1
|
Chaudhuri A, Das S, Chakrabarti S. Mutational and evolutionary dynamics of non-structural and spike proteins from variants of concern (VOC) of SARS-CoV-2 in India. Int J Biol Macromol 2024; 282:137154. [PMID: 39488303 DOI: 10.1016/j.ijbiomac.2024.137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Monitoring the genetic diversity and emerging mutations in SARS-CoV-2 remains crucial for understanding its evolution, given the virus's persistence in India. This study analyzes lineage dynamics, mutation screening, structural analysis, and phylodynamics of SARS-CoV-2 variants of concern (VOC) in India from October 2020 to September 2023. The predominant variants identified were alpha, beta, delta, and omicron, with delta and omicron making up 76.05 % of sequenced genomes. The B.1.617.2 lineage of the delta variant was the major contributor to COVID-19 cases before the rise of omicron. Mutation screening of non-structural proteins (NSPs) and spike proteins revealed distinct profiles for each VOC. Co-mutation patterns were analyzed, showing structural and energetic alterations. Phylogenetic analysis indicated that nsp1, nsp3, nsp4, nsp13, and nsp14 were strongly associated with increased mutation load. The study also highlighted that nsp14 and spike have similar mutability patterns, underscoring nsp14's critical role in SARS-CoV-2 infectivity and persistence. This research provides a comprehensive view of SARS-CoV-2's evolution and persistence in India.
Collapse
Affiliation(s)
- Ankur Chaudhuri
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India.
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Meirelles PM, Viana PAB, Tschoeke DA, de Moraes L, Santos LA, Barral-Netto M, Khouri R, Ramos PIP. Optimizing next-generation sequencing efficiency in clinical settings: analysis of read length impact on cost and performance. BMC Genomics 2024; 25:856. [PMID: 39266944 PMCID: PMC11396997 DOI: 10.1186/s12864-024-10778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The expansion of sequencing technologies as a result of the response to the COVID-19 pandemic enabled pathogen (meta)genomics to be deployed as a routine component of surveillance in many countries. Scaling genomic surveillance, however, comes with associated costs in both equipment and sequencing reagents, which should be optimized. Here, we evaluate the cost efficiency and performance of different read lengths in identifying pathogens in metagenomic samples. We carefully evaluated performance metrics, costs, and time requirements relative to choices of 75, 150 and 300 base pairs (bp) read lengths in pathogen identification. RESULTS Our findings revealed that moving from 75 bp to 150 bp read length approximately doubles both the cost and sequencing time. Opting for 300 bp reads leads to approximately two- and three-fold increases, respectively, in cost and sequencing time compared to 75 bp reads. For viral pathogen detection, the sensitivity median ranged from 99% with 75 bp reads to 100% with 150-300 bp reads. However, bacterial pathogens detection was less effective with shorter reads: 87% with 75 bp, 95% with 150 bp, and 97% with 300 bp reads. These findings were consistent across different levels of taxa abundance. The precision of pathogen detection using shorter reads was comparable to that of longer reads across most viral and bacterial taxa. CONCLUSIONS During disease outbreak situations, when swift responses are required for pathogen identification, we suggest prioritizing 75 bp read lengths, especially if detection of viral pathogens is aimed. This practical approach allows better use of resources, enabling the sequencing of more samples using streamlined workflows, while maintaining a reliable response capability.
Collapse
Affiliation(s)
- Pedro Milet Meirelles
- Institute of Biology, Federal University of Bahia (UFBA), Salvador, Bahia, 41745-715, Brazil.
- National Institute for Interdisciplinary Transdisciplinary Studies in Ecology and Evolution (IN-TREE), Salvador, Brazil.
