798 PMCID: PMC11316960 DOI: 10.1177/1759720x241266720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/20/2024] [Indexed: 08/13/2024] Open
Abstract
Background Gut microbiota is involved in the development of psoriatic arthritis (PsA), but until now, there has been a lack of understanding of the PsA host-bacteria interaction. Objectives To reveal the labels of gut microbiota in PsA patients and the species and functions related to disease activity. Design Observational research (cross-sectional) with an exploratory nature. Methods Metagenomics sequencing was used to analyze stool samples from 20 treatment-naïve PsA patients and 10 age-matched healthy individuals. All samples were qualified for subsequent analysis. Results Compared with the healthy group, α-diversity was reduced in the PsA group, and β-diversity could distinguish the two groups. Two bacteria with high abundance and correlation with PsA disease activity were identified, Bacteroides sp. 3_1_19 and Blautia AF 14-40. In different functions, K07114 (calcium-activated chloride channel (CaCC) homolog) showed a positive correlation with PsA disease activity (disease activity in psoriatic arthritis, DAPSA) and Tet32 (an antibiotic-resistant gene), and carbohydrate-binding module family 50 was negatively correlated with erythrocyte sedimentation rate. A bacterial co-expression network associated with DAPSA was constructed. The network was centered on the bacteria in the Bacteroides genus, which formed a closely related network and were positively correlated with DAPSA. As another core of the network, K07114 was closely related to multiple bacteria in the Bacteroides genus and is also positively correlated with disease activity. Conclusion The network composed of Bacteroides is associated with PsA disease activity, and its therapeutic value needs to be further explored. CaCCs may be a key channel for the interaction between Bacteroides and PsA-host.
Collapse
Affiliation(s)
- Wei Liu
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Chunyan Li
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Yong Fan
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Xiaohui Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Yu Wang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Lei Li
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No. 8, Xishiku Street, West District, Beijing 100034, China
| |
Collapse
|
13
|
Gryaznova M, Smirnova Y, Burakova I, Syromyatnikov M, Chizhkov P, Popov E, Popov V. Changes in the Human Gut Microbiome Caused by the Short-Term Impact of Lactic Acid Bacteria Consumption in Healthy People. Probiotics Antimicrob Proteins 2024; 16:1240-1250. [PMID: 37365419 DOI: 10.1007/s12602-023-10111-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome is one of the main factors affecting human health. It has been proven that probiotics can regulate the metabolism in the host body. A large number of people use probiotics not as medicines, but as a prophylactic supplement. The aim of our study was to evaluate the effect of lactic acid bacteria on the gut microbiome of healthy people using the V3 region of the 16S rRNA gene. Our study showed changes in the generic composition in the gut of healthy people when taking the supplement. There was an increase in the members responsible for the production of short-chain fatty acids in the gut of the host (Blautia, Fusicatenibacter, Eubacterium hallii group, Ruminococcus), as well as bacteria that improve intestinal homeostasis (Dorea and Barnesiella). There was also a decrease in the abundance of bacteria in the genera Catenibacterium, Hungatella, Escherichia-Shigella, and Pseudomonas, associated with an unhealthy profile of the human gut microbiome. An increase in members of the phylum Actinobacteriota was also observed, which has a positive effect on the host organism. Our results indicate that short-term prophylactic use of lactic acid bacteria-based supplements can be effective, as it contributes to a beneficial effect on the gut microbiome of healthy people.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia.
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia.
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Evgeny Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| |
Collapse
|
14
|
Kulecka M, Czarnowski P, Bałabas A, Turkot M, Kruczkowska-Tarantowicz K, Żeber-Lubecka N, Dąbrowska M, Paszkiewicz-Kozik E, Walewski J, Ługowska I, Koseła-Paterczyk H, Rutkowski P, Kluska A, Piątkowska M, Jagiełło-Gruszfeld A, Tenderenda M, Gawiński C, Wyrwicz L, Borucka M, Krzakowski M, Zając L, Kamiński M, Mikula M, Ostrowski J. Microbial and Metabolic Gut Profiling across Seven Malignancies Identifies Fecal Faecalibacillus intestinalis and Formic Acid as Commonly Altered in Cancer Patients. Int J Mol Sci 2024; 25:8026. [PMID: 39125593 PMCID: PMC11311272 DOI: 10.3390/ijms25158026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The key association between gut dysbiosis and cancer is already known. Here, we used whole-genome shotgun sequencing (WGS) and gas chromatography/mass spectrometry (GC/MS) to conduct metagenomic and metabolomic analyses to identify common and distinct taxonomic configurations among 40, 45, 71, 34, 50, 60, and 40 patients with colorectal cancer, stomach cancer, breast cancer, lung cancer, melanoma, lymphoid neoplasms and acute myeloid leukemia (AML), respectively, and compared the data with those from sex- and age-matched healthy controls (HC). α-diversity differed only between the lymphoid neoplasm and AML groups and their respective HC, while β-diversity differed between all groups and their HC. Of 203 unique species, 179 and 24 were under- and over-represented, respectively, in the case groups compared with HC. Of these, Faecalibacillus intestinalis was under-represented in each of the seven groups studied, Anaerostipes hadrus was under-represented in all but the stomach cancer group, and 22 species were under-represented in the remaining five case groups. There was a marked reduction in the gut microbiome cancer index in all case groups except the AML group. Of the short-chain fatty acids and amino acids tested, the relative concentration of formic acid was significantly higher in each of the case groups than in HC, and the abundance of seven species of Faecalibacterium correlated negatively with most amino acids and formic acid, and positively with the levels of acetic, propanoic, and butanoic acid. We found more differences than similarities between the studied malignancy groups, with large variations in diversity, taxonomic/metabolomic profiles, and functional assignments. While the results obtained may demonstrate trends rather than objective differences that correlate with different types of malignancy, the newly developed gut microbiota cancer index did distinguish most of the cancer cases from HC. We believe that these data are a promising step forward in the search for new diagnostic and predictive tests to assess intestinal dysbiosis among cancer patients.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maryla Turkot
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Kamila Kruczkowska-Tarantowicz
- Department of Internal Medicine and Hematology, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Ewa Paszkiewicz-Kozik
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Iwona Ługowska
- Early Phase Clinical Trials Unit, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Jagiełło-Gruszfeld
- Department of Breast Cancer & Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Tenderenda
