1
|
Sun M, Lu X, Fu B, Zhu G, Ma L, Xie C, Zhang Z, Xu X. Insights into the Genome of a New Strain Serratia rubidaea XU1 Isolated from Radioactive Soil and its Prodigiosin Production and Antimicrobial Properties. Curr Microbiol 2024; 81:434. [PMID: 39475970 DOI: 10.1007/s00284-024-03958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
The genus Serratia is a typical red bacterium involved in prodigiosin synthesis. Here, we report the genome sequence of Serratia rubidaea XU1, which was isolated from radiation-contaminated soil in Xinjiang, China. The genome of XU1 is composed of 4,972,898 base pairs with a GC content of 59.25%. The genome sequence contains 4707 genes and encodes 4573 proteins, 79 tRNAs, and 17 rRNAs. The prodigiosin biosynthesis gene cluster was identified and analyzed, showing a sequence similarity of 85.55-96.02% with Serratia rubidaea. After optimizing the biosynthesis process, XU1 was able to achieve a maximum titer of 574 units/cell of prodigiosin at a pH of 7.5 and a temperature of 25 °C for 36 h. Glycerol at 20 g/L and beef extract at 5 g/L were used as the carbon and nitrogen sources, respectively. Prodigiosin extracted from XU1 demonstrated inhibition of Escherichia coli, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa. The availability of the sequenced genome of XU1 will be greatly beneficial and contribute to complementary studies on the biosynthetic mechanisms of prodigiosin.
Collapse
Affiliation(s)
- Mengjuan Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu, China
| | - Xueting Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu, China
| | - Bowen Fu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu, China
| | - Guocui Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu, China
| | - Lele Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, 225127, Jiangsu, China
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang Uyghur Autonomous Region, People's Republic of China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu, China.
| |
Collapse
|
2
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
3
|
Liu H, Chu F, Wu Y, Gu X, Ran T, Wang W, Xu D. Reduced OxyR positively regulates the prodigiosin biosynthesis in Serratia marcescens FS14. Biochem Biophys Res Commun 2024; 710:149877. [PMID: 38581956 DOI: 10.1016/j.bbrc.2024.149877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
OxyR, a LysR family transcriptional regulator, plays vital roles in bacterial oxidative stress response. In this study, we found that the deletion of oxyR not only inhibited the antioxidant capacity of S. marcescens FS14, but also decreased the production of prodigiosin. Further study revealed that OxyR activated the prodigiosin biosynthesis at the transcriptional level. Complementary results showed that not only the wild-type OxyR but also the reduced form OxyRC199S could activate the prodigiosin biosynthesis. We further demonstrated that reduced form of wild type OxyR could bind to the promoter of pig gene cluster, and identified the binding sites which is different from oxidized OxyR binding sites in E. coli. Our results demonstrated that OxyR in FS14 uses oxidized form to regulate the expression of the antioxidant related genes and utilizes reduced form to activate prodigiosin production. Further in silico analysis suggested that the activation of prodigiosin biosynthesis by reduced OxyR should be general in S. marcesencs. To our knowledge, this is the first report to show that OxyR uses the reduced form to activate the gene's expression, therefore, our results provide a novel regulation mechanism of OxyR.
Collapse
Affiliation(s)
- Hong Liu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fenglian Chu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Wu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaochen Gu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tingting Ran
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weiwu Wang
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Dongqing Xu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Ayoub EA, Azoubi Z, Nadia Z, Assia M, Mohammed M. Relationships of Prodiginins Mechanisms and Molecular Structures to their Antiproliferative Effects. Anticancer Agents Med Chem 2024; 24:1383-1395. [PMID: 39113301 DOI: 10.2174/0118715206314212240805105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 10/26/2024]
Abstract
The Prodiginins (PGs) natural pigments are secondary metabolites produced by a broad spectrum of gram-negative and gram-positive bacteria, notably by species within the Serratia and Streptomyces genera. These compounds exhibit diverse and potent biological activities, including anticancer, immunosuppressive, antimicrobial, antimalarial, and antiviral effects. Structurally, PGs share a common tripyrrolic core but possess variable side chains and undergo cyclization, resulting in structural diversity. Studies have investigated their antiproliferative effects on various cancer cell lines, with some PGs advancing to clinical trials for cancer treatment. This review aims to illuminate the molecular mechanisms underlying PG-induced apoptosis in cancer cells and explore the structure-activity relationships pertinent to their anticancer properties. Such insights may serve as a foundation for further research in anticancer drug development, potentially leading to the creation of novel, targeted therapies based on PGs or their derivatives.
