1
|
Kim J, Liao X, Zhang S, Ding T, Ahn J. Application of phage-derived enzymes for enhancing food safety. Food Res Int 2025; 209:116318. [PMID: 40253159 DOI: 10.1016/j.foodres.2025.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025]
Abstract
Foodborne pathogens such as Salmonella, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus present significant public health threats, causing widespread illness and economic loss. Contaminated food is responsible for an estimated 600 million illnesses and 420,000 deaths annually, with low- and middle-income countries facing losses of approximately $110 billion each year. Traditional methods to ensure food safety, including antimicrobials and preservatives, can contribute to the development of antimicrobial-resistant bacteria, highlighting the need for alternative strategies. Bacteriophages are gaining renewed attention as promising alternatives to conventional antibiotics due to their specifically target bacteria and their lower potential for causing adverse effects. However, their practical application is limited by challenges such as narrow host ranges, the emergence of phage-resistant bacteria, and stability issues. Recent research has shifted focus towards phage-derived enzymes, including endolysins, depolymerases, holins, and spanins, which are involved in the phage lytic cycle. These enzymes, as potential approaches to food safety, have demonstrated significant efficacy in targeting and lysing bacterial pathogens, making them suitable for controlling foodborne pathogens and preventing foodborne illnesses. Phage-derived enzymes also show promise in controlling biofilms and enhancing antimicrobial activity when combined with other antimicrobials. Therefore, this review emphasizes recent advancements in the use of the phage-derived enzymes for food safety, addresses their limitations, and suggests strategies to enhance their effectiveness in food processing and storage environments.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
2
|
Macesic N, Uhlemann AC, Peleg AY. Multidrug-resistant Gram-negative bacterial infections. Lancet 2025; 405:257-272. [PMID: 39826970 DOI: 10.1016/s0140-6736(24)02081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 01/22/2025]
Abstract
Multidrug-resistant Gram-negative bacterial infections cause significant morbidity and mortality globally. These pathogens easily acquire antimicrobial resistance (AMR), further highlighting their clinical significance. Third-generation cephalosporin-resistant and carbapenem-resistant Enterobacterales (eg, Escherichia coli and Klebsiella spp), multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii are the most problematic and have been identified as priority pathogens. In response, several new diagnostic technologies aimed at rapidly detecting AMR have been developed, including biochemical, molecular, genomic, and proteomic techniques. The last decade has also seen the licensing of multiple antibiotics that have changed the treatment landscape for these challenging infections.
Collapse
Affiliation(s)
- Nenad Macesic
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Centre to Impact AMR, Monash University, Melbourne, VIC, Australia
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Centre to Impact AMR, Monash University, Melbourne, VIC, Australia; Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Burillo A, Bouza E. The evolution of knowledge for treating Gram-negative bacterial infections. Curr Opin Infect Dis 2024; 37:573-581. [PMID: 39259682 DOI: 10.1097/qco.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW Infections caused by nonprimarily pathogenic Gram-negative bacilli (GNB) have been increasingly reported from the second half of the 20th century to the present. This phenomenon has expanded during the antibiotic era and in the presence of immunodeficiency.Before the discovery of sulphonamides and penicillin G, infections caused by GNB were rare compared to Gram-positive infections. The advent of anticancer therapy, the expansion of surgical procedures, the use of corticosteroids, and the implantation of prosthetic materials, along with better control of Gram-positive infections, have promoted the current increase in GNB infections.GNB have similar antimicrobial targets to Gram-positive bacteria. However, only antibiotics that can penetrate the double membrane of GNB and remain in them for a sufficient duration have antibacterial activity against them. RECENT FINDINGS Sulphonamides and early penicillins had limited activity against GNB. Ampicillin and subsequent beta-lactams expanded their spectrum to treat GNB. Aminoglycosides may re-surge with less toxic drugs, as highly resistant to beta-lactams GNB rise. Polymyxins, tetracyclines, and fluoroquinolones are also used for GNB. Combinations with other agents may be needed in specific cases, such as in the central nervous system and prostate, where beta-lactams may have difficulty reaching the infection site.Alternatives to current treatments must be sought in the discovery of new drug families and therapies such as phage therapy combined with antibiotics. SUMMARY Narrower-spectrum immunosuppressive therapies and antibiotics, antimicrobials that minimally intervene with the human microbiota, and instant diagnostic methods are necessary to imagine a future where currently dominant bacteria in infectious pathology lose their preeminence.
