1
|
Mesguida O, Compant S, Wallner A, Antonielli L, Lobinski R, Godin S, Le Bechec M, Terrasse M, Taibi A, Dreux-Zigha A, Berthon JY, Guyoneaud R, Rey P, Attard E. Genomic and metabolomic insights into the modes-of-action of bacterial strains to control the grapevine wood pathogen, Fomitiporia mediterranea. Microbiol Res 2025; 293:128085. [PMID: 39908943 DOI: 10.1016/j.micres.2025.128085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Grapevine trunk diseases (GTDs), particularly Esca, represent a major challenge for viticulture worldwide, leading to substantial economic losses. With no effective control treatments available, developing new methods such as biocontrol is crucial for managing GTDs. Our aim was to select biocontrol bacteria effective against the white-rot fungal pathogen Fomitiporia mediterranea (Fmed) and to investigate their mechanisms of action. A stepwise screening of 58 bacterial strains was conducted in vitro to assess their ability to inhibit Fmed growth through volatile and diffusible metabolites production. The screening was also done on wood sawdust from seven different grapevine cultivars. Out of 58 tested strains, 49 inhibited Fmed growth by over 50 % through their volatile organic compounds, only eight achieving this through their agar-diffusible metabolites. Pseudomonas lactis SV9, Pseudomonas paracarnis S45, and Paenibacillus polymyxa SV13 exhibited a strong efficacy in inhibiting Fmed on wood sawdust in a cultivar-dependent manner. We selected these strains for whole genome analysis and metabolomic profiling via LC-MS/MS for diffusible compounds and SPME GC-MS for volatile compounds. P. polymyxa SV13 inhibited Fmed primarily through diffusible metabolites, producing mainly fusaricidin-type compounds. Conversely, Pseudomonas strains acted mainly via their volatile metabolites, producing mainly the antifungal compound dimethyl disulfide. Genome analysis of the three bacterial strains revealed gene clusters responsible for regulating both direct and indirect mechanisms in biocontrol agents (BCAs). Our findings highlight the importance of comprehensive studies that combine in vitro experiments mimicking field conditions, with detailed investigations into modes of action to improve BCAs efficacy.
Collapse
Affiliation(s)
- Ouiza Mesguida
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France; GreenCell: Biopôle Clermont-Limagne, Saint Beauzire 63360, France.
| | - Stéphane Compant
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln 3430, Austria
| | - Adrian Wallner
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln 3430, Austria
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln 3430, Austria
| | - Ryszard Lobinski
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France; Chair of Analytical Chemistry, Warsaw University of Technology, Warsaw 00-664, Poland
| | - Simon Godin
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France
| | | | - Maxence Terrasse
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France
| | - Ahmed Taibi
- GreenCell: Biopôle Clermont-Limagne, Saint Beauzire 63360, France
| | | | | | - Rémy Guyoneaud
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France
| | - Patrice Rey
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France
| | - Eléonore Attard
- Universite de Pau et des Pays de l'Adour, CNRS, IPREM, Pau, France
| |
Collapse
|
2
|
Nazipi Bushi S, Lund MB, Sandfeld T, Nørskov SS, Fruergaard S, Glasius M, Bilde T, Schramm A. A modified iChip for in situ cultivation of bacteria in arid environments. Appl Environ Microbiol 2025; 91:e0132524. [PMID: 39772876 PMCID: PMC11837541 DOI: 10.1128/aem.01325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Antimicrobial resistance is an ever-increasing problem for human health, and with only a few novel antimicrobials discovered in recent decades, an extraordinary effort is needed to circumvent this crisis. A promising source of new microbial-derived antimicrobial compounds resides in the large fraction of microbes that are not readily cultured by standard cultivation. It has previously been shown that nests of the social spider Stegodyphus dumicola contain a diverse bacterial community, where only a small fraction of the microbes could be recovered by standard cultivation. To improve the recovery of the bacterial diversity cultured from nests, we modified the previously described isolation chip (iChip) to fit the natural arid environment of S. dumicola nests. Here we provide a comprehensive analysis of the modified iChip's performance. We found that the modified iChip improved the overall culturability, performed equally or better at recovering the bacterial diversity from individual nests, and improved the recovery of rare isolates compared to standard cultivation. Furthermore, we show that the modified iChip can be used in the field. In addition, we observed that the nests contain volatile organic compounds (VOCs) that could serve as substrate for the selective enrichment of rare and iChip-specific isolates. Our modified iChip can be applied for in situ cultivation in a broad range of arid habitats that can be exploited for future drug discovery.IMPORTANCEThe demand for novel antimicrobial compounds is an ever-increasing problem due to the rapid spread of antibiotic-resistant microbes. Therefore, exploring new habitats for microbial-derived antimicrobial compounds is crucial. The nest microbiome of Stegodyphus dumicola remains largely unexplored and could potentially serve as a new source of antimicrobial compounds. To access the nest's microbial diversity, we designed a modified iChip for in situ cultivation inside spider nests and tested its applications in both field and laboratory settings. Our study shows that the iChip's ability to recover in situ abundant genera was comparable or superior to standard cultivation, while the recovery of rare (low-abundant genera) was higher. We argue that these low-abundant and iChip-specific isolates are enriched from naturally occurring nest volatile organic compounds (VOCs) during iChip incubation.