- Department of Oncological Surgery and Neuroendocrine Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Cieszymierz Gawiński
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Lucjan Wyrwicz
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Magdalena Borucka
- Department of Lung and Chest Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maciej Krzakowski
- Department of Lung and Chest Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Leszek Zając
- Department of Gastrointestinal Surgical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Kamiński
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
15
|
Intarajak T, Udomchaiprasertkul W, Khoiri AN, Sutheeworapong S, Kusonmano K, Kittichotirat W, Thammarongtham C, Cheevadhanarak S. Distinct gut microbiomes in Thai patients with colorectal polyps. World J Gastroenterol 2024; 30:3336-3355. [PMID: 39086748 PMCID: PMC11287419 DOI: 10.3748/wjg.v30.i27.3336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Colorectal polyps that develop via the conventional adenoma-carcinoma sequence [e.g., tubular adenoma (TA)] often progress to malignancy and are closely associated with changes in the composition of the gut microbiome. There is limited research concerning the microbial functions and gut microbiomes associated with colorectal polyps that arise through the serrated polyp pathway, such as hyperplastic polyps (HP). Exploration of microbiome alterations associated with HP and TA would improve the understanding of mechanisms by which specific microbes and their metabolic pathways contribute to colorectal carcinogenesis. AIM To investigate gut microbiome signatures, microbial associations, and microbial functions in HP and TA patients. METHODS Full-length 16S rRNA sequencing was used to characterize the gut microbiome in stool samples from control participants without polyps [control group (CT), n = 40], patients with HP (n = 52), and patients with TA (n = 60). Significant differences in gut microbiome composition and functional mechanisms were identified between the CT group and patients with HP or TA. Analytical techniques in this study included differential abundance analysis, co-occurrence network analysis, and differential pathway analysis. RESULTS Colorectal cancer (CRC)-associated bacteria, including Streptococcus gallolyticus (S. gallolyticus), Bacteroides fragilis, and Clostridium symbiosum, were identified as characteristic microbial species in TA patients. Mediterraneibacter gnavus, associated with dysbiosis and gastrointestinal diseases, was significantly differentially abundant in the HP and TA groups. Functional pathway analysis revealed that HP patients exhibited enrichment in the sulfur oxidation pathway exclusively, whereas TA patients showed dominance in pathways related to secondary metabolite biosynthesis (e.g., mevalonate); S. gallolyticus was a major contributor. Co-occurrence network and dynamic network analyses revealed co-occurrence of dysbiosis-associated bacteria in HP patients, whereas TA patients exhibited co-occurrence of CRC-associated bacteria. Furthermore, the co-occurrence of SCFA-producing bacteria was lower in TA patients than HP patients. CONCLUSION This study revealed distinct gut microbiome signatures associated with pathways of colorectal polyp development, providing insights concerning the roles of microbial species, functional pathways, and microbial interactions in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Thoranin Intarajak
- Bioinformatics Unit, Chulabhorn Royal Academy, Lak Si 10210, Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | | | - Ahmad Nuruddin Khoiri
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Kanthida Kusonmano
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Weerayuth Kittichotirat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Chinae Thammarongtham
- National Center for Genetic Engineering and Biotechnology, King Mongkut's University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Systems Biology and Bioinformatics Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bank Khun Thian 10150, Bangkok, Thailand
- Fungal Biotechnology Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian 10150, Bangkok, Thailand
| |
Collapse
|
16
|
Shen L, Hu J, Zhang L, Wu Z, Chen L, Adhikari NP, Ji M, Chen S, Peng F, Liu Y. Genomics-based identification of a cold adapted clade in Deinococcus. BMC Biol 2024; 22:145. [PMID: 38956546 PMCID: PMC11218099 DOI: 10.1186/s12915-024-01944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Microbes in the cold polar and alpine environments play a critical role in feedbacks that amplify the effects of climate change. Defining the cold adapted ecotype is one of the prerequisites for understanding the response of polar and alpine microbes to climate change. RESULTS Here, we analysed 85 high-quality, de-duplicated genomes of Deinococcus, which can survive in a variety of harsh environments. By leveraging genomic and phenotypic traits with reverse ecology, we defined a cold adapted clade from eight Deinococcus strains isolated from Arctic, Antarctic and high alpine environments. Genome-wide optimization in amino acid composition and regulation and signalling enable the cold adapted clade to produce CO2 from organic matter and boost the bioavailability of mineral nitrogen. CONCLUSIONS Based primarily on in silico genomic analysis, we defined a potential cold adapted clade in Deinococcus and provided an updated view of the genomic traits and metabolic potential of Deinococcus. Our study would facilitate the understanding of microbial processes in the cold polar and alpine environments.
Collapse
Affiliation(s)
- Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, Anhui Normal University, Wuhu, 241000, China.
| | - Jiayu Hu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Luyao Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Zirui Wu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Namita Paudel Adhikari
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
17
|
Li Y, Yu Z, Fan X, Xu D, Liu H, Zhao X, Wang R. A novel pathogenic species of genus Stenotrophomonas: Stenotrophomonas pigmentata sp. nov. Front Cell Infect Microbiol 2024; 14:1410385. [PMID: 38903940 PMCID: PMC11188353 DOI: 10.3389/fcimb.2024.1410385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Stenotrophomonas is a prominent genus owing to its dual nature. Species of this genus have many applications in industry and agriculture as plant growth-promoting rhizobacteria and microbial biological control agents, whereas species such as Stenotrophomonas maltophilia are considered one of the leading gram-negative multi-drug-resistant bacterial pathogens because of their high contribution to the increase in crude mortality and significant clinical challenge. Pathogenic Stenotrophomonas species and most clinical isolates belong to the Stenotrophomonas maltophilia complex (SMc). However, a strain highly homologous to S. terrae was isolated from a patient with pulmonary tuberculosis (TB), which aroused our interest, as S. terrae belongs to a relatively distant clade from SMc and there have been no human association reports. Methods The pathogenicity, immunological and biochemical characteristics of 610A2T were systematically evaluated. Results 610A2T is a new species of genus Stenotrophomonas, which is named as Stenotrophomonas pigmentata sp. nov. for its obvious brown water-soluble pigment. 610A2T is pathogenic and caused significant weight loss, pulmonary congestion, and blood transmission in mice because it has multiple virulence factors, haemolysis, and strong biofilm formation abilities. In addition, the cytokine response induced by this strain was similar to that observed in patients with TB, and the strain was resistant to half of the anti-TB drugs. Conclusions The pathogenicity of 610A2T may not be weaker than that of S. maltophilia. Its isolation extended the opportunistic pathogenic species to all 3 major clades of the genus Stenotrophomonas, indicating that the clinical importance of species of Stenotrophomonas other than S. maltophilia and potential risks to biological safety associated with the use of Stenotrophomonas require more attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruibai Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| |