Collapse
Affiliation(s)
- Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058)
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058)
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| |
Collapse
|
4
|
Grygiel I, Bajrak O, Wójcicki M, Krusiec K, Jończyk-Matysiak E, Górski A, Majewska J, Letkiewicz S. Comprehensive Approaches to Combatting Acinetobacter baumannii Biofilms: From Biofilm Structure to Phage-Based Therapies. Antibiotics (Basel) 2024; 13:1064. [PMID: 39596757 PMCID: PMC11591314 DOI: 10.3390/antibiotics13111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Acinetobacter baumannii-a multidrug-resistant (MDR) pathogen that causes, for example, skin and soft tissue wounds; urinary tract infections; pneumonia; bacteremia; and endocarditis, particularly due to its ability to form robust biofilms-poses a significant challenge in clinical settings. This structure protects the bacteria from immune responses and antibiotic treatments, making infections difficult to eradicate. Given the rise in antibiotic resistance, alternative therapeutic approaches are urgently needed. Bacteriophage-based strategies have emerged as a promising solution for combating A. baumannii biofilms. Phages, which are viruses that specifically infect bacteria, offer a targeted and effective means of disrupting biofilm and lysing bacterial cells. This review explores the current advancements in bacteriophage therapy, focusing on its potential for treating A. baumannii biofilm-related infections. We described the mechanisms by which phages interact with biofilms, the challenges in phage therapy implementation, and the strategies being developed to enhance its efficacy (phage cocktails, engineered phages, combination therapies with antibiotics). Understanding the role of bacteriophages in both biofilm disruption and in inhibition of its forming could pave the way for innovative treatments in combating MDR A. baumannii infections as well as the prevention of their development.
Collapse
Affiliation(s)
- Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Olaf Bajrak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Michał Wójcicki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Klaudia Krusiec
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Professor Emeritus, Department of Immunology, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Joanna Majewska
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Collegium Medicum, Jan Długosz University, 42-200 Częstochowa, Poland
| |
Collapse
|
5
|
Singh AN, Singh A, Singh SK, Nath G. Klebsiella pneumoniae infections and phage therapy. Indian J Med Microbiol 2024; 52:100736. [PMID: 39357832 DOI: 10.1016/j.ijmmb.2024.100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/27/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Carbapenem-colistin-resistant Klebsiella pneumoniae has emerged as a serious global problem. Klebsiella pneumoniae is a major culprit in healthcare settings and is responsible for septicemia, urinary tract infections, pneumonia, meningitis, burn wound and surgical site infections, and liver abscesses even in younger and healthier population worldwide. The formation of biofilm prevents antibiotics from reaching the bacteria and exerting their effector mechanism. The non-availability of therapeutic alternatives (antibiotic therapy) further complicates the scenario. However, in the era of antibiotic resistance, bacteriophage therapy emerges as a ray of hope against antibiotic-resistant bacteria. METHOD The present review focuses on the therapeutic potential of bacteriophages as an antimicrobial agent with special reference to safety, specificity, efficacy, dosage, and dosage frequency against Pan-Drug Resistant (PDR) K. pneumoniae, both in-vitro and in-vivo (animals and human) studies. RESULT This review highlights the perspectives therapeutic potential of bacteriophages, their impact on the host immune system, combination therapy, and bacteriophage-encoded gene product endolysin, artificial lysins (Artilysins), polysaccharide depolymerase, and peptidoglycan hydrolases. CONCLUSION This review briefly describes the application of bacteriophage and its encoded gene products in clinical trials.
Collapse
Affiliation(s)
- Alakh Narayan Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Aprajita Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Antonova NP, Vasina DV, Grigoriev IV, Laishevtsev AI, Kapustin AV, Savinov VA, Vorobev AM, Aleshkin AV, Zackharova AA, Remizov TA, Makarov VV, Yudin SM, Gushchin VA. Pharmacokinetic and preclinical safety studies of endolysin-based therapeutic for intravenous administration. Int J Antimicrob Agents 2024; 64:107328. [PMID: 39244166 DOI: 10.1016/j.ijantimicag.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Pharmacokinetics and safety studies of innovative drugs is an essential part of drug development process. Previously we have developed a novel drug for intravenous administration (lyophilizate) containing modified endolysin LysECD7-SMAP that showed notable antibacterial effect in different animal models of systemic infections. Here we present data on pharmacokinetics of endolysin in mice after single and multiple injections. Time-concentration curves were obtained, and pharmacokinetic parameters for preparation (C0, kel t1/2, AUC0-∞, MRT, ClT, Vss) were calculated. It was shown that although endolysin is rather short-lived in blood serum (t1/2 = 12.5 min), the therapeutic concentrations of LysECD7-SMAP (in degraded and non-degraded form) were detected for 60 minutes after injection that is sufficient for antibacterial effect. Based on the obtained data, it was proposed that endolysin distributes presumably in murine blood, degrades in blood and liver, and is eliminated via glomerular filtration. Safety profile of the preparation relating to general toxicity, immunotoxicity and allergenicity was assessed in rodents. It was demonstrated that LysECD7-SMAP in potential therapeutic (12.5 mg/kg), 10-fold (125 mg/kg) and 40-fold (500 mg/kg) doses showed no signs of intoxication and significant abnormalities after single and repeated i.v. administrations, preparation was non-immunogenic and induced minor and reversible allergic reaction in animals.