Collapse
Affiliation(s)
- Seven Nazipi Bushi
- Department of Biology – Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Marie B. Lund
- Department of Biology – Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Tobias Sandfeld
- Department of Biology – Section for Microbiology, Aarhus University, Aarhus, Denmark
| | | | | | | | - Trine Bilde
- Department of Biology – Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Department of Biology – Section for Microbiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Noël A, Dumas C, Rottier E, Beslay D, Costagliola G, Ginies C, Nicolè F, Conte YL, Mondet F. Identification of five volatile organic compounds that trigger hygienic and recapping behaviours in the honey bee (Apis mellifera). Int J Parasitol 2025:S0020-7519(25)00020-7. [PMID: 39900171 DOI: 10.1016/j.ijpara.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Varroa destructor, the main parasite of the honey bee (Apis mellifera), is having a devastating effect on beekeeping worldwide. The development of resistance traits in some colonies, linked with Varroa-sensitive hygiene (VSH) and recapping (REC) behaviours, provide an ideal avenue for long-term sustainable control of the parasite. The most important step in these behaviours is the detection of parasitized brood cells. Several semiochemicals released from Varroa-infested brood cells, targeted by VSH behaviour, trigger this behaviour. Most of these compounds are not very volatile. In the current work, we focus on the study of volatile organic compound (VOC) emissions from Varroa-infested cells. This study describes the emission of nine VOCs characteristic of Varroa parasitism, of which five could be identified and triggered hygienic and recapping behaviours. These five compounds were also tested with compounds already described in the literature, in relation to the volatile nature of the compounds. Using solutions containing 1-15 compounds, we looked at the cleaning and recapping behaviours of the workers. Behavioural results highlight the importance of the VOCs found in this study in the detection, opening and recapping of brood cells, while low volatile compounds seem to play a particularly key role in the sacrifice of pupae. Similar to the Varroa parasitization-specific (VPS) compounds, including the tetracosyl acetate alone, the cleaning of brood cells triggered by one of the compounds identified in this study, n-tetradecane, appears to be linked to the colony's ability to carry out VSH behaviour. This study opens new perspectives in the understanding of resistance behaviour of honey bees against their main parasite Varroa destructor.
Collapse
Affiliation(s)
- Amélie Noël
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | - Charlène Dumas
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | - Emilien Rottier
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | | | - Guy Costagliola
- INRAE, UR 1115 Plantes et Systèmes de culture Horticoles 84914 Avignon, France
| | - Christian Ginies
- INRAE, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale 84914 Avignon, France
| | - Florence Nicolè
- Université de Lyon, UJM-Saint-Etienne, CNRS, LBVpam 42100 Saint-Étienne, France
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | - Fanny Mondet
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France.