| | - Pablo Alessandro B Viana
- Institute of Biology, Federal University of Bahia (UFBA), Salvador, Bahia, 41745-715, Brazil
- Center for Data and Knowledge Integration for Health (CIDACS), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz), Salvador, Bahia, Brazil
| | - Diogo Antonio Tschoeke
- Health Systems Engineering Laboratory, Alberto Luiz Coimbra Institute of Graduate Studies and Engineering Research (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Laise de Moraes
- Laboratory of Precision Medicine and Public Health (MESP 2), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz), Salvador, Bahia, Brazil
| | - Luciane Amorim Santos
- Laboratory of Precision Medicine and Public Health (MESP 2), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz), Salvador, Bahia, Brazil
| | - Manoel Barral-Netto
- Laboratory of Precision Medicine and Public Health (MESP 2), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz), Salvador, Bahia, Brazil
- Federal University of Bahia School of Medicine, Salvador, Brazil
- Center for Data and Knowledge Integration for Health (CIDACS), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz), Salvador, Bahia, Brazil
| | - Ricardo Khouri
- Laboratory of Precision Medicine and Public Health (MESP 2), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz), Salvador, Bahia, Brazil
- Federal University of Bahia School of Medicine, Salvador, Brazil
| | - Pablo Ivan P Ramos
- Center for Data and Knowledge Integration for Health (CIDACS), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz), Salvador, Bahia, Brazil
| |
Collapse
|
3
|
Mao D, Liu S, Phan AT, Renner S, Sun Y, Wang TT, Zhu Y. The TRAF3-DYRK1A-RAD54L2 complex maintains ACE2 expression to promote SARS-CoV-2 infection. J Virol 2024; 98:e0034724. [PMID: 38651897 PMCID: PMC11092330 DOI: 10.1128/jvi.00347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Angiotensin converting enzyme 2 (ACE2), the host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is differentially expressed in a wide variety of tissues and cell types. The expression of ACE2 is under tight regulation, but the mechanisms regulating ACE2 expression have not yet been well defined. Through a genome-wide CRISPR knockout screen, we discovered that host factors TRAF3, DYRK1A, and RAD54L2 (TDR) form a complex to regulate the expression of ACE2. Knockout of TRAF3, DYRK1A, or RAD54L2 reduces the mRNA levels of ACE2 and inhibits the cellular entry of SARS-CoV-2. On the other hand, SARS-CoV-2 continuously evolves by genetic mutations for the adaption to the host. We have identified mutations in spike (S) (P1079T) and nucleocapsid (N) (S194L) that enhance the replication of SARS-CoV-2 in cells that express ACE2 at a low level. Our results have revealed the mechanisms for the transcriptional regulation of ACE2 and the adaption of SARS-CoV-2. IMPORTANCE The expression of ACE2 is essential for the entry of SARS-CoV-2 into host cells. We identify a new complex-the TDR complex-that acts to maintain the abundance of ACE2 in host cells. The identification and characterization of the TDR complex provide new targets for the development of therapeutics against SARS-CoV-2 infection. By analysis of SARS-CoV-2 virus replicating in cells expressing low levels of ACE2, we identified mutations in spike (P1079T) and nucleocapsid (S194L) that overcome the restriction of limited ACE2. Functional analysis of these key amino acids in S and N extends our knowledge of the impact of SARS-CoV-2 variants on virus infection and transmission.
Collapse
Affiliation(s)
- Dexin Mao
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Shufeng Liu
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - An Thanh Phan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Stephanie Renner
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Yan Sun
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Tony T. Wang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yiping Zhu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
4
|
Banerjee A, Mazumder A, Roy J, Das J, Majumdar A, Chatterjee A, Biswas NK, Chawla Sarkar M, Das S, Dutta S, Maitra A. Emergence of a unique SARS-CoV-2 Delta sub-cluster harboring a constellation of co-appearing non-Spike mutations. J Med Virol 2023; 95:e28413. [PMID: 36541745 PMCID: PMC9878222 DOI: 10.1002/jmv.28413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Accumulation of diverse mutations across the structural and nonstructural genes is leading to rapid evolution of SARS-CoV-2, altering its pathogenicity. We performed whole genome sequencing of 239 SARS-CoV-2 RNA samples collected from both adult and pediatric patients across eastern India (West Bengal), during the second pandemic wave in India (April-May 2021). In addition to several common spike mutations within the Delta variant, a unique constellation of eight co-appearing non-Spike mutations was identified, which revealed a high degree of positive mutual correlation. Our results also demonstrated the dynamics of SARS-CoV-2 variants among unvaccinated pediatric patients. 41.4% of our studied Delta strains harbored this signature set of eight co-appearing non-Spike mutations and phylogenetically out-clustered other Delta sub-lineages like 21J, 21A, or 21I. This is the first report from eastern India that portrayed a landscape of co-appearing mutations in the non-Spike proteins, which might have led to the evolution of a distinct Delta subcluster. Accumulation of such mutations in SARS-CoV-2 may lead to the emergence of "vaccine-evading variants." Hence, monitoring of such non-Spike mutations will be significant in the formulation of any future vaccines against those SARS-CoV-2 variants that might evade the current vaccine-induced immunity, among both the pediatric and adult populations.