Collapse
Affiliation(s)
- El Abbassi Ayoub
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Zineb Azoubi
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Zougagh Nadia
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Mouslim Assia
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Menggad Mohammed
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| |
Collapse
|
5
|
Boby F, Bhuiyan MNH, Saha BK, Dey SS, Saha AK, Islam MJ, Bashera MA, Moulick SP, Jahan F, Zaman MAU, Chowdhury SF, Naser SR, Khan MS, Sarkar MMH. In silico exploration of Serratia sp. BRL41 genome for detecting prodigiosin Biosynthetic Gene Cluster (BGC) and in vitro antimicrobial activity assessment of secreted prodigiosin. PLoS One 2023; 18:e0294054. [PMID: 37967102 PMCID: PMC10651056 DOI: 10.1371/journal.pone.0294054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
The raising concern of drug resistance, having substantial impacts on public health, has instigated the search of new natural compounds with substantial medicinal activity. In order to find out a natural solution, the current study has utilized prodigiosin, a linear tripyrrole red pigment, as an active ingredient to control bacterial proliferation and prevent cellular oxidation caused by ROS (Reactive Oxygen Species). A prodigiosin-producing bacterium BRL41 was isolated from the ancient Barhind soil of BCSIR Rajshahi Laboratories, Bangladesh, and its morphological and biochemical characteristics were investigated. Whole genome sequencing data of the isolate revealed its identity as Serratia sp. and conferred the presence of prodigiosin gene cluster in the bacterial genome. "Prodigiosin NRPS", among the 10 analyzed gene clusters, showed 100% similarity with query sequences where pigC, pigH, pigI, and pigJ were identified as fundamental genes for prodigiosin biosynthesis. Some other prominent clusters for synthesis of ririwpeptides, yersinopine, trichrysobactin were also found in the chromosome of BRL41, whilst the rest displayed less similarity with query sequences. Except some first-generation beta-lactam resistance genes, no virulence and resistance genes were found in the genome of BRL41. Structural illumination of the extracted red pigment by spectrophotometric scanning, Thin-Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), and change of color at different pH solutions verified the identity of the isolated compound as prodigiosin. Serratia sp. BRL41 attained its maximum productivity 564.74 units/cell at temperature 30˚C and pH 7.5 in two-fold diluted nutrient broth medium. The compound exhibited promising antibacterial activity against Gram-positive and Gram-negative bacteria with MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values ranged from 3.9 to15.62 μg/mL and 7.81 to 31.25 μg/mL respectively. At concentration 500 μg/mL, except in Salmonella enterica ATCC-10708, prodigiosin significantly diminished biofilm formed by Listeria monocytogens ATCC-3193, Pseudomonas aeruginosa ATCC-9027, Escherichia coli (environmental isolate), Staphylococcus aureus (environmental isolate). Cellular glutathione level (GSH) was elevated upon application of 250 and 500 μg/mL pigment where 125 μg/mL failed to show any free radical scavenging activity. Additionally, release of cellular components in growth media of both Gram-positive and Gram-negative bacteria were facilitated by the extract that might be associated with cell membrane destabilization. Therefore, the overall findings of antimicrobial, antibiofilm and antioxidant activities suggest that in time to come prodigiosin might be a potential natural source to treat various diseases and infections.