| |
Collapse
|
4
|
Yassin Y, Aseel D, Khalil A, Abdel-Megeed A, Al-Askar A, Elbeaino T, Moawad H, Behiry S, Abdelkhalek A. Foliar Application of Rhizobium leguminosarum bv. viciae Strain 33504-Borg201 Promotes Faba Bean Growth and Enhances Systemic Resistance Against Bean Yellow Mosaic Virus Infection. Curr Microbiol 2024; 81:220. [PMID: 38867024 DOI: 10.1007/s00284-024-03733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
The bean yellow mosaic virus (BYMV) is one of the most serious economic diseases affecting faba bean crop production. Rhizobium spp., well known for its high nitrogen fixation capacity in legumes, has received little study as a possible biocontrol agent and antiviral. Under greenhouse conditions, foliar application of molecularly characterized Rhizobium leguminosarum bv. viciae strain 33504-Borg201 to the faba bean leaves 24 h before they were infected with BYMV made them much more resistant to the disease while also lowering its severity and accumulation. Furthermore, the treatment promoted plant growth and health, as evidenced by the increased total chlorophyll (32.75 mg/g f.wt.) and protein content (14.39 mg/g f.wt.), as well as the improved fresh and dry weights of the plants. The protective effects of 33504-Borg201 greatly lowered the levels of hydrogen peroxide (H2O2) (4.92 µmol/g f.wt.) and malondialdehyde (MDA) (173.72 µmol/g f.wt.). The antioxidant enzymes peroxidase (1.58 µM/g f.wt.) and polyphenol oxidase (0.57 µM/g f.wt.) inhibited the development of BYMV in plants treated with 33504-Borg201. Gene expression analysis showed that faba bean plants treated with 33504-Borg201 had higher amounts of pathogenesis-related protein-1 (PR-1) (3.28-fold) and hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (4.13-fold) than control plants. These findings demonstrate the potential of 33,504-Borg201 as a cost-effective and eco-friendly method to protect faba bean plants against BYMV. Implementing this approach could help develop a simple and sustainable strategy for protecting faba bean crops from the devastating effects of BYMV.
Collapse
Affiliation(s)
- Yara Yassin
- Plant Protection and Biomolecular Diagnostic Department, ALCRI, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| | - Dalia Aseel
- Plant Protection and Biomolecular Diagnostic Department, ALCRI, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| | - Abdallah Khalil
- Plant Protection Department, Faculty of Agricultural, Omar Al-Mukhtar University, Elbyda, Libya
| | - Ahmed Abdel-Megeed
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Abdulaziz Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Toufic Elbeaino
- Instituto Agronomico Mediterraneo di Bari, Via Ceglie 9, 70010, Valenzano, Bari, Italy
| | - Hassan Moawad
- Agriculture Microbiology Department, National Research Centre, Cairo, 12622, Egypt
| | - Said Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnostic Department, ALCRI, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt.
| |
Collapse
|
5
|
PRIYANTO JA, PRASTYA ME, MINARTI M, PERMATASARI V. Pharmaceutical Properties and Phytochemical Profile of Extract Derived from Purple Leaf Graptophyllum pictum (L.) Griff. Turk J Pharm Sci 2024; 21:133-140. [PMID: 38742815 PMCID: PMC11096786 DOI: 10.4274/tjps.galenos.2023.95690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/18/2023] [Indexed: 05/16/2024]
Abstract
Objective Graptophyllum pictum (L.) Griff is a medicinal shrub belonging to the Acanthaceae family and is traditionally used to treat various diseases. Therefore, this study aimed to evaluate the pharmaceutical properties and phytochemical profiles of the methanolic extract of G. pictum. Materials and Methods G. pictum leaves was extracted using methanol. Antioxidant, cytotoxic on Michigan Cancer Foundation-7 (MCF-7) and HepG2, antidiabetic, and antibacterial properties were evaluated in vitro. Chemical profile of the extract was identified through qualitative (for phytochemicals), quantitative (for phenolic and flavonoid content), and gas chromatography-mass spectrometry (GC-MS) analysis. Results The results showed that the extract had potent antioxidant activity against 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) and 2,2-diphenyl-1-picrylhydrazyl radicals with IC50 values of 49.00 ± 3.20 µg/mL and 70.18 ± 3.27 µg/mL, respectively. It also exhibited cytotoxic effects on human breast (MCF-7) and liver (HepG2) carcinoma cells with growth inhibition percentages of 74.29 ± 1.53% and 64.90 ± 1.94%, respectively. The antidiabetic assay showed that the extract had inhibitory effects on α-glucosidase activity with IC50 value 194.59 ± 15.59 µg/mL, indicating its potential to be developed as an antidiabetic agent. Furthermore, it had antibacterial properties against four test strains, and the highest activity was found against Bacillus subtilis American Type Culture Collection 19659, with minimum inhibitory concentration and minimum bactericidal concentration values of 625 µg/mL and 1250 µg/mL, respectively. Phytochemical tests indicated the presence of alkaloids, flavonoid and terpenoids in the extract, with total phenolic content and total flavonoid content of 41.17 ± 2.38 mg gallic acid equivalents/g and 26.52 ± 0.61 mg quercetin equivalent/g, respectively. GC-MS analysis revealed that it contained several active compounds, including eicosane, 2,4-Di-tert-butylphenol, hentriacontane, tetracosane, octacosane, sulfurous acid, 2-methylhexacosane, docosane, heneicosane, 1-propene-1,2,3-tricarboxylic acid, tributyl ester, and pentacosane. Conclusion The extract derived from G. pictum leaves was a potential source of therapeutic compounds, particularly for antioxidant, antidiabetic, anticancer, and antibacterial agents.