Collapse
Affiliation(s)
- Nataliia P Antonova
- Laboratory of Pathogen Population Variability Mechanisms, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Daria V Vasina
- Laboratory of Pathogen Population Variability Mechanisms, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Igor V Grigoriev
- Translational Biomedicine Laboratory, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei I Laishevtsev
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia
| | - Andrey V Kapustin
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia
| | - Vasiliy A Savinov
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia
| | - Aleksei M Vorobev
- Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages, G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Andrei V Aleshkin
- Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages, G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Anastasia A Zackharova
- Translational Biomedicine Laboratory, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Timofey A Remizov
- Translational Biomedicine Laboratory, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Valentine V Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Sergey M Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Vladimir A Gushchin
- Laboratory of Pathogen Population Variability Mechanisms, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
7
|
Ghate MM, Gulati K, Poluri KM. Alginate binding enhances the structural stability and potentiates the lytic activity of bacteriophage endolysin's partially folded conformation. Arch Biochem Biophys 2024; 760:110129. [PMID: 39159898 DOI: 10.1016/j.abb.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Polysaccharide polymers are increasingly being used as chaperon-like macromolecules in assisting protein folding of unfolded protein molecules. They interact with unfolded or partially folded proteins in a charge and conformation specific manner that results in the formation of stable protein-polysaccharide complexes. In most of the cases, the complex formation of protein-polysaccharide is driven via non-covalent interactions that have found to endorse the activity of proteins. T4L (18.7 kDa) and T7L (17 kDa) endolysins belong to the hydrolase and amidase class of peptidoglycan degrading enzymes. Both T4L and T7L exist in partially folded forms and are devoid of lytic activity at low pH conditions. In the current study, we assessed the binding of alginate with T4L and T7L at pH 7 and 3 using variety of biophysical and biochemical techniques. Spectroscopic studies revealed differential structural modulations of partially folded T4L and T7L upon their interaction with alginate. Further, the complex formation of alginate with partially folded T4L/T7L was confirmed by ITC and STEM. Additionally, the formed complexes of alginate with both T4L/T7L PF endolysins were found to be chemically and enzymatically stable. Moreover, such complexes were also marked with differential enhancement in their lytic activities at acidic pH conditions. This implied the potency of alginate as an excellent choice of matrix to preserve the structural and functional integrity of partially folded forms of T4L and T7L at highly acidic conditions.
Collapse
Affiliation(s)
- Mayur Mohan Ghate
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
8
|
Antonova NP, Vasina DV, Grigoriev IV, Usachev EV, Aleshkin AV, Vorobev AM, Laishevtsev AI, Kapustin AV, Savinov VA, Anurova MN, Zackharova AA, Remizov TA, Makarov VV, Yudin SM, Gushchin VA. Pharmacokinetics and Preclinical Safety Studies of Modified Endolysin-based Gel for Topical Application. J Pharm Sci 2024; 113:2093-2100. [PMID: 38692487 DOI: 10.1016/j.xphs.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Antibacterial therapy with phage-encoded endolysins or their modified derivatives with improved antibacterial, biochemical and pharmacokinetic properties is one of the most promising strategies that can supply existing antibacterial drugs array. Gram-negative bacteria-induced infections treatment is especially challenging because of rapidly spreading bacterial resistance. We have developed modified endolysin LysECD7-SMAP with a significant antibacterial activity and broad spectra of action against gram-negative bacteria. Endolysin was formulated in a bactericidal gel for topical application with pronounced effectivity in local animal infectious models. Here we present preclinical safety studies and pharmacokinetics of LysECD7-SMAP-based gel. We have detected LysECD7-SMAP in the skin and underlying muscle at therapeutic concentrations when the gel is applied topically to intact or injured skin. Moreover, the protein does not enter the bloodstream, and has no systemic bioavailability, assuming no systemic adverse effects. In studies of general toxicology, local tolerance, and immunotoxicology it was approved that LysECD7-SMAP gel local application results in the absence of toxic effects after single and multiple administration. Thus, LysECD7-SMAP-containing gel has appropriate pharmacokinetics and can be considered as safe that supports the initiation of the phase I clinical trials of novel antibacterial drug intending to treat acute wound infections caused by resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Nataliia P Antonova
- Laboratory of Pathogen Population Variability Mechanisms, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Daria V Vasina
- Laboratory of Pathogen Population Variability Mechanisms, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Igor V Grigoriev
- Translational Biomedicine Laboratory, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny V Usachev
- Laboratory of Pathogen Population Variability Mechanisms, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey V Aleshkin
- Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages, G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Aleksei M Vorobev
- Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages, G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Aleksei I Laishevtsev
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia
| | - Andrey V Kapustin
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia
| | - Vasiliy A Savinov
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia
| | - Mariia N Anurova
- Department of Pharmaceutical Technology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Anastasia A Zackharova
- Translational Biomedicine Laboratory, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Timofey A Remizov