Collapse
Affiliation(s)
- Farhana Boby
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Nurul Huda Bhuiyan
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Barun Kanti Saha
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Subarna Sandhani Dey
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Anik Kumar Saha
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Jahidul Islam
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Mahci Al Bashera
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shyama Prosad Moulick
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Farhana Jahan
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Sanjana Fatema Chowdhury
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Showti Raheel Naser
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Salim Khan
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Murshed Hasan Sarkar
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| |
Collapse
|
6
|
Acharya K, Borborah S, Chatterjee A, Ghosh M, Bhattacharya A. A comprehensive profiling of quorum quenching by bacterial pigments identifies quorum sensing inhibition and antibiofilm action of prodigiosin against Acinetobacter baumannii. Arch Microbiol 2023; 205:364. [PMID: 37906317 DOI: 10.1007/s00203-023-03710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Bacterial pigments represent a diverse group of secondary metabolites, which confer fitness advantages to the producers while residing in communities. The bioactive potential of such metabolites, including antimicrobial, anticancer, and immunomodulation, are being explored. Reckoning that a majority of such pigments are produced in response to quorum sensing (QS) mediated expression of biosynthetic gene clusters and, in turn, influence cell-cell communication, systemic profiling of the pigments for possible impact on QS appears crucial. A systemic screening of bacterial pigments for QS-inhibition combined with exploration of antibiofilm and antimicrobial action against Acinetobacter baumannii might offer viable alternatives to combat the priority pathogen. Major bacterial pigments are classified (clustered) based on their physicochemical properties, and representatives of the clusters are screened for QS inhibition. The screen highlighted prodigiosin as a potent quorum quencher, although its production from Serratia marcescens appeared to be QS-independent. In silico analysis indicated potential interactions between AbaI and AbaR, two major QS regulators in A. baumannii, and prodigiosin, which impaired biofilm formation, a major QS-dependent process in the bacteria. Prodigiosin augmented antibiotic action of ciprofloxacin against A. baumannii biofilms. Cell viability analysis revealed prodigiosin to be modestly cytotoxic against HEK293, a non-cancer human cell line. While developing dual-species biofilm, prodigiosin producer S. marcescens significantly impaired the fitness of A. baumannii. Enhanced susceptibility of A. baumannii toward colistin was also noted while growing in co-culture with S. marcescens. Antibiotic resistant isolates demonstrated varied responsiveness against prodigiosin, with two resistant strains demonstrating possible collateral sensitivity. Collectively, the results underpin the prospect of a prodigiosin-based therapeutic strategy in combating A. baumannii infection.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata, 700126, India
| | - Sonjukta Borborah
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata, 700126, India
| | - Abhishek Chatterjee
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata, 700126, India
| | - Mallika Ghosh
- Dr. Lal PathLabs-Kolkata Reference Lab, Newtown, Kolkata, 700156, India
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd., Kolkata, 700126, India.
| |
Collapse
|
7
|
Wang J, Zhang T, Liu Y, Wang S, Li Z, Sun P, Xu H. Transcriptome analysis reveals that yeast extract inhibits synthesis of prodigiosin by Serratia marcescens SDSPY-136. Prep Biochem Biotechnol 2023; 53:1109-1119. [PMID: 36785995 DOI: 10.1080/10826068.2023.2172036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Prodigiosin (2-methyl-3-pentyl-6-methoxyprodiginine) is a valuable medicinal and edible natural pigment derived from Serratia marcescens. How prodigiosin synthesis is suppressed by environmental factors has not been investigated. Previous studies described a low level of prodigiosin production in the presence of yeast extracts. However, we have observed that S. marcescens SDSPY-136 did not synthesize prodigiosin in yeast extract culture. In this study, transcriptome sequencing of yeast extract cultures was used to estimate the metabolic control of the synthetic prodigiosin pathway in S. marcescens. Key phosphorylation enzymes in the glycolysis pathway, 6-phosphofructokinase, and glyceraldehyde 3-phosphate dehydrogenase, were downregulated by yeast extract and other carbon metabolism pathway genes were enhanced. Genes related to ribosomes, amino acid metabolism, and aminoacyl-tRNA biosynthesis were also highly up-regulated. The presence of metal ions in yeast extracts and the accumulation of fermentation metabolites alter the two-component signaling system, which regulated metabolism to various degrees. The results of metal ion testing suggested that prodigiosin inhibition could be caused by metal ions, such as zinc ion. The findings indicate that yeast extract may affect metabolism through multiple pathways in S. marcescens. This research sheds light on the mechanism of prodigiosin regulatory inhibition.
Collapse
Affiliation(s)
- Junqing Wang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Tingting Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yang Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shanshan Wang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zerun Li
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ping Sun
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hui Xu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
8
|
Lin J, Yu Y, Zhao K, Zhao J, Rensing C, Chen J, Jia X. PtrA regulates prodigiosin synthesis and biological functions in Serratia marcescens FZSF02. Front Microbiol 2023; 14:1240102. [PMID: 37795293 PMCID: PMC10545897 DOI: 10.3389/fmicb.2023.1240102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Serratia marcescens is a gram-negative bacterium that is able to produce many secondary metabolites, such as the prominent red pigment prodigiosin (PG). In this work, a ptrA-disrupted mutant strain with reduced PG production was selected from Tn5 transposon mutants. RT-qPCR results indicated that ptrA promoted elevated transcription of the pig gene cluster in S. marcescens FZSF02. Furthermore, we found that ptrA also controls several other important biological functions of S. marcescens, including swimming and swarming motilities, biofilm formation, hemolytic activity, and stress tolerance. In conclusion, this study demonstrates that ptrA is a PG synthesis-promoting factor in S. marcescens and provides a brief understanding of the regulatory mechanism of ptrA in S. marcescens cell motility and hemolytic activity.