Collapse
Affiliation(s)
- Jepri Agung PRIYANTO
- IPB University Faculty of Mathematics and Natural Sciences, Department of Biology, Division of Microbiology, West Java, Indonesia
| | - Muhammad Eka PRASTYA
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST), BJ Habibie (PUSPIPTEK) Serpong, South Tangerang, Banten, Indonesia
| | - Minarti MINARTI
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST), BJ Habibie (PUSPIPTEK) Serpong, South Tangerang, Banten, Indonesia
| | - Vera PERMATASARI
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST), BJ Habibie (PUSPIPTEK) Serpong, South Tangerang, Banten, Indonesia
| |
Collapse
|
6
|
Thomas G, Caulfield J, Nikolaeva-Reynolds L, Birkett MA, Vuts J. Solvent Extraction of PDMS Tubing as a New Method for the Capture of Volatile Organic Compounds from Headspace. J Chem Ecol 2024; 50:85-99. [PMID: 38246946 DOI: 10.1007/s10886-024-01469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Polydimethylsiloxane (PDMS) tubing is increasingly being used to collect volatile organic compounds (VOCs) from static biological headspace. However, analysis of VOCs collected using PDMS tubing often deploys thermal desorption, where samples are considered as 'one-offs' and cannot be used in multiple experiments. In this study, we developed a static headspace VOC collection method using PDMS tubing which is solvent-based, meaning that VOC extracts can be used multiple times and can be linked to biological activity. Using a synthetic blend containing a range of known semiochemicals (allyl isothiocyanate, (Z)-3-hexen-1-ol, 1-octen-3-one, nonanal, (E)-anethol, (S)-bornyl acetate, (E)-caryophyllene and pentadecane) with differing chemical and physicochemical properties, VOCs were collected in static headspace by exposure to PDMS tubing with differing doses, sampling times and lengths. In a second experiment, VOCs from oranges were collected using PDMS sampling of static headspace versus dynamic headspace collection. VOCs were eluted with diethyl ether and analysed using gas chromatography - flame ionization detector (GC-FID) and coupled GC - mass spectrometry. GC-FID analysis of collected samples showed that longer PDMS tubes captured significantly greater quantities of compounds than shorter tubes, and that sampling duration significantly altered the recovery of all tested compounds. Moreover, greater quantities of compounds were recovered from closed compared to open systems. Finally, analysis of orange headspace VOCs showed no qualitative differences in VOCs recovered compared to dynamic headspace collections, although quantities sampled using PDMS tubing were lower. In summary, extraction of PDMS tubing with diethyl ether solvent captures VOCs from the headspace of synthetic blends and biological samples, and the resulting extracts can be used for multiple experiments linking VOC content to biological activity.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - John Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
7
|
Lee Díaz AS, Minchev Z, Raaijmakers JM, Pozo MJ, Garbeva P. Impact of bacterial and fungal inoculants on the resident rhizosphere microbiome and the volatilome of tomato plants under leaf herbivory stress. FEMS Microbiol Ecol 2024; 100:fiad160. [PMID: 38331428 PMCID: PMC10858387 DOI: 10.1093/femsec/fiad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/16/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
Various studies have addressed the impact of microbial inoculants on the composition of the resident microbiome. How microbial inoculants impact plant metabolism and interact with the resident rhizobiota under herbivory stress remains elusive. Here, we investigated the impact of two bacterial and two fungal inoculants, inoculated as single species and as a synthetic community, on the rhizosphere microbiome and volatilome of tomato plants (Solanum lycopersicum) comparing nonstress conditions to exposed to leaf herbivory by Spodoptera exigua. Based on amplicon sequencing analysis, rhizobacterial community composition was significantly affected by all four inoculants and the magnitude of this effect was dependent on herbivory stress. Fungal community composition was altered by the microbial inoculants but independent of herbivory stress. The rhizosphere volatilome was impacted by the microbial inoculation and differences between treatments were evened under herbivory stress. Each microbial inoculant caused unique changes in the volatilome of stressed plants but also shared similar responses, in particular the enhanced production of dimethyl disulfide and benzothiazole. In conclusion, the introduction of microbial inoculants in the tomato rhizosphere caused unique as well as common changes in the rhizosphere microbiome and volatilome, but these changes were minor compared to the microbiome changes induced by herbivory stress.