- Translational Biomedicine Laboratory, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Valentine V Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Sergey M Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Vladimir A Gushchin
- Laboratory of Pathogen Population Variability Mechanisms, N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Carratalá JV, Ferrer‐Miralles N, Garcia‐Fruitós E, Arís A. LysJEP8: A promising novel endolysin for combating multidrug-resistant Gram-negative bacteria. Microb Biotechnol 2024; 17:e14483. [PMID: 38864495 PMCID: PMC11167605 DOI: 10.1111/1751-7915.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is an escalating global health crisis, driven by the overuse and misuse of antibiotics. Multidrug-resistant Gram-negative bacteria, such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, are particularly concerning due to their high morbidity and mortality rates. In this context, endolysins, derived from bacteriophages, offer a promising alternative to traditional antibiotics. This study introduces LysJEP8, a novel endolysin derived from Escherichia phage JEP8, which exhibits remarkable antimicrobial activity against key Gram-negative members of the ESKAPE group. Comparative assessments highlight LysJEP8's superior performance in reducing bacterial survival rates compared to previously described endolysins, with the most significant impact observed against P. aeruginosa, and notable effects on A. baumannii and K. pneumoniae. The study found that LysJEP8, as predicted by in silico analysis, worked best at lower pH values but lost its effectiveness at salt concentrations close to physiological levels. Importantly, LysJEP8 exhibited remarkable efficacy in the disruption of P. aeruginosa biofilms. This research underscores the potential of LysJEP8 as a valuable candidate for the development of innovative antibacterial agents, particularly against Gram-negative pathogens, and highlights opportunities for further engineering and optimization to address AMR effectively.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Institute of Biotechnology and BiomedicineAutonomous University of BarcelonaBarcelonaSpain
- Department of Genetics and MicrobiologyAutonomous University of BarcelonaBarcelonaSpain
- Department of Ruminant ProductionInstitute of Agriculture and Agrifood Research and Technology (IRTA)BarcelonaSpain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER‐BBN)MadridSpain
| | - Neus Ferrer‐Miralles
- Institute of Biotechnology and BiomedicineAutonomous University of BarcelonaBarcelonaSpain
- Department of Genetics and MicrobiologyAutonomous University of BarcelonaBarcelonaSpain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER‐BBN)MadridSpain
| | - Elena Garcia‐Fruitós
- Department of Ruminant ProductionInstitute of Agriculture and Agrifood Research and Technology (IRTA)BarcelonaSpain
| | - Anna Arís
- Department of Ruminant ProductionInstitute of Agriculture and Agrifood Research and Technology (IRTA)BarcelonaSpain
| |
Collapse
|
10
|
Khan FM, Rasheed F, Yang Y, Liu B, Zhang R. Endolysins: a new antimicrobial agent against antimicrobial resistance. Strategies and opportunities in overcoming the challenges of endolysins against Gram-negative bacteria. Front Pharmacol 2024; 15:1385261. [PMID: 38831886 PMCID: PMC11144922 DOI: 10.3389/fphar.2024.1385261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Antibiotic-resistant bacteria are rapidly emerging, and the increasing prevalence of multidrug-resistant (MDR) Acinetobacter baumannii poses a severe threat to humans and healthcare organizations, due to the lack of innovative antibacterial drugs. Endolysins, which are peptidoglycan hydrolases encoded by a bacteriophage, are a promising new family of antimicrobials. Endolysins have been demonstrated as an effective therapeutic agent against bacterial infections of A. baumannii and many other Gram-positive and Gram-negative bacteria. Endolysin research has progressed from basic in vitro characterization to sophisticated protein engineering methodologies, including advanced preclinical and clinical testing. Endolysin are therapeutic agent that shows antimicrobial properties against bacterial infections caused by drug-resistant Gram-negative bacteria, there are still barriers to their implementation in clinical settings, such as safety concerns with outer membrane permeabilizers (OMP) use, low efficiency against stationary phase bacteria, and stability issues. The application of protein engineering and formulation techniques to improve enzyme stability, as well as combination therapy with other types of antibacterial drugs to optimize their medicinal value, have been reviewed as well. In this review, we summarize the clinical development of endolysin and its challenges and approaches for bringing endolysin therapies to the clinic. This review also discusses the different applications of endolysins.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Fazal Rasheed
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yunlan Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
11
|
Li X, Shangguan W, Yang X, Hu X, Li Y, Zhao W, Feng M, Feng J. Influence of Lipopolysaccharide-Interacting Peptides Fusion with Endolysin LysECD7 and Fatty Acid Derivatization on the Efficacy against Acinetobacter baumannii Infection In Vitro and In Vivo. Viruses 2024; 16:760. [PMID: 38793641 PMCID: PMC11125741 DOI: 10.3390/v16050760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Acinetobacter baumannii has developed multiple drug resistances, posing a significant threat to antibiotic efficacy. LysECD7, an endolysin derived from phages, could be a promising therapeutic agent against multi-drug resistance A. baumannii. In this study, in order to further enhance the antibacterial efficiency of the engineered LysECD7, a few lipopolysaccharide-interacting peptides (Li5, MSI594 and Li5-MSI) were genetically fused with LysECD7. Based on in vitro antibacterial activity, the fusion protein Lys-Li5-MSI was selected for further modifications aimed at extending its half-life. A cysteine residue was introduced into Lys-Li5-MSI through mutation (Lys-Li5-MSIV12C), followed by conjugation with a C16 fatty acid chain via a protonation substitution reaction(V12C-C16). The pharmacokinetic profile of V12C-C16 exhibited a more favorable characteristic in comparison to Lys-Li5-MSI, thereby resulting in enhanced therapeutic efficacy against lethal A. baumannii infection in mice. The study provides valuable insights for the development of novel endolysin therapeutics and proposes an alternative therapeutic strategy for combating A. baumannii infections.