Collapse
Affiliation(s)
- Junjie Lin
- Institute of Soil and Fertilizer, Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanshuang Yu
- College of Resources and Environment, Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ke Zhao
- College of Resources and Environment, Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jie Zhao
- College of Resources and Environment, Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Christopher Rensing
- College of Resources and Environment, Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jichen Chen
- Institute of Soil and Fertilizer, Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Xianbo Jia
- Institute of Soil and Fertilizer, Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| |
Collapse
|
9
|
Wang YD, Gong JS, Guan YC, Zhao ZL, Cai YN, Shan XF. OmpR (TCS response regulator) of Aeromonas veronii plays a major role in drug resistance, stress resistance and virulence by regulating biofilm formation. Microb Pathog 2023; 181:106176. [PMID: 37244492 DOI: 10.1016/j.micpath.2023.106176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Aeromonas veronii (A. veronii), a highly pathogenic bacteria with a wide range of hosts, widely exists in the environment of humans, animals and aquatic animals, and can cause a variety of diseases. In this study, the receptor regulator ompR in the envZ/ompR of two-component system was selected to construct a mutant strain (Δ ompR) and a complement strain (C-ompR) to explore the regulatory effect of ompR on the biological characteristics and virulence of TH0426. The results showed that the ability of biofilm formation and osmotic stress of TH0426 were significantly reduced (P < 0.001), the resistance to ceftriaxone and neomycin were slightly down-regulate when the ompR gene was deleted. At the same time, animal pathogenicity experiments showed that the virulence of TH0426 was significantly down-regulated (P < 0.001). These results indicated that ompR gene regulates the biofilm formation of TH0426, and regulates some biological characteristics of TH0426, including drug sensitivity, resistance to osmotic stress, and also affects its virulence.
Collapse
Affiliation(s)
- Ying-da Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Jin-Shuo Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Yong-Chao Guan
- Institute of Comparative Medicine College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ze-Lin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Ya-Nan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| |
Collapse
|
10
|
Jia X, Zhao K, Liu F, Lin J, Lin C, Chen J. Transcriptional factor OmpR positively regulates prodigiosin biosynthesis in Serratia marcescens FZSF02 by binding with the promoter of the prodigiosin cluster. Front Microbiol 2022; 13:1041146. [PMID: 36466667 PMCID: PMC9712742 DOI: 10.3389/fmicb.2022.1041146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/01/2022] [Indexed: 10/27/2023] Open
Abstract
Prodigiosin is a promising secondary metabolite mainly produced by Serratia marcescens. The production of prodigiosin by S. marcescens is regulated by different kinds of regulatory systems, including the EnvZ/OmpR system. In this study, we demonstrated that the regulatory factor OmpR positively regulated prodigiosin production in S. marcescens FZSF02 by directly binding to the promoter region of the prodigiosin biosynthesis cluster with a lacZ reporter assay and electrophoretic mobility shift assay (EMSA). The binding sequence with the pig promoter was identified by a DNase I footprinting assay. We further demonstrate that OmpR regulates its own expression by directly binding to the promoter region of envZ/ompR. For the first time, the regulatory mechanism of prodigiosin production by the transcriptional factor OmpR was revealed.
Collapse
Affiliation(s)
- Xianbo Jia
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Ke Zhao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangchen Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junjie Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenqiang Lin
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Jichen Chen
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| |
Collapse
|
11
|
Islan GA, Rodenak-Kladniew B, Noacco N, Duran N, Castro GR. Prodigiosin: a promising biomolecule with many potential biomedical applications. Bioengineered 2022; 13:14227-14258. [PMID: 35734783 PMCID: PMC9342244 DOI: 10.1080/21655979.2022.2084498] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pigments are among the most fascinating molecules found in nature and used by human civilizations since the prehistoric ages. Although most of the bio-dyes reported in the literature were discovered around the eighties, the necessity to explore novel compounds for new biological applications has made them resurface as potential alternatives. Prodigiosin (PG) is an alkaloid red bio-dye produced by diverse microorganisms and composed of a linear tripyrrole chemical structure. PG emerges as a really interesting tool since it shows a wide spectrum of biological activities, such as antibacterial, antifungal, algicidal, anti-Chagas, anti-amoebic, antimalarial, anticancer, antiparasitic, antiviral, and/or immunosuppressive. However, PG vehiculation into different delivery systems has been proposed since possesses low bioavailability because of its high hydrophobic character (XLogP3-AA = 4.5). In the present review, the general aspects of the PG correlated with synthesis, production process, and biological activities are reported. Besides, some of the most relevant PG delivery systems described in the literature, as well as novel unexplored applications to potentiate its biological activity in biomedical applications, are proposed.