Collapse
Affiliation(s)
- Ana Shein Lee Díaz
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Zhivko Minchev
- Department of Soil Microbiology and Symbiotic Systems
, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientfícias (CSIC), Calle Prof. Albareda, 1, 18008, Granada, Spain
| | - Jos M Raaijmakers
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - María José Pozo
- Department of Soil Microbiology and Symbiotic Systems
, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientfícias (CSIC), Calle Prof. Albareda, 1, 18008, Granada, Spain
| | - Paolina Garbeva
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
8
|
Wang L, Fan R, Ma H, Sun Y, Huang Y, Wang Y, Guo Q, Ren X, Xu L, Zhao J, Zhang L, Xu Y, Jin L, Dong Y, Quan C. Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis Q-426. BMC Genomics 2023; 24:589. [PMID: 37794314 PMCID: PMC10548584 DOI: 10.1186/s12864-023-09662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The Q-426 strain isolated from compost samples has excellent antifungal activities against a variety of plant pathogens. However, the complete genome of Q-426 is still unclear, which limits the potential application of Q-426. RESULTS Genome sequencing revealed that Q-426 contains a single circular chromosome 4,086,827 bp in length, with 4691 coding sequences and an average GC content of 46.3%. The Q-426 strain has a high degree of collinearity with B. velezensis FZB42, B. velezensis SQR9, and B. amyloliquefaciens DSM7, and the strain was reidentified as B. velezensis Q-426 based on the homology analysis results. Many genes in the Q-426 genome have plant growth-promoting activity, including the secondary metabolites of lipopeptides. Genome mining revealed 14 clusters and 732 genes encoding secondary metabolites with predicted functions, including the surfactin, iturin, and fengycin families. In addition, twelve lipopeptides (surfactin, iturin and fengycin) were successfully detected from the fermentation broth of B. velezensis Q-426 by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS), which is consistent with the genome analysis results. We found that Q-426 produced indole-3-acetic acid (IAA) at 1.56 mg/l on the third day of incubation, which might promote the growth of plants. Moreover, we identified eighteen volatile compounds (VOCs, including 2-heptanone, 6-methylheptan-2-one, 5-methylheptan-2-one, 2-nonanone, 2-decanone, 2-undecanone, 2-dodecanone, 2-tridecanone, 2-tetradecanone, 2-nonadecanone, pentadecanoic acid, oleic acid, dethyl phthalate, dibutyl phthalate, methyl (9E,12E)-octadeca-9,12-dienoate), pentadecane, (6E,10E)-1,2,3,4,4a,5,8,9,12,12a-decahydro-1,4-methanobenzo[10]annulene, and nonanal) based on gas chromatograph-mass spectrometer (GC/MS) results. CONCLUSIONS We mined secondary metabolite-related genes from the genome based on whole-genome sequence results. Our study laid the theoretical foundation for the development of secondary metabolites and the application of B. velezensis Q-426. Our findings provide insights into the genetic characteristics responsible for the bioactivities and potential application of B. velezensis Q-426 as a plant growth-promoting strain in ecological agriculture.
Collapse
Affiliation(s)
- Lulu Wang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Ruochen Fan
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Haodi Ma
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yu Sun
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China
| | - Yangzhu Huang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yuxin Wang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Qinfeng Guo
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China
| | - Xinxiu Ren
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China
| | - Lukai Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Jing Zhao
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Liying Zhang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Liming Jin
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yuesheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China.
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China.