Collapse
Affiliation(s)
- Xiaowan Li
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | | | - Xiaoqian Yang
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing 210046, China
| | - Xiaoyue Hu
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yanan Li
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenjie Zhao
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
12
|
Gontijo M, Pereira Teles M, Martins Correia H, Pérez Jorge G, Rodrigues Santos Goes IC, Fasabi Flores AJ, Braz M, de Moraes Ceseti L, Zonzini Ramos P, Rosa e Silva I, Pereira Vidigal PM, Kobarg J, Miguez Couñago R, Alvarez-Martinez CE, Pereira C, Freire CSR, Almeida A, Brocchi M. Combined effect of SAR-endolysin LysKpV475 with polymyxin B and Salmonella bacteriophage phSE-5. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001462. [PMID: 38739436 PMCID: PMC11170124 DOI: 10.1099/mic.0.001462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 μg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 μg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 μg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 μg ml-1) and P. aeruginosa P2307 (65.00 μg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.
Collapse
Affiliation(s)
- Marco Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Mateus Pereira Teles
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Hugo Martins Correia
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Genesy Pérez Jorge
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
- Research Group Statistics and Mathematical Modeling Applied to Educational Quality (GEMMA), University of Sucre, Sincelejo, Sucre, Colombia
| | - Isabella Carolina Rodrigues Santos Goes
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Anthony Jhoao Fasabi Flores
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Márcia Braz
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Lucas de Moraes Ceseti
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Priscila Zonzini Ramos
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Ivan Rosa e Silva
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Viçosa, MG 36570-900, Brazil
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Rafael Miguez Couñago
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Cristina Elisa Alvarez-Martinez
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Carla Pereira
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Carmen S. R. Freire
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| |
Collapse
|
13
|
Lendel AM, Antonova NP, Grigoriev IV, Usachev EV, Gushchin VA, Vasina DV. Biofilm-disrupting effects of phage endolysins LysAm24, LysAp22, LysECD7, and LysSi3: breakdown the matrix. World J Microbiol Biotechnol 2024; 40:186. [PMID: 38683213 DOI: 10.1007/s11274-024-03999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
The ability of most opportunistic bacteria to form biofilms, coupled with antimicrobial resistance, hinder the efforts to control widespread infections, resulting in high risks of negative outcomes and economic costs. Endolysins are promising compounds that efficiently combat bacteria, including multidrug-resistant strains and biofilms, without a low probability of subsequent emergence of stable endolysin-resistant phenotypes. However, the details of antibiofilm effects of these enzymes are poorly understood. To elucidate the interactions of bacteriophage endolysins LysAm24, LysAp22, LysECD7, and LysSi3 with bacterial films formed by Gram-negative species, we estimated their composition and assessed the endolysins' effects on the most abundant exopolymers in vitro. The obtained data suggests a pronounced efficiency of these lysins against biofilms with high (Klebsiella pneumoniae) and low (Acinetobacter baumannii) matrix contents, or dual-species biofilms, resulting in at least a twofold loss of the biomass. These peptidoglycan hydrolases interacted diversely with protective compounds of biofilms such as extracellular DNA and polyanionic carbohydrates, indicating a spectrum of biofilm-disrupting effects for bacteriolytic phage enzymes. Specifically, we detected disruption of acid exopolysaccharides by LysAp22, strong DNA-binding capacity of LysAm24, both of these interactions for LysECD7, and neither of them for LysSi3.
Collapse
Affiliation(s)
- Anastasiya M Lendel
- Laboratory of Pathogen Population Variability Mechanisms, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.