Collapse
|
18
|
Qu K, Li MX, Gan L, Cui ZT, Li JJ, Yang R, Dong M. To analyze the relationship between gut microbiota, metabolites and migraine: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1325047. [PMID: 38690367 PMCID: PMC11058981 DOI: 10.3389/fmicb.2024.1325047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Background It has been suggested in several observational studies that migraines are associated with the gut microbiota. It remains unclear, however, how the gut microbiota and migraines are causally related. Methods We performed a bidirectional two-sample mendelian randomization study. Genome-wide association study (GWAS) summary statistics for the gut microbiota were obtained from the MiBioGen consortium (n = 18,340) and the Dutch Microbiota Project (n = 7,738). Pooled GWAS data for plasma metabolites were obtained from four different human metabolomics studies. GWAS summary data for migraine (cases = 48,975; controls = 450,381) were sourced from the International Headache Genetics Consortium. We used inverse-variance weighting as the primary analysis. Multiple sensitivity analyses were performed to ensure the robustness of the estimated results. We also conducted reverse mendelian randomization when a causal relationship between exposure and migraine was found. Results LachnospiraceaeUCG001 (OR = 1.12, 95% CI: 1.05-1.20) was a risk factor for migraine. Blautia (OR = 0.93, 95% CI: 0.88-0.99), Eubacterium (nodatum group; OR = 0.94, 95% CI: 0.90-0.98), and Bacteroides fragilis (OR = 0.97, 95% CI: 0.94-1.00) may have a suggestive association with a lower migraine risk. Functional pathways of methionine synthesis (OR = 0.89, 95% CI: 0.83-0.95) associated with microbiota abundance and plasma hydrocinnamate (OR = 0.85, 95% CI: 0.73-1.00), which are downstream metabolites of Blautia and Bacteroides fragilis, respectively, may also be associated with lower migraine risk. No causal association between migraine and the gut microbiota or metabolites was found in reverse mendelian randomization analysis. Both significant horizontal pleiotropy and significant heterogeneity were not clearly identified. Conclusion This Mendelian randomization analysis showed that LachnospiraceaeUCG001 was associated with an increased risk of migraine, while some bacteria in the gut microbiota may reduce migraine risk. These findings provide a reference for a deeper comprehension of the role of the gut-brain axis in migraine as well as possible targets for treatment interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Zhou Y, Tu T, Yao X, Luo Y, Yang Z, Ren M, Zhang G, Yu Y, Lu A, Wang Y. Pan-genome analysis of Streptococcus suis serotype 2 highlights genes associated with virulence and antibiotic resistance. Front Microbiol 2024; 15:1362316. [PMID: 38450165 PMCID: PMC10915096 DOI: 10.3389/fmicb.2024.1362316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a Gram-positive bacterium. It is a common and significant pathogen in pigs and a common cause of zoonotic meningitis in humans. It can lead to sepsis, endocarditis, arthritis, and pneumonia. If not diagnosed and treated promptly, it has a high mortality rate. The pan-genome of SS2 is open, and with an increasing number of genes, the core genome and accessory genome may exhibit more pronounced differences. Due to the diversity of SS2, the genes related to its virulence and resistance are still unclear. In this study, a strain of SS2 was isolated from a pig farm in Sichuan Province, China, and subjected to whole-genome sequencing and characterization. Subsequently, we conducted a Pan-Genome-Wide Association Study (Pan-GWAS) on 230 strains of SS2. Our analysis indicates that the core genome is composed of 1,458 genes related to the basic life processes of the bacterium. The accessory genome, consisting of 4,337 genes, is highly variable and a major contributor to the genetic diversity of SS2. Furthermore, we identified important virulence and resistance genes in SS2 through pan-GWAS. The virulence genes of SS2 are mainly associated with bacterial adhesion. In addition, resistance genes in the core genome may confer natural resistance of SS2 to fluoroquinolone and glycopeptide antibiotics. This study lays the foundation for further research on the virulence and resistance of SS2, providing potential new drug and vaccine targets against SS2.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Teng Tu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Kowloon Tong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Kowloon Tong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Kowloon Tong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Kowloon Tong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Tintoré M, Cuñé J, Vu LD, Poppe J, Van den Abbeele P, Baudot A, de Lecea C. A Long-Chain Dextran Produced by Weissella cibaria Boosts the Diversity of Health-Related Gut Microbes Ex Vivo. BIOLOGY 2024; 13:51. [PMID: 38248481 PMCID: PMC10813514 DOI: 10.3390/biology13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Long-chain dextrans are α-glucans that can be produced by lactic acid bacteria. NextDextTM, a specific long-chain dextran with a high degree of polymerisation, produced using Weissella cibaria, was recently shown to exert prebiotic potential in vitro. In this study, the ex vivo SIFR® technology, recently validated to provide predictive insights into gut microbiome modulation down to the species level, was used to investigate the effects of this long-chain dextran on the gut microbiota of six human adults that altogether covered different enterotypes. A novel community modulation score (CMS) was introduced based on the strength of quantitative 16S rRNA gene sequencing and the highly controlled ex vivo conditions. This CMS overcomes the limitations of traditional α-diversity indices and its application in the current study revealed that dextran is a potent booster of microbial diversity compared to the reference prebiotic inulin (IN). Long-chain dextran not only exerted bifidogenic effects but also consistently promoted Bacteroides spp., Parabacteroides distasonis and butyrate-producing species like Faecalibacterium prausnitzii and Anaerobutyricum hallii. Further, long-chain dextran treatment resulted in lower gas production compared to IN, suggesting that long-chain dextran could be better tolerated. The additional increase in Bacteroides for dextran compared to IN is likely related to the higher propionate:acetate ratio, attributing potential to long-chain dextran for improving metabolic health and weight management. Moreover, the stimulation of butyrate by dextran suggests its potential for improving gut barrier function and inflammation. Overall, this study provides a novel tool for assessing gut microbial diversity ex vivo and positions long-chain dextran as a substrate that has unique microbial diversity enhancing properties.