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China.
| |
Collapse
|
9
|
Bhat MP, Nayaka S. Cave Soil Streptomyces sp. strain YC69 Antagonistic to Chilli Fungal Pathogens Exhibits In Vitro Anticancer Activity Against Human Cervical Cancer Cells. Appl Biochem Biotechnol 2023; 195:6232-6255. [PMID: 36853440 DOI: 10.1007/s12010-023-04388-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Cancer is one of the fatal diseases and has high mortality worldwide, and the major drawback with the cure is the side effects from the chemotherapeutic agents. The increased multidrug resistance among microbial pathogens is a serious threat to plant and animal health. There is an urgent need for an alternative that can battle against pathogens and can be used for cancer treatment. Presently, actinomycetes were isolated from cave soil, and the crude extract obtained from the potent isolate was analyzed with gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC) to identify bioactive metabolites. The crude extract was examined for in vitro antimicrobial activity on human pathogens and antifungal activity on plant pathogens. The isolate Streptomyces sp. strain YC69 exhibited antagonistic activity and antimicrobial activity in a dose-dependent manner, with the highest inhibition in Staphylococcus aureus. GC-MS revealed many bioactive compounds, and HPTLC depicted metabolite fingerprints. The antifungal activity exhibited a delayed lag phase in growth curve assay and distorted and collapsed cells of Fusarium oxysporum in scanning electron microscopy (SEM) images. In the MTT assay, the IC50 of 41.98 µg/ml against HeLa cells was obtained with clear evidence for deformed cells and blebbing of the cell membrane. The results from the current study suggest that the crude extract from Streptomyces sp. strain YC69 contains antimicrobial metabolites that can inhibit pathogenic microbes in plants and humans. The MTT assay results conclude that further studies on purification may lead to the use of Streptomyces sp. strain YC69 as a source for anti-oncogenic compounds.
Collapse
Affiliation(s)
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580003, Karnataka, India.
| |
Collapse
|
10
|
Hashem AH, Al-Askar AA, Abd Elgawad H, Abdelaziz AM. Bacterial Endophytes from Moringa oleifera Leaves as a Promising Source for Bioactive Compounds. SEPARATIONS 2023; 10:395. [DOI: 10.3390/separations10070395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Bacterial endophytes reside within the tissues of living plant species without causing any harm or disease to their hosts. Bacterial endophytes have produced a variety of bioactive compounds that can be used for different biomedical applications. In the current study, two bacterial endophytes were isolated from healthy Moringa oleifera leaves, and identified genetically as Stenotrophomonas maltophilia and Alcaligenes faecalis. Phytochemical results illustrated that A. faecalis produced phenolics at 547.2 mg/g, tannins at 156.7 µg/g, flavonoids at 32.8 µg/g, and alkaloids at 111.2 µg/g compared to S. maltophilia, which produced phenolics at 299.5 mg/g, tannins at 78.2 µg/g, flavonoids at 12.4 µg/g, and alkaloids at 29.4 µg/g. GC-MS analysis indicated that A. faecalis extract has 24 bioactive compounds, including 9 major compounds, namely octadecanoic acid, hexadecanoic acid, linoleic acid ethyl ester, octadecenoic acid, methyl ester, methyl stearate, nonacosane, indolizine, palmitoleic acid, and heptacosane. On the other hand, S. maltophilia extract has 11 bioactive compounds, including 8 major compounds, namely oleic acid, octadecanoic acid, hexadecanoic acid, cis-2-phenyl-1, 3-dioxolane-4-methyl, ergotamine, diisooctyl phthalate, diethyl phthalate, and pentadecanoic acid. To check the safety of these extracts, the cytotoxicity of Ethyl acetate (EA) extracts of S. maltophilia and A. faecalis were evaluated against the Vero normal cell line, and the results confirmed that these extracts are safe to use. Moreover, results revealed that EA extracts of S. maltophilia and A. faecalis exhibited anticancer activity against the cancerous MCF7 cell line, where IC50 was 202.4 and 119.7 µg/mL, respectively. Furthermore, EA extracts of S. maltophilia had antibacterial and antifungal activity against Gram-positive and Gram-negative bacteria, and unicellular fungi. Likewise, the EA extract of A. faecalis exhibited antibacterial and antifungal activity against Gram-positive bacteria, as well as unicellular fungi, but did not show any activity against Gram-negative bacteria. Also, EA extracts of S. maltophilia and A. faecalis exhibited moderate antioxidant activity where IC50 were 146.2 and 147.6 µg/mL, respectively. In conclusion, the two isolated endophytic bacteria S. maltophilia and A. faecalis have promising bioactive compounds that have antibacterial, antioxidant, and anticancer activities.