| | - Nataliia P Antonova
- Laboratory of Pathogen Population Variability Mechanisms, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Igor V Grigoriev
- Translational Biomedicine Laboratory, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Evgeny V Usachev
- Translational Biomedicine Laboratory, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Vladimir A Gushchin
- Laboratory of Pathogen Population Variability Mechanisms, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Daria V Vasina
- Laboratory of Pathogen Population Variability Mechanisms, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| |
Collapse
|
14
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
15
|
Asadi-Saghandi A, Bandehpour M, Hashemi A, Kazemi B. Enzymatic and antibacterial activity of the recombinant endolysin PVP-SE1gp146 expressed in Hansenula polymorpha. Protein Expr Purif 2024; 215:106402. [PMID: 37956916 DOI: 10.1016/j.pep.2023.106402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Antibiotic resistance, a major global concern, highlights the need for discovering alternative therapies. Recently, endolysins have garnered attention as antibacterial tools with a lower resistance development rate compared to conventional antibiotics, and their production in various expression hosts holds significance. Given its generally recognized as safe (GRAS) status and other advantages, Hansenula polymorpha offers a promising host for endolysin production. PVP-SE1gp146 originates from the Salmonella Enteritidis-specific phage PVP-SE1, which has been previously characterized. We inserted the PVP-SE1gp146 coding gene into the H. polymorpha expression vector pHIPX4. The resulting recombinant, pHIPX4-PVP-SE1gp146, was then introduced into H. polymorpha NCYC495 to facilitate the production of the endolysin PVP-SE1gp146. The expression level of the PVP-SE1gp146 protein was assessed, and it was determined to be approximately 43 mg/l of yeast culture medium. The enzymatic (muralytic) activity of this endolysin was also evaluated, corresponding to the version produced by the E. coli Bl21 strain. The endolysin exhibited admissible antibacterial activity against several gram-negative species, including P. aeruginosa, E. coli, and A. baumannii, while showing an almost negligible impact on K. pneumoniae. Endolysin production within GRAS-approved hosts holds potential for combating antibiotic-resistant bacteria. Challenges involve optimizing concentrations, targeting gram-negative species and improving attachment to bacterial cell walls. Addressing these issues requires dedicated research in endolysin engineering and a comprehensive evaluation of their production in diverse expression hosts.
Collapse
Affiliation(s)
- Abolghasem Asadi-Saghandi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Vasina DV, Antonova NP, Shidlovskaya EV, Kuznetsova NA, Grishin AV, Akoulina EA, Trusova EA, Lendel AM, Mazunina EP, Kozlova SR, Dudun AA, Bonartsev AP, Lunin VG, Gushchin VA. Alginate Gel Encapsulated with Enzybiotics Cocktail Is Effective against Multispecies Biofilms. Gels 2024; 10:60. [PMID: 38247783 PMCID: PMC10815372 DOI: 10.3390/gels10010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
The development of new and effective antibacterials for pharmaceutical or cosmetic skin care that have a low potential for the emergence and expansion of bacterial resistance is of high demand in scientific and applied research. Great hopes are placed on alternative agents such as bactericidal peptidoglycan hydrolases, depolymerases, etc. Enzybiotic-based preparations are being studied for the treatment of various infections and, among others, can be used as topical formulations and dressings with protein-polysaccharide complexes. Here, we investigate the antibiofilm properties of a novel enzybiotic cocktail of phage endolysin LysSi3 and bacteriocin lysostaphin, formulated in the alginate gel matrix and its ability to control the opportunistic skin-colonizing bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, as well as mixed-species biofilms. Our results propose that the application of SiL-gel affects different components of biofilm extracellular polymeric substances, disrupts the matrix, and eliminates the bacteria embedded in it. This composition is highly effective against biofilms composed of Gram-negative and Gram-positive species and does not possess significant cytotoxic effects. Our data form the basis for the development of antibacterial skin care products with a gentle but effective mode of action.
Collapse
Affiliation(s)
- Daria V. Vasina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (E.V.S.); (N.A.K.); (A.V.G.); (E.P.M.); (S.R.K.); (V.G.L.); (V.A.G.)
| | - Nataliia P. Antonova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (E.V.S.); (N.A.K.); (A.V.G.); (E.P.M.); (S.R.K.); (V.G.L.); (V.A.G.)
| | - Elena V. Shidlovskaya
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (E.V.S.); (N.A.K.); (A.V.G.); (E.P.M.); (S.R.K.); (V.G.L.); (V.A.G.)
| | - Nadezhda A. Kuznetsova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (E.V.S.); (N.A.K.); (A.V.G.); (E.P.M.); (S.R.K.); (V.G.L.); (V.A.G.)
| | - Alexander V. Grishin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (E.V.S.); (N.A.K.); (A.V.G.); (E.P.M.); (S.R.K.); (V.G.L.); (V.A.G.)
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Elizaveta A. Akoulina
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518115, China;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | | | - Anastasiya M. Lendel
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (E.V.S.); (N.A.K.); (A.V.G.); (E.P.M.); (S.R.K.); (V.G.L.); (V.A.G.)
| | - Elena P. Mazunina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (E.V.S.); (N.A.K.); (A.V.G.); (E.P.M.); (S.R.K.); (V.G.L.); (V.A.G.)
| | - Sofia R. Kozlova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (E.V.S.); (N.A.K.); (A.V.G.); (E.P.M.); (S.R.K.); (V.G.L.); (V.A.G.)
| | - Andrei A. Dudun
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia;
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Vladimir G. Lunin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (E.V.S.); (N.A.K.); (A.V.G.); (E.P.M.); (S.R.K.); (V.G.L.); (V.A.G.)