Collapse
Affiliation(s)
- Maria Tintoré
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| | - Jordi Cuñé
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| | - Lam Dai Vu
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | - Jonas Poppe
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | | | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | - Carlos de Lecea
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| |
Collapse
|
21
|
Hu T, Chen J, Lin X, He W, Liang H, Wang M, Li W, Wu Z, Han M, Jin X, Kristiansen K, Xiao L, Zou Y. Comparison of the DNBSEQ platform and Illumina HiSeq 2000 for bacterial genome assembly. Sci Rep 2024; 14:1292. [PMID: 38221534 PMCID: PMC10788345 DOI: 10.1038/s41598-024-51725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
The Illumina HiSeq platform has been a commonly used option for bacterial genome sequencing. Now the BGI DNA nanoball (DNB) nanoarrays platform may provide an alternative platform for sequencing of bacterial genomes. To explore the impact of sequencing platforms on bacterial genome assembly, quality assessment, sequence alignment, functional annotation, mutation detection, and metagenome mapping, we compared genome assemblies based on sequencing of cultured bacterial species using the HiSeq 2000 and BGISEQ-500 platforms. In addition, simulated reads were used to evaluate the impact of insert size on genome assembly. Genome assemblies based on BGISEQ-500 sequencing exhibited higher completeness and fewer N bases in high GC genomes, whereas HiSeq 2000 assemblies exhibited higher N50. The majority of assembly assessment parameters, sequences of 16S rRNA genes and genomes, numbers of single nucleotide variants (SNV), and mapping to metagenome data did not differ significantly between platforms. More insertions were detected in HiSeq 2000 genome assemblies, whereas more deletions were detected in BGISEQ-500 genome assemblies. Insert size had no significant impact on genome assembly. Taken together, our results suggest that DNBSEQ platforms would be a valid substitute for HiSeq 2000 for bacterial genome sequencing.
Collapse
Affiliation(s)
- Tongyuan Hu
- BGI Research, Shenzhen, 518083, China
- BGI Research, Wuhan, 430074, China
| | | | - Xiaoqian Lin
- BGI Research, Shenzhen, 518083, China
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | - Wenxin He
- BGI Research, Shenzhen, 518083, China
| | - Hewei Liang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Wuhan, 430074, China
| | | | - Wenxi Li
- BGI Research, Shenzhen, 518083, China
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | - Zhinan Wu
- BGI Research, Shenzhen, 518083, China
| | - Mo Han
- BGI Research, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Karsten Kristiansen
- BGI Research, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China
| | - Yuanqiang Zou
- BGI Research, Shenzhen, 518083, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
22
|
Burbick CR, Lawhon SD, Munson E, Thelen E, Zapp A, Wilson A. An update on novel taxa and revised taxonomic status of bacteria isolated from non-domestic animals described in 2022. J Clin Microbiol 2023; 61:e0084023. [PMID: 37888990 PMCID: PMC10741638 DOI: 10.1128/jcm.00840-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Numbers of new and revised microbial taxa are continuously expanding, and the rapid accumulation of novel bacterial species is challenging to keep up with in the best of circumstances. With that in mind, following the template of reports on prokaryotic species isolated from humans, this is now the second publication summarizing new and revised taxa in non-domestic animal species in the Journal of Clinical Microbiology. The majority of new taxa were obtained as part of programs to identify bacteria from mucosal surfaces and the gastrointestinal tract from healthy wildlife. A few notable bacteria included new Erysipelothrix spp. from mammalian and aquatic sources and a novel Bartonella spp. isolated from a rodent, both of which could be considered members of emerging and re-emerging genera with pathogenic potential in humans and animals.
Collapse
Affiliation(s)
- Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Anastasia Wilson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
Krishnamurthy HK, Pereira M, Bosco J, George J, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Gut commensals and their metabolites in health and disease. Front Microbiol 2023; 14:1244293. [PMID: 38029089 PMCID: PMC10666787 DOI: 10.3389/fmicb.2023.1244293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose of review This review comprehensively discusses the role of the gut microbiome and its metabolites in health and disease and sheds light on the importance of a holistic approach in assessing the gut. Recent findings The gut microbiome consisting of the bacteriome, mycobiome, archaeome, and virome has a profound effect on human health. Gut dysbiosis which is characterized by perturbations in the microbial population not only results in gastrointestinal (GI) symptoms or conditions but can also give rise to extra-GI manifestations. Gut microorganisms also produce metabolites (short-chain fatty acids, trimethylamine, hydrogen sulfide, methane, and so on) that are important for several interkingdom microbial interactions and functions. They also participate in various host metabolic processes. An alteration in the microbial species can affect their respective metabolite concentrations which can have serious health implications. Effective assessment of the gut microbiome and its metabolites is crucial as it can provide insights into one's overall health. Summary Emerging evidence highlights the role of the gut microbiome and its metabolites in health and disease. As it is implicated in GI as well as extra-GI symptoms, the gut microbiome plays a crucial role in the overall well-being of the host. Effective assessment of the gut microbiome may provide insights into one's health status leading to more holistic care.
Collapse
Affiliation(s)
| | | | - Jophi Bosco
- Vibrant America LLC., San Carlos, CA, United States
| | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States
| | | |
Collapse
|
24
|
Golovko G, Khanipov K, Reyes V, Pinchuk I, Fofanov Y. Identification of multivariable Boolean patterns in microbiome and microbial gene composition data. Biosystems 2023; 233:105007. [PMID: 37619924 DOI: 10.1016/j.biosystems.2023.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Virtually every biological system is governed by complex relations among its components. Identifying such relations requires a rigorous or heuristics-based search for patterns among variables/features of a system. Various algorithms have been developed to identify two-dimensional (involving two variables) patterns employing correlation, covariation, mutual information, etc. It seems obvious, however, that comprehensive descriptions of complex biological systems need also to include more complicated multivariable relations, which can only be described using patterns that simultaneously embrace 3, 4, and more variables. The goal of this manuscript is to (a) introduce a novel type of associations (multivariable Boolean patterns) that can be manifested between features of complex systems but cannot be identified (described) by traditional pair-vise metrics; (b) propose patterns classification method, and (c) provide a novel definition of the pattern's strength (pattern's score) able to accommodate heterogeneous multi-omics data. To demonstrate the presence of such patterns, we performed a search for all possible 2-, 3-, and 4-dimensional patterns in historical data from the Human Microbiome Project (15 body sites) and collection of H. pylori genomes associated with gastric ulcers, gastritis, and duodenal ulcers. In all datasets under consideration, we were able to identify hundreds of statistically significant multivariable patterns. These results suggest that such patterns can be common in microbial genomics/microbiomics systems.