Collapse
Affiliation(s)
- Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 2455, Saudi Arabia
| | - Hamada Abd Elgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2180, Belgium
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
11
|
Badr G, Sayed LH, Omar HEDM, ِAbd Elghaffar SK, Menshawy MM. Bee gomogenat rescues lymphoid organs from degeneration by regulating the crosstalk between apoptosis and autophagy in streptozotocin-induced diabetic mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68990-69007. [PMID: 35554836 PMCID: PMC9508069 DOI: 10.1007/s11356-022-20457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that causes severe complications in several tissues due to redox imbalances, which in turn cause defective angiogenesis in response to ischemia and activate a number of proinflammatory pathways. Our study aimed to investigate the effect of bee gomogenat (BG) dietary supplementation on the architecture of immune organs in a streptozotocin (STZ)-induced type 1 diabetes (T1D) mouse model. Three animal groups were used: the control non-diabetic, diabetic, and BG-treated diabetic groups. STZ-induced diabetes was associated with increased levels of blood glucose, ROS, and IL-6 and decreased levels of IL-2, IL-7, IL-4, and GSH. Moreover, diabetic mice showed alterations in the expression of autophagy markers (LC3, Beclin-1, and P62) and apoptosis markers (Bcl-2 and Bax) in the thymus, spleen, and lymph nodes. Most importantly, the phosphorylation level of AKT (a promoter of cell survival) was significantly decreased, but the expression levels of MCP-1 and HSP-70 (markers of inflammation) were significantly increased in the spleen and lymph nodes in diabetic mice compared to control animals. Interestingly, oral supplementation with BG restored the levels of blood glucose, ROS, IL-6, IL-2, IL-4, IL-7, and GSH in diabetic mice. Treatment with BG significantly abrogated apoptosis and autophagy in lymphoid organs in diabetic mice by restoring the expression levels of LC3, Beclin-1, P62, Bcl-2, and Bax; decreasing inflammatory signals by downregulating the expression of MCP-1 and HSP-70; and promoting cell survival by enhancing the phosphorylation of AKT. Our data were the first to reveal the therapeutic potential of BG on the architecture of lymphoid organs and enhancing the immune system during T1D.
Collapse
Affiliation(s)
- Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Leila H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | | | - Sary Khaleel ِAbd Elghaffar
- Pathology and clinical pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Medhat M Menshawy
- Department of Biology, Misr University of Science and Technology, 6th October City, Egypt
| |
Collapse
|
12
|
Bhat MP, Nayaka S, Kumar RS. A swamp forest Streptomyces sp. strain KF15 with broad spectrum antifungal activity against chilli pathogens exhibits anticancer activity on HeLa cells. Arch Microbiol 2022; 204:540. [PMID: 35927484 DOI: 10.1007/s00203-022-03147-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
During the investigation, soil actinomycetes were isolated from Kathlekanu swamp forest and the crude ethyl acetate extract from the potent isolate KF15 was analysed with GC-MS and HPTLC to identify bioactive metabolites. The crude extract was examined for in-vitro antifungal activity on pathogens of chilli; MTT cytotoxicity assay was performed against HeLa cell line to determine the anticancer potential. The isolate Streptomyces sp. strain KF15 exhibited antagonistic activity against fungal pathogens by inhibiting growth and altering growth pattern with increased antimicrobial activity in dose-dependent manner. GC-MS revealed many bioactive compounds and HPTLC depicted metabolite fingerprint. The IC50 of 99.85 µg/ml indicated the high potential of KF15 extract to prevent proliferation of HeLa cells. Therefore, the findings of this study indicate that the crude extract from Streptomyces sp. strain KF15 contains antifungal and anticancer metabolites; further study on purification could help in controlling many fungal diseases as well as cervical cancer in humans.
Collapse
Affiliation(s)
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, Karnataka, 580003, India.
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
13
|
Lammers A, Lalk M, Garbeva P. Air Ambulance: Antimicrobial Power of Bacterial Volatiles. Antibiotics (Basel) 2022; 11:antibiotics11010109. [PMID: 35052986 PMCID: PMC8772769 DOI: 10.3390/antibiotics11010109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/19/2022] Open
Abstract
We are currently facing an antimicrobial resistance crisis, which means that a lot of bacterial pathogens have developed resistance to common antibiotics. Hence, novel and innovative solutions are urgently needed to combat resistant human pathogens. A new source of antimicrobial compounds could be bacterial volatiles. Volatiles are ubiquitous produced, chemically divers and playing essential roles in intra- and interspecies interactions like communication and antimicrobial defense. In the last years, an increasing number of studies showed bioactivities of bacterial volatiles, including antibacterial, antifungal and anti-oomycete activities, indicating bacterial volatiles as an exciting source for novel antimicrobial compounds. In this review we introduce the chemical diversity of bacterial volatiles, their antimicrobial activities and methods for testing this activity. Concluding, we discuss the possibility of using antimicrobial volatiles to antagonize the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Alexander Lammers
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487 Greifswald, Germany;
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
- Correspondence: or (A.L.); (P.G.)