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vladimir A. Gushchin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (E.V.S.); (N.A.K.); (A.V.G.); (E.P.M.); (S.R.K.); (V.G.L.); (V.A.G.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
17
|
Pottie I, Vázquez Fernández R, Van de Wiele T, Briers Y. Phage lysins for intestinal microbiome modulation: current challenges and enabling techniques. Gut Microbes 2024; 16:2387144. [PMID: 39106212 PMCID: PMC11305034 DOI: 10.1080/19490976.2024.2387144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024] Open
Abstract
The importance of the microbiota in the intestinal tract for human health has been increasingly recognized. In this perspective, microbiome modulation, a targeted alteration of the microbial composition, has gained interest. Phage lysins, peptidoglycan-degrading enzymes encoded by bacteriophages, are a promising new class of antibiotics currently under clinical development for treating bacterial infections. Due to their high specificity, lysins are considered microbiome-friendly. This review explores the opportunities and challenges of using lysins as microbiome modulators. First, the high specificity of endolysins, which can be further modulated using protein engineering or targeted delivery methods, is discussed. Next, obstacles and possible solutions to assess the microbiome-friendliness of lysins are considered. Finally, lysin delivery to the intestinal tract is discussed, including possible delivery methods such as particle-based and probiotic vehicles. Mapping the hurdles to developing lysins as microbiome modulators and identifying possible ways to overcome these hurdles can help in their development. In this way, the application of these innovative antimicrobial agents can be expanded, thereby taking full advantage of their characteristics.
Collapse
Affiliation(s)
- Iris Pottie
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Roberto Vázquez Fernández
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
| |
Collapse
|
18
|
Euler CW, Raz A, Hernandez A, Serrano A, Xu S, Andersson M, Zou G, Zhang Y, Fischetti VA, Li J. PlyKp104, a Novel Phage Lysin for the Treatment of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Other Gram-Negative ESKAPE Pathogens. Antimicrob Agents Chemother 2023; 67:e0151922. [PMID: 37098944 PMCID: PMC10190635 DOI: 10.1128/aac.01519-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
Klebsiella pneumoniae and Pseudomonas aeruginosa are two leading causes of burn and wound infections, pneumonia, urinary tract infections, and more severe invasive diseases, which are often multidrug resistant (MDR) or extensively drug resistant. Due to this, it is critical to discover alternative antimicrobials, such as bacteriophage lysins, against these pathogens. Unfortunately, most lysins that target Gram-negative bacteria require additional modifications or outer membrane permeabilizing agents to be bactericidal. We identified four putative lysins through bioinformatic analysis of Pseudomonas and Klebsiella phage genomes in the NCBI database and then expressed and tested their intrinsic lytic activity in vitro. The most active lysin, PlyKp104, exhibited >5-log killing against K. pneumoniae, P. aeruginosa, and other Gram-negative representatives of the multidrug-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumonia, Acinetobacter baumannii, P. aeruginosa, and Enterobacter species) without further modification. PlyKp104 displayed rapid killing and high activity over a wide pH range and in high concentrations of salt and urea. Additionally, pulmonary surfactants and low concentrations of human serum did not inhibit PlyKp104 activity in vitro. PlyKp104 also significantly reduced drug-resistant K. pneumoniae >2 logs in a murine skin infection model after one treatment of the wound, suggesting that this lysin could be used as a topical antimicrobial against K. pneumoniae and other MDR Gram-negative infections.
Collapse
Affiliation(s)
- Chad W. Euler
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Assaf Raz
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anaise Hernandez
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anna Serrano
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Siyue Xu
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martin Andersson
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
19
|
Premetis GE, Stathi A, Papageorgiou AC, Labrou NE. Structural and functional features of a broad-spectrum prophage-encoded enzybiotic from Enterococcus faecium. Sci Rep 2023; 13:7450. [PMID: 37156923 PMCID: PMC10167349 DOI: 10.1038/s41598-023-34309-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria have become a growing threat to public health. The gram-positive Enterococcus faecium is classified by WHO as a high-priority pathogen among the global priority list of antibiotic-resistant bacteria. Peptidoglycan-degrading enzymes (PDEs), also known as enzybiotics, are useful bactericidal agents in the fight against resistant bacteria. In this work, a genome-based screening approach of the genome of E. faecium allowed the identification of a putative PDE gene with predictive amidase activity (EfAmi1; EC 3.5.1.28) in a prophage-integrated sequence. EfAmi1 is composed by two domains: a N-terminal Zn2+-dependent N-acetylmuramoyl-L-alanine amidase-2 (NALAA-2) domain and a C-terminal domain with unknown structure and function. The full-length gene of EfAmi1 was cloned and expressed as a 6xHis-tagged protein in E. coli. EfAmi1 was produced as a soluble protein, purified, and its lytic and antimicrobial activities were investigated using turbidity reduction and Kirby-Bauer disk-diffusion assays against clinically isolated bacterial pathogens. The crystal structure of the N-terminal amidase-2 domain was determined using X-ray crystallography at 1.97 Å resolution. It adopts a globular fold with several α-helices surrounding a central five-stranded β-sheet. Sequence comparison revealed a cluster of conserved amino acids that defines a putative binding site for a buried zinc ion. The results of the present study suggest that EfAmi1 displays high lytic and antimicrobial activity and may represent a promising new antimicrobial in the post-antibiotic era.