Collapse
Affiliation(s)
- George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Victor Reyes
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Irina Pinchuk
- Department of Medicine, Penn State Health Milton Hershey Medical Center, Hershey, PA, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Glass Bottom Analytics Inc, League City, TX, USA.
| |
Collapse
|
25
|
Chen L, Hong T, Wu Z, Song W, Chen SX, Liu Y, Shen L. Genomic analyses reveal a low-temperature adapted clade in Halorubrum, a widespread haloarchaeon across global hypersaline environments. BMC Genomics 2023; 24:508. [PMID: 37653415 PMCID: PMC10468875 DOI: 10.1186/s12864-023-09597-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Cold-adapted archaea have diverse ecological roles in a wide range of low-temperature environments. Improving our knowledge of the genomic features that enable psychrophiles to grow in cold environments helps us to understand their adaptive responses. However, samples from typical cold regions such as the remote Arctic and Antarctic are rare, and the limited number of high-quality genomes available leaves us with little data on genomic traits that are statistically associated with cold environmental conditions. RESULTS In this study, we examined the haloarchaeal genus Halorubrum and defined a new clade that represents six isolates from polar and deep earth environments ('PD group' hereafter). The genomic G + C content and amino acid composition of this group distinguishes it from other Halorubrum and the trends are consistent with the established genomic optimization of psychrophiles. The cold adaptation of the PD group was further supported by observations of increased flexibility of proteins encoded across the genome and the findings of a growth test. CONCLUSIONS The PD group Halorubrum exhibited denser genome packing, which confers higher metabolic potential with constant genome size, relative to the reference group, resulting in significant differences in carbon, nitrogen and sulfur metabolic patterns. The most marked feature was the enrichment of genes involved in sulfur cycling, especially the production of sulfite from organic sulfur-containing compounds. Our study provides an updated view of the genomic traits and metabolic potential of Halorubrum and expands the range of sources of cold-adapted haloarchaea.
Collapse
Affiliation(s)
- Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, Anhui Normal University, Wuhu, 241000, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Zirui Wu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Weizhi Song
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shaoxing X Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100085, Beijing, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
26
|
Morales-Olavarría M, Nuñez-Belmar J, González D, Vicencio E, Rivas-Pardo JA, Cortez C, Cárdenas JP. Phylogenomic analysis of the Porphyromonas gingivalis - Porphyromonas gulae duo: approaches to the origin of periodontitis. Front Microbiol 2023; 14:1226166. [PMID: 37538845 PMCID: PMC10394638 DOI: 10.3389/fmicb.2023.1226166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Porphyromonas gingivalis is an oral human pathogen associated with the onset and progression of periodontitis, a chronic immune-inflammatory disease characterized by the destruction of the teeth-supporting tissue. P. gingivalis belongs to the genus Porphyromonas, which is characterized by being composed of Gram-negative, asaccharolytic, non-spore-forming, non-motile, obligatory anaerobic species, inhabiting niches such as the oral cavity, urogenital tract, gastrointestinal tract and infected wound from different mammals including humans. Among the Porphyromonas genus, P. gingivalis stands out for its specificity in colonizing the human oral cavity and its keystone pathogen role in periodontitis pathogenesis. To understand the evolutionary process behind P. gingivalis in the context of the Pophyoromonas genus, in this study, we performed a comparative genomics study with publicly available Porphyromonas genomes, focused on four main objectives: (A) to confirm the phylogenetic position of P. gingivalis in the Porphyromonas genus by phylogenomic analysis; (B) the definition and comparison of the pangenomes of P. gingivalis and its relative P. gulae; and (C) the evaluation of the gene family gain/loss events during the divergence of P. gingivalis and P. gulae; (D) the evaluation of the evolutionary pressure (represented by the calculation of Tajima-D values and dN/dS ratios) comparing gene families of P. gingivalis and P. gulae. Our analysis found 84 high-quality assemblies representing P. gingivalis and 14 P. gulae strains (from a total of 233 Porphyromonas genomes). Phylogenomic analysis confirmed that P. gingivalis and P. gulae are highly related lineages, close to P. loveana. Both organisms harbored open pangenomes, with a strong core-to-accessory ratio for housekeeping genes and a negative ratio for unknown function genes. Our analyses also characterized the gene set differentiating P. gulae from P. gingivalis, mainly associated with unknown functions. Relevant virulence factors, such as the FimA, Mfa1, and the hemagglutinins, are conserved in P. gulae, P. gingivalis, and P. loveana, suggesting that the origin of those factors occurred previous to the P. gulae - P. gingivalis divergence. These results suggest an unexpected evolutionary relationship between the P. gulae - P. gingivalis duo and P. loveana, showing more clues about the origin of the role of those organisms in periodontitis.
Collapse
Affiliation(s)
- Mauricio Morales-Olavarría
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Josefa Nuñez-Belmar
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Dámariz González
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Emiliano Vicencio
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jaime Andres Rivas-Pardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Cristian Cortez
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan P. Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
27
|
Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, Lener E, Mele MC, Gasbarrini A, Collado MC, Cammarota G, Ianiro G. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023; 15:2211. [PMID: 37432351 DOI: 10.3390/nu15092211] [Citation(s) in RCA: 340] [Impact Index Per Article: 170.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Short-chain fatty acids (SCFAs) play a key role in health and disease, as they regulate gut homeostasis and their deficiency is involved in the pathogenesis of several disorders, including inflammatory bowel diseases, colorectal cancer, and cardiometabolic disorders. SCFAs are metabolites of specific bacterial taxa of the human gut microbiota, and their production is influenced by specific foods or food supplements, mainly prebiotics, by the direct fostering of these taxa. This Review provides an overview of SCFAs' roles and functions, and of SCFA-producing bacteria, from their microbiological characteristics and taxonomy to the biochemical process that lead to the release of SCFAs. Moreover, we will describe the potential therapeutic approaches to boost the levels of SCFAs in the human gut and treat different related diseases.
Collapse
Affiliation(s)
- William Fusco
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Manuel Bernabeu Lorenzo
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46022 Valencia, Spain
| | - Marco Cintoni
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Serena Porcari
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emanuele Rinninella
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Francesco Kaitsas
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Elena Lener
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46022 Valencia, Spain
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
28
|
Ma D, Chen H, Feng Q, Zhang X, Wu D, Feng J, Cheng S, Wang D, Liu Z, Zhong Q, Wei J, Liu G. Dissemination of antibiotic resistance genes through fecal sewage treatment facilities to the ecosystem in rural area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117439. [PMID: 36758406 DOI: 10.1016/j.jenvman.2023.117439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Infection of antibiotic-resistant pathogens mostly occurs in rural areas. In this paper, the dissemination of antibiotic resistance genes (ARGs) through fecal sewage treatment facilities to the ecosystem in a typical rural area is investigated. Household three-chamber septic tanks (TCs), household biogas digesters (BDs), wastewater treatment plants (WWTPs), vegetable plots, water ponds, etc. Are taken into account. The relative abundance of ARGs in fecal sewage can be reduced by BDs and WWTPs by 80% and 60%, respectively. While TCs show no reduction ability for ARGs. Fast expectation-maximization microbial source tracking (FEAST) analysis revealed that TCs and BDs contribute a considerable percentage (15-22%) of ARGs to the surface water bodies (water ponds) in the rural area. Most ARGs tend to precipitate in the sediments of water bodies and stop moving downstream. Meanwhile, the immigration of microorganisms is more active than that of ARGs. The results provide scientific basic data for the management of fecal sewage and the controlling of ARGs in rural areas.