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487 Greifswald, Germany;
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
- Correspondence: or (A.L.); (P.G.)
| |
Collapse
|
14
|
Rose C, Schramm A, Irish J, Bilde T, Bird TL. Host Plant Availability and Nest-Site Selection of the Social Spider Stegodyphus dumicola Pocock, 1898 (Eresidae). INSECTS 2021; 13:30. [PMID: 35055873 PMCID: PMC8777811 DOI: 10.3390/insects13010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022]
Abstract
An animals' habitat defines the resources that are available for its use, such as host plants or food sources, and the use of these resources are critical for optimizing fitness. Spiders are abundant in all terrestrial habitats and are often associated with vegetation, which may provide structure for anchoring capture webs, attract insect prey, or provide protective function. Social spiders construct sedentary communal silk nests on host plants, but we know little about whether and how they make nest-site decisions. We examined host plant use in relation to host plant availability in the social spider Stegodyphus dumicola Pocock, 1898 (Eresidae) across different arid biomes in Namibia and analysed the role of host plant characteristics (height, spines, scent, sturdiness) on nest occurrence. Host plant communities and densities differed between locations. Spider nests were relatively more abundant on Acacia spp., Boscia foetida, Combretum spp., Dichrostachys cinerea, Parkinsonia africana, Tarchonanthus camphoratus, and Ziziphus mucronatus, and nests survived longer on preferred plant genera Acacia, Boscia and Combretum. Spider nests were relatively more abundant on plants higher than 2 m, and on plants with thorns and with a rigid structure. Our results suggest that spiders display differential use of host plant species, and that characteristics such as rigidity and thorns confer benefits such as protection from browsing animals.
Collapse
Affiliation(s)
- Clémence Rose
- Department of Biology, Aarhus University, 8000 Aarhus, Denmark; (A.S.); (T.B.); (T.L.B.)
| | - Andreas Schramm
- Department of Biology, Aarhus University, 8000 Aarhus, Denmark; (A.S.); (T.B.); (T.L.B.)
| | - John Irish
- National Museum of Namibia, Windhoek 1005, Namibia;
| | - Trine Bilde
- Department of Biology, Aarhus University, 8000 Aarhus, Denmark; (A.S.); (T.B.); (T.L.B.)
| | - Tharina L. Bird
- Department of Biology, Aarhus University, 8000 Aarhus, Denmark; (A.S.); (T.B.); (T.L.B.)
- General Entomology Section, Ditsong National Museum of Natural History, Pretoria 0002, South Africa
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
15
|
The bacterial and fungal nest microbiomes in populations of the social spider Stegodyphus dumicola. Syst Appl Microbiol 2021; 44:126222. [PMID: 34146923 DOI: 10.1016/j.syapm.2021.126222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/09/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
Social spiders of the species Stegodyphus dumicola live in communal nests with hundreds of individuals and are characterized by extremely low species-wide genetic diversity. The lack of genetic diversity in combination with group living imposes a potential threat for infection by pathogens. We therefore proposed that specific microbial symbionts inhabiting the spider nests may provide antimicrobial defense. To compare the bacterial and fungal diversity in 17 nests from three different locations in Namibia, we used 16S rRNA gene and internal transcribed spacer (ITS2) sequencing. The nest microbiomes differed between geographically distinct spider populations and appeared largely determined by the local environment. Nevertheless, we identified a core microbiome consisting of four bacterial genera (Curtobacterium, Modestobacter, Sphingomonas, Massilia) and four fungal genera (Aureobasidium, Didymella, Alternaria, Ascochyta), which likely are selected from surrounding soil and plants by the nest environment. We did not find indications for a strain- or species-specific symbiosis in the nests. Isolation of bacteria and fungi from nest material retrieved a few bacterial strains with antimicrobial activity but a number of antimicrobial fungi, including members of the fungal core microbiome. The significance of antimicrobial taxa in the nest microbiome for host protection remains to be shown.
Collapse
|