Collapse
Affiliation(s)
| | - Anup Mazumder
- National Institute of Biomedical GenomicsKalyaniIndia
| | - Jayita Roy
- National Institute of Biomedical GenomicsKalyaniIndia
| | | | - Agniva Majumdar
- ICMR‐National Institute of Cholera and Enteric DiseasesKolkataIndia
| | | | | | | | - Saumitra Das
- National Institute of Biomedical GenomicsKalyaniIndia,Department of Microbiology and Cell BiologyIndian Institute of ScienceBengaluruIndia
| | - Shanta Dutta
- ICMR‐National Institute of Cholera and Enteric DiseasesKolkataIndia
| | | |
Collapse
|
5
|
Evolutionary Pattern Comparisons of the SARS-CoV-2 Delta Variant in Countries/Regions with High and Low Vaccine Coverage. Viruses 2022; 14:v14102296. [PMID: 36298851 PMCID: PMC9611485 DOI: 10.3390/v14102296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
It has been argued that vaccine-breakthrough infections of SARS-CoV-2 would likely accelerate the emergence of novel variants with immune evasion. This study explored the evolutionary patterns of the Delta variant in countries/regions with relatively high and low vaccine coverage based on large-scale sequences. Our results showed that (i) the sequences were grouped into two clusters (L and R); the R cluster was dominant, its proportion increased over time and was higher in the high-vaccine-coverage areas; (ii) genetic diversities in the countries/regions with low vaccine coverage were higher than those in the ones with high vaccine coverage; (iii) unique mutations and co-mutations were detected in different countries/regions; in particular, common co-mutations were exhibited in highly occurring frequencies in the areas with high vaccine coverage and presented in increasing frequencies over time in the areas with low vaccine coverage; (iv) five sites on the S protein were under strong positive selection in different countries/regions, with three in non-C to U sites (I95T, G142D and T950N), and the occurring frequencies of I95T in high vaccine coverage areas were higher, while G142D and T950N were potentially immune-pressure-selected sites; and (v) mutation at the N6-methyladenosine site 4 on ORF7a (C27527T, P45L) was detected and might be caused by immune pressure. Our study suggested that certain variation differences existed between countries/regions with high and low vaccine coverage, but they were not likely caused by host immune pressure. We inferred that no extra immune pressures on SARS-CoV-2 were generated with high vaccine coverage, and we suggest promoting and strengthening the uptake of the COVID-19 vaccine worldwide, especially in less developed areas.
Collapse
|
6
|
Al Khalaf R, Bernasconi A, Pinoli P, Ceri S. Analysis of co-occurring and mutually exclusive amino acid changes and detection of convergent and divergent evolution events in SARS-CoV-2. Comput Struct Biotechnol J 2022; 20:4238-4250. [PMID: 35945925 PMCID: PMC9352683 DOI: 10.1016/j.csbj.2022.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
The inflation of SARS-CoV-2 lineages with a high number of accumulated mutations (such as the recent case of Omicron) has risen concerns about the evolutionary capacity of this virus. Here, we propose a computational study to examine non-synonymous mutations gathered within genomes of SARS-CoV-2 from the beginning of the pandemic until February 2022. We provide both qualitative and quantitative descriptions of such corpus, focusing on statistically significant co-occurring and mutually exclusive mutations within single genomes. Then, we examine in depth the distributions of mutations over defined lineages and compare those of frequently co-occurring mutation pairs. Based on this comparison, we study mutations' convergence/divergence on the phylogenetic tree. As a result, we identify 1,818 co-occurring pairs of non-synonymous mutations showing at least one event of convergent evolution and 6,625 co-occurring pairs with at least one event of divergent evolution. Notable examples of both types are shown by means of a tree-based representation of lineages, visually capturing mutations' behaviors. Our method confirms several well-known cases; moreover, the provided evidence suggests that our workflow can explain aspects of the future mutational evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Ruba Al Khalaf
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Anna Bernasconi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Pietro Pinoli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Stefano Ceri
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| |
Collapse
|
7
|
Singh DD, Parveen A, Yadav DK. SARS-CoV-2: Emergence of New Variants and Effectiveness of Vaccines. Front Cell Infect Microbiol 2022; 11:777212. [PMID: 34970509 PMCID: PMC8713083 DOI: 10.3389/fcimb.2021.777212] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023] Open
Abstract
The emergence of SARS-CoV-2 variants may cause resistance at the immunity level against current vaccines. Some emergent new variants have increased transmissibility, infectivity, hospitalization, and mortality. Since the administration of the first SARS-CoV-2 vaccine to a human in March 2020, there is an ongoing global race against SARS-CoV-2 to control the current pandemic situation. Spike (S) glycoprotein of SARS-CoV-2 is the main target for current vaccine development, which can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. The effectiveness of SARS-CoV-2 vaccines and other therapeutics developments are limited by the new emergent variants at the global level. We have discussed the emergent variants of SARS-CoV-2 on the efficacy of developed vaccines. Presently, most of the vaccines have been tremendously effective in severe diseases. However, there are still noteworthy challenges in certifying impartial vaccines; the stories of re-infections are generating more stressful conditions, and this needs further clinical evaluation.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Amna Parveen
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|