Collapse
Affiliation(s)
- Dachao Ma
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Hongcheng Chen
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Qingge Feng
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China.
| | - Xuan Zhang
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Jinghang Feng
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Shikun Cheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing , 100083, China
| | - Dongbo Wang
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Zheng Liu
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Qisong Zhong
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Jinye Wei
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| | - Guozi Liu
- School of Resources, Environment and Materials, Key Laboratory of Environmental Protection, Guangxi University, Nanning, 530004, China
| |
Collapse
|
29
|
Zhou Z, Amer H, Sultani A, Nasr P, Wang Y, Corradini MG, Douglas Goff H, LaPointe G, Rogers MA. The digestive fate of beef versus plant-based burgers from bolus to stool. Food Res Int 2023; 167:112688. [PMID: 37087260 DOI: 10.1016/j.foodres.2023.112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Ultra-processed, plant-based burgers (PB) and traditional comminuted-beef burgers (BB) share similar organoleptic characteristics, yet a knowledge gap exists in understanding how consumption of these divergent physical structures alters the lipemic response and gut microbiota. PB, comprised of highly refined ingredients, is formulated with no intact whole food structure, while BB entraps lipids throughout the myofibrillar protein network. PB presented significantly higher free fatty acid (FFA) bioaccessibility (28.2 ± 4.80 %) compared to BB (8.73 ± 0.52 %), as obtained from their FFA release profiles over digestion time after characterizing them with a modified logistic model (SLM), using the simulated TIM Gastro-Intestinal Model (TIM-1). Additionally, the rate of lipolysis, k, obtained from the SLM for PB (90% CI [0.0175, 0.0277] min-1) was higher than for BB (90% CI [0.0113, 0.0171] min-1). Using the Simulated Human Intestinal Microbial Ecosystem (SHIME®), the Firmicutes to Bacteroidetes ratio (F/B ratio) was significantly higher for PB than BB; and linear discriminant analysis effect size (LEfSe) showed Clostridium and Citrobacter were more highly represented in the microbial community for the PB feed, whereas BB feed differentially enriched Megasphaera, Bacteroides, Alistipes, and Blautia at the genus level. Additionally, short-chain fatty acid (SCFA) production was altered (p < 0.05) site-specifically in each colon vessel, which could be attributed to the available substrates and changes in microbial composition. Total SCFAs were significantly higher for PB in the ascending colon (AC) and descending colon (DC) but higher for BB only in the transverse colon (TC). This research illustrates the crucial role of meat analog physical structure in modulating nutritional aspects beyond food composition alone.
Collapse
|
30
|
Van den Abbeele P, Deyaert S, Albers R, Baudot A, Mercenier A. Carrot RG-I Reduces Interindividual Differences between 24 Adults through Consistent Effects on Gut Microbiota Composition and Function Ex Vivo. Nutrients 2023; 15:2090. [PMID: 37432238 PMCID: PMC10180869 DOI: 10.3390/nu15092090] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 07/12/2023] Open
Abstract
The human gut microbiota is characterized by large interpersonal differences, which are not only linked to health and disease but also determine the outcome of nutritional interventions. In line with the growing interest for developing targeted gut microbiota modulators, the selectivity of a carrot-derived rhamnogalacturonan I (cRG-I) was compared to substrates with demonstrated low (inulin, IN) and high selectivity (xanthan, XA), at a human equivalent dose (HED) of 1.5 g/d. The high throughput of the ex vivo SIFR® technology, validated to generate predictive insights for clinical findings, enabled the inclusion of 24 human adults. Such an unprecedented high number of samples in the context of in vitro gut microbiota modelling allowed a coverage of clinically relevant interpersonal differences in gut microbiota composition and function. A key finding was that cRG-I supplementation (already at an HED of 0.3 g/d) lowered interpersonal compositional differences due to the selective stimulation of taxa that were consistently present among human adults, including OTUs related to Bacteroides dorei/vulgatus and Bifidobacterium longum (suspected keystone species), Bacteroides thetaiotaomicron, Bifidobacterium adolescentis and butyrate-producing taxa such as Blautia sp., Anaerobutyricum hallii, and Faecalibacterium prausnitzii. In contrast, both IN and XA treatments increased interpersonal compositional differences. For IN, this followed from its low specificity. For XA, it was rather the extremely high selectivity of XA fermentation that caused large differences between 15 responders and 9 nonresponders, caused by the presence/absence of highly specific XA-fermenting taxa. While all test compounds significantly enhanced acetate, propionate, butyrate, and gas production, cRG-I resulted in a significantly higher acetate (+40%), propionate (+22%), yet a lower gas production (-44%) compared to IN. cRG-I could thus result in overall more robust beneficial effects, while also being better tolerated. Moreover, owing to its remarkable homogenization effect on microbial composition and metabolite production, cRG-I could lead to more predictable outcomes compared to substrates that are less specific or overly specific.