Collapse
Affiliation(s)
- German A Islan
- Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata)Laboratorio de Nanobiomateriales, Centro de Investigación y , La Plata, Argentina
| | - Boris Rodenak-Kladniew
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, La Plata, Pcia de Bueos aires, Argentina
| | - Nehuen Noacco
- Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata)Laboratorio de Nanobiomateriales, Centro de Investigación y , La Plata, Argentina
| | - Nelson Duran
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Biological Institute, Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil.,Nanomedicine Research Unit (Nanomed), Federal University of Abc (Ufabc), Santo André, Brazil
| | - Guillermo R Castro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Biological Institute, Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil.,. Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de RosarioMax Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Rosario, Argentina
| |
Collapse
|
12
|
Xiang T, Zhou W, Xu C, Xu J, Liu R, Wang N, Xu L, Zhao Y, Luo M, Mo X, Mao Z, Wan Y. Transcriptomic Analysis Reveals Competitive Growth Advantage of Non-pigmented Serratia marcescens Mutants. Front Microbiol 2022; 12:793202. [PMID: 35058908 PMCID: PMC8764370 DOI: 10.3389/fmicb.2021.793202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
Serratia marcescens is a common bacterium well-known for the red secondary metabolite prodigiosin. However, color mutants have long been described. Non-pigmented strains can be found to exist both naturally and under laboratory conditions. It is unclear why S. marcescens loses prodigiosin synthesis capacity in certain conditions. In the present study, we find that the spontaneous color mutants arise within a few generations (about five passages) and rapidly replace the wild-type parent cells (about 24 passages), which indicates a growth advantage of the former. Although, the loss of prodigiosin synthesis genes (pigA-N) is frequently reported as the major reason for pigment deficiency, it was unexpected that the whole gene cluster is completely preserved in the different color morphotypes. Comparative transcriptomic analysis indicates a dramatic variation at the transcriptional level. Most of the pig genes are significantly downregulated in the color morphotypes which directly lead to prodigiosin dyssynthesis. Besides, the transcriptional changes of several other genes have been noticed, of which transcriptional regulators, membrane proteins, and nearly all type VI secretion system (T6SS) components are generally downregulated, while both amino acid metabolite and transport systems are activated. In addition, we delete the transcription regulator slyA to generate a non-pigmented mutant. The ΔslyA strain loses prodigiosin synthesis capacity, but has a higher cell density, and surprisingly enhances the virulence as an entomopathogen. These data indicate that S. marcescens shuts down several high-cost systems and activates the amino acid degradation and transport pathways at the transcriptional level to obtain extra resources, which provides new insights into the competitive growth advantage of bacterial spontaneous color mutants.
Collapse
Affiliation(s)
- Tingting Xiang
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wei Zhou
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Cailing Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Jing Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Rui Liu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Nuo Wang
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Liang Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yu Zhao
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Minhui Luo
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoxin Mo
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zeyang Mao
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yongji Wan
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Farnesol and tyrosol: novel inducers for microbial production of carotenoids and prodigiosin. Arch Microbiol 2021; 204:107. [PMID: 34972980 DOI: 10.1007/s00203-021-02742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
This study was performed to elucidate the effects of two fungal quorum sensing molecules (tyrosol and farnesol) on carotenoid synthesis in the yeast Rhodotorula glutinis and prodigioin synthesis in the bacterium Serratia marcencens. Farnesol or tyrosol was directly added to the flask cultures at the beginning (immediately after inoculation with the preculture) of day 1 or the beginning (49th h) of day 3. The results demonstrated that tyrosol supplementation increased the synthesis of carotenoids but farnesol supplementation increased the synthesis of prodigiosin. It was found that adding farnesol or tyrosol into the culture on day 3 compared to day 1 caused more increments in pigment synthesis. The maximum increase (fivefold) in the synthesis of prodigiosin was achieved with 200 μL/L farnesol supplementation, whereas the maximum increase (2.13 fold) in the synthesis of carotenoids was achieved with 4 mg/L tyrosol supplementation. This is the first report about the effects of fungal quorum sensing molecules (farnesol and tyrosol) on the synthesis of carotenoids and prodigiosin in microorganisms. Due to non-human toxicity and low price and of farnesol and tyrosol, these molecules can be used as novel inducers for large-scale production of microbial pigments.
Collapse
|