Collapse
Affiliation(s)
| | - Stef Deyaert
- Cryptobiotix SA, 9052 Ghent, Belgium; (P.V.d.A.); (S.D.); (A.B.)
| | - Ruud Albers
- Nutrileads BV, 6708 WH Wageningen, The Netherlands;
| | - Aurélien Baudot
- Cryptobiotix SA, 9052 Ghent, Belgium; (P.V.d.A.); (S.D.); (A.B.)
| | | |
Collapse
|
31
|
Wang D, Fletcher GC, Gagic D, On SLW, Palmer JS, Flint SH. Comparative genome identification of accessory genes associated with strong biofilm formation in Vibrio parahaemolyticus. Food Res Int 2023; 166:112605. [PMID: 36914349 DOI: 10.1016/j.foodres.2023.112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Vibrio parahaemolyticus biofilms on the seafood processing plant surfaces are a potential source of seafood contamination and subsequent food poisoning. Strains differ in their ability to form biofilm, but little is known about the genetic characteristics responsible for biofilm development. In this study, pangenome and comparative genome analysis of V. parahaemolyticus strains reveals genetic attributes and gene repertoire that contribute to robust biofilm formation. The study identified 136 accessory genes that were exclusively present in strong biofilm forming strains and these were functionally assigned to the Gene Ontology (GO) pathways of cellulose biosynthesis, rhamnose metabolic and catabolic processes, UDP-glucose processes and O antigen biosynthesis (p < 0.05). Strategies of CRISPR-Cas defence and MSHA pilus-led attachment were implicated via Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. Higher levels of horizontal gene transfer (HGT) were inferred to confer more putatively novel properties on biofilm-forming V. parahaemolyticus. Furthermore, cellulose biosynthesis, a neglected potential virulence factor, was identified as being acquired from within the order Vibrionales. The cellulose synthase operons in V. parahaemolyticus were examined for their prevalence (22/138, 15.94 %) and were found to consist of the genes bcsG, bcsE, bcsQ, bcsA, bcsB, bcsZ, bcsC. This study provides insights into robust biofilm formation of V. parahaemolyticus at the genomic level and facilitates: identification of key attributes for robust biofilm formation, elucidation of biofilm formation mechanisms and development of potential targets for novel control strategies of persistent V. parahaemolyticus.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Dragana Gagic
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Stephen L W On
- Faculty of Agriculture and Life Sciences, Lincoln University, Private Bag 85084, Canterbury, New Zealand
| | - Jon S Palmer
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Steve H Flint
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| |
Collapse
|
32
|
Lin S, Xu X, Holck J, Wittrup Agger J, Wilkens C, Xie Z, Khakimov B, Nielsen DS, Meyer AS. Soluble, Diferuloylated Corn Bran Glucuronoarabinoxylans Modulate the Human Gut Microbiota In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3885-3897. [PMID: 36787634 DOI: 10.1021/acs.jafc.2c08338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Corn bran is exceptionally rich in substituted glucuronoarabinoxylan polysaccharides, which are monoferuloylated and cross-linked by diferulic acid moieties. Here, we assessed the potential prebiotic activity of three enzymatically solubilized corn bran glucuronoarabinoxylans: medium feruloylated (FGAX-M), laccase cross-linked FGAX-M (FGAX-H), and alkali-treated FGAX-M devoid of feruloyl substitutions (FGAX-B). We examined the influence of these soluble FGAX samples on the gut microbiome composition and functionality during in vitro simulated colon fermentations, determined by 16S rRNA gene amplicon sequencing and assessment of short-chain fatty acid (SCFAs) production. All FGAX samples induced changes in the relative composition of the microbiota and the SCFA levels after 24 h of in vitro fermentation. The changes induced by FGAX-M and FGAX-H tended to be more profound and more similar to the changes induced by inulin than changes conferred by FGAX-B. The microbiota changes induced by FGAX-M and FGAX-H correlated with an increase in the relative abundance of Anaerostipes and with increased butyric acid production, while the changes induced by the FGAX-B sample were less compelling. The results imply that solubilized, substituted diferuloylated corn bran glucuronoarabinoxylans may be potential prebiotic candidates and that both single feruloylations and diferuloyl cross-links influence the prebiotic potential of these arabinoxylan compounds.
Collapse
Affiliation(s)
- Shang Lin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Xinming Xu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Jane Wittrup Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Casper Wilkens
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| | - Zhuqing Xie
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
33
|
Średnicka P, Roszko MŁ, Popowski D, Kowalczyk M, Wójcicki M, Emanowicz P, Szczepańska M, Kotyrba D, Juszczuk-Kubiak E. Effect of in vitro cultivation on human gut microbiota composition using 16S rDNA amplicon sequencing and metabolomics approach. Sci Rep 2023; 13:3026. [PMID: 36810418 PMCID: PMC9945476 DOI: 10.1038/s41598-023-29637-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Gut microbiota (GM) plays many key functions and helps maintain the host's health. Consequently, the development of GM cultivation under in vitro stimulating physiological conditions has gained extreme interest in different fields. In this study, we evaluated the impact of four culture media: Gut Microbiota Medium (GMM), Schaedler Broth (SM), Fermentation Medium (FM), and Carbohydrate Free Basal Medium (CFBM) on preserving the biodiversity and metabolic activity of human GM in batch in vitro cultures using PMA treatment coupled with 16S rDNA sequencing (PMA-seq) and LC-HR-MS/MS untargeted metabolomics supplemented with GC-MS SCFA profiling. Before the experiments, we determined the possibility of using the pooled faecal samples (MIX) from healthy donors (n = 15) as inoculum to reduce the number of variables and ensure the reproducibility of in vitro cultivation tests. Results showed the suitability of pooling faecal samples for in vitro cultivation study. Non-cultured MIX inoculum was characterized by higher α-diversity (Shannon effective count, and Effective microbial richness) compared to inocula from individual donors. After 24 h of cultivation, a significant effect of culture media composition on GM taxonomic and metabolomic profiles was observed. The SM and GMM had the highest α-diversity (Shannon effective count). The highest number of core ASVs (125) shared with non-cultured MIX inoculum and total SCFAs production was observed in the SM. These results might contribute to the development of standardized protocols for human GM in vitro cultivation by preventing methodological bias in the data.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland.
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1 Street, 02-097, Warsaw, Poland
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Magdalena Szczepańska
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Danuta Kotyrba
- Department of Research, Scientific Information and Marketing Coordination, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland.
| |
Collapse
|
34
|
de Campos LJ, Seleem MA, Feng J, Pires de Oliveira KM, de Andrade Dos Santos JV, Hayer S, Clayton JB, Kathi S, Fisher DJ, Ouellette SP, Conda-Sheridan M. Design, Biological Evaluation, and Computer-Aided Analysis of Dihydrothiazepines as Selective Antichlamydial Agents. J Med Chem 2023; 66:2116-2142. [PMID: 36696579 PMCID: PMC10056257 DOI: 10.1021/acs.jmedchem.2c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chlamydia trachomatis (CT) causes the most prevalent sexually transmitted bacterial disease in the United States. The lack of drug selectivity is one of the main challenges of the current antichlamydial pharmacotherapy. The metabolic needs of CT are controlled, among others, by cylindrical proteases and their chaperones (e.g., ClpX). It has been shown that dihydrothiazepines can disrupt CT-ClpXP. Based on this precedent, we synthesized a dihydrothiazepine library and characterized its antichlamydial activity using a modified semi-high-throughput screening assay. Then, we demonstrated their ability to inhibit ClpX ATPase activity in vitro, supporting ClpX as a target. Further, our lead compound displayed a promising selectivity profile against CT, acceptable cytotoxicity, no mutagenic potential, and good in vitro stability. A two-dimensional quantitative structure-activity relationship (2D QSAR) model was generated as a support tool in the identification of more potent antichlamydial molecules. This study suggests dihydrothiazepines are a promising starting point for the development of new and selective antichlamydial drugs.
Collapse
Affiliation(s)
- Luana Janaína de Campos
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mohamed A Seleem
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jiachen Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Kelly Mari Pires de Oliveira
- Faculty of Biological and Environmental Science, Federal University of Grande Dourados, Dourados, MS 79804-970, Brazil
| | | | - Shivdeep Hayer
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, United States
| | - Jonathan B Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, United States
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Nebraska Food for Health Center, University of Nebraska─Lincoln, Lincoln, Nebraska 68508, United States
| | - Sharvath Kathi
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Derek J Fisher
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Scot P Ouellette
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
35
|
Wu J, Yu C, Shen S, Ren Y, Cheng H, Xiao H, Liu D, Chen S, Ye X, Chen J. RGI-Type Pectic Polysaccharides Modulate Gut Microbiota in a Molecular Weight-Dependent Manner In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2160-2172. [PMID: 36648986 DOI: 10.1021/acs.jafc.2c07675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, the fermentation characteristics of high rhamnogalacturonan I pectic polysaccharides (RGI) and free-radical degraded RGI (DRGI) were evaluated by a human fecal batch-fermentation model, and their structural properties were also investigated. As a result, the Mw of RGI decreased from 246.8 to 11.6 kDa, and the branches were broken dramatically. Fermentation showed that RGI degraded faster and produced more acetate and propionate than DRGI. Both of them reduced the Firmicutes/Bacteroidetes ratio and promoted the development of Bacteroides, Bifidobacterium, and Lactobacillus, bringing benefits to the gut ecosystem. However, the composition and metabolic pathways of the microbiota in RGI and DRGI were different. Most of the dominant bacteria of RGI (such as [Eubacterium]_eligens_group) participated in carbohydrate utilization, leading to better performance in glucolipid metabolism and energy metabolism. This work elucidated that large molecular weight matters in the gut microbiota modulatory effect of RGI-type pectic polysaccharides in vitro.
Collapse
Affiliation(s)
- Jiaxiong Wu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Chengxiao Yu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Sihuan Shen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- NingboTech University, Ningbo315100, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| |
Collapse
|
36
|
Delgadinho M, Ginete C, Santos B, Mendes J, Miranda A, Vasconcelos J, Brito M. Microbial gut evaluation in an angolan paediatric population with sickle cell disease. J Cell Mol Med 2022; 26:5360-5368. [PMID: 36168945 DOI: 10.1111/jcmm.17402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Sickle cell disease (SCD) is one of the most common genetic conditions worldwide. It can contribute up to 90% of under-5 mortality in sub-Saharan Africa. Clinical manifestations are very heterogeneous, and the intestinal microbiome appears to be crucial in the modulation of inflammation, cell adhesion and induction of aged neutrophils, the main interveners of recurrent vaso-occlusive crisis. Enterocyte injury, increased permeability, altered microbial composition and bacterial overgrowth have all been documented as microbial and pathophysiologic changes in the gut microbiome of SCD patients in recent studies. Our aim was to sequence the bacterial 16S rRNA gene in order to characterize the gut microbiome of Angolan children with SCA and healthy siblings as a control. A total of 72 stool samples were obtained from children between 3 and 14 years old. Our data showed that the two groups exhibit some notable differences in microbiota relative abundance at different classification levels. Children with SCA have a higher number of the phylum Actinobacteria. As for the genus level, Clostridium cluster XI bacteria was more prevalent in the SCA children, whereas the siblings had a higher abundance of Blautia, Aestuariispira, Campylobacter, Helicobacter, Polaribacter and Anaerorhabdus. In this study, we have presented the first microbiota analysis in an Angolan paediatric population with SCD and provided a detailed view of the microbial differences between patients and healthy controls. There is still much to learn before fully relying on the therapeutic approaches for gut modulation, which is why more research in this field is crucial to making this a reality.
Collapse
Affiliation(s)
- Mariana Delgadinho
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Catarina Ginete
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Brígida Santos
- Centro de Investigação em Saúde de Angola (CISA), Bengo, Angola.,Hospital Pediátrico David Bernardino (HPDB), Luanda, Angola
| | - Joana Mendes
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Armandina Miranda
- Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | | | - Miguel Brito
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Investigação em Saúde de Angola (CISA), Bengo, Angola
| |
Collapse
|
37
|
Oren A, Garrity G. Validation List no. 207. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2022; 72. [PMID: 36178798 DOI: 10.1099/ijsem.0.005517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
38
|
Characterization of microbial communities in anaerobic acidification reactors fed with casein and/or lactose. Appl Microbiol Biotechnol 2022; 106:6301-6316. [PMID: 36008566 PMCID: PMC9468126 DOI: 10.1007/s00253-022-12132-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
Abstract Protein-rich agro-industrial waste streams are high in organic load and represent a major environmental problem. Anaerobic digestion is an established technology to treat these streams; however, retardation of protein degradation is frequently observed when carbohydrates are present. This study investigated the mechanism of the retardation by manipulating the carbon source fed to a complex anaerobic microbiota and linking the reactor performance to the variation of the microbial community. Two anaerobic acidification reactors were first acclimated either to casein (CAS reactor) or lactose (LAC reactor), and then fed with mixtures of casein and lactose. Results showed that when lactose was present, the microbial community acclimated to casein shifted from mainly Chloroflexi to Proteobacteria and Firmicutes, the degree of deamination in the CAS reactor decreased from 77 to 15%, and the VFA production decreased from 75 to 34% of the effluent COD. A decrease of 75% in protease activity and 90% in deamination activity of the microbiota was also observed. The microorganisms that can ferment both proteins and carbohydrates were predominant in the microbial community, and from a thermodynamical point of view, they consumed carbohydrates prior to proteins. The frequently observed negative effect of carbohydrates on protein degradation can be mainly attributed to the substrate preference of these populations. Keypoints • The presence of lactose shifted the microbial community and retarded anaerobic protein degradation. • Facultative genera were dominant in the presence and absence of lactose. • Substrate-preference caused retardation of anaerobic protein degradation. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12132-5.
Collapse
|