Collapse
Affiliation(s)
- Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Angeliki Stathi
- Department of Microbiology, "Aghia Sophia" Children's Hospital, 11527, Athens, Greece
| | | | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece.
| |
Collapse
|
20
|
Sitthisak S, Manrueang S, Khongfak S, Leungtongkam U, Thummeepak R, Thanwisai A, Burton N, Dhanoa GK, Tsapras P, Sagona AP. Antibacterial activity of vB_AbaM_PhT2 phage hydrophobic amino acid fusion endolysin, combined with colistin against Acinetobacter baumannii. Sci Rep 2023; 13:7470. [PMID: 37156803 PMCID: PMC10167329 DOI: 10.1038/s41598-023-33822-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Phage lytic enzymes are promising antimicrobial agents. In this study, an endolysin derived from vB_AbaM_PhT2 (vPhT2), was identified. This endolysin represented the conserved lysozyme domain. Recombinant endolysin (lysAB- vT2) and hydrophobic fusion endolysin (lysAB-vT2-fusion) were expressed and purified. Both endolysins showed lytic activity against bacterial crude cell wall of Gram-negative bacteria. The MIC of lysAB-vT2-fusion was 2 mg/ml corresponding to 100 µM, while the MIC of lysAB-vT2 was more than 10 mg/ml (400 µM). Combination of lysAB-vT2-fusion with colistin, polymyxin B or copper was synergistic against A. baumannii (FICI value as 0.25). Antibacterial activity of lysAB-vT2-fusion plus colistin at the fractional inhibitory concentrations (FICs) revealed that it can inhibit Escherichia coli, Klebsiella pneumoniae and various strains of extremely drug-resistant A. baumannii (XDRAB) and phage resistant A. baumannii. The lysAB- vT2-fusion still retained its antibacterial activity after incubating the enzyme at 4, 20, 40 and 60 °C for 30 min. The lysAB-vT2-fusion could inhibit the mature biofilm, and incubation of lysAB-vT2-fusion with T24 human cells infected with A. baumannii led to a partial reduction of LDH release from T24 cells. In summary, our study highlights the antimicrobial ability of engineered lysAB-vT2-fusion endolysin, which can be applied for the control of A. baumannii infection.
Collapse
Affiliation(s)
- Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand.
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Suphattra Manrueang
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
| | - Supat Khongfak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
| | - Udomluk Leungtongkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
| | - Rapee Thummeepak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
| | - Nathan Burton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Gurneet K Dhanoa
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
21
|
Panda SK, Buroni S, Swain SS, Bonacorsi A, da Fonseca Amorim EA, Kulshrestha M, da Silva LCN, Tiwari V. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front Microbiol 2022; 13:1029098. [PMID: 36560948 PMCID: PMC9763703 DOI: 10.3389/fmicb.2022.1029098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biofilm-associated bacteria, especially ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), are a serious challenge worldwide. Due to the lack of discovery of novel antibiotics, in the past two decades, it has become necessary to search for new antibiotics or to study synergy with the existing antibiotics so as to counter life-threatening infections. Nature-derived compounds/based products are more efficient than the chemically synthesized ones with less resistance and lower side effects. In this descriptive review, we discuss the most promising therapeutics for the treatment of ESKAPE-related biofilms. The first aspect includes different types of natural agents [botanical drugs, essential oils (EOs), antimicrobial peptides, bacteriophages, and endolysins] effective against ESKAPE pathogens. The second part of the review deals with special references to EOs/essential oil components (EOCs) (with some exclusive examples), mode of action (via interfering in the quorum-sensing pathways, disruption of biofilm and their inhibitory concentrations, expression of genes that are involved, other virulence factors), existing in literature so far. Moreover, different essential oils and their major constituents were critically discussed using in vivo models to target ESKAPE pathogens along with the studies involving existing antibiotics.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Centre of Environment Studies, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Shasank Sekhar Swain
- Division of Microbiology and Noncommunicable Diseases (NCDs), Indian Council of Medical Research (ICMR)–Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India,*Correspondence: Vishvanath Tiwari,
| |
Collapse
|
22
|
Arshinov IR, Antonova NP, Grigoriev IV, Pochtovyi AA, Tkachuk AP, Gushchin VA, Vasina DV. Engineered Endolysin LysECD7-SMAP Reveals Antimicrobial Synergy with Antibiotics and Restores Sensitivity in Gram-negative Pathogens. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
23
|
Zhang Y, Lin Y, Galgano S, Houdijk J, Xie W, Jin Y, Lin J, Song W, Fu Y, Li X, Chui W, Kan W, Jia C, Hu G, Li T. Recent Progress in Phage Therapy to Modulate Multidrug-Resistant Acinetobacter baumannii, including in Human and Poultry. Antibiotics (Basel) 2022; 11:1406. [PMID: 36290064 PMCID: PMC9598230 DOI: 10.3390/antibiotics11101406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant and invasive pathogen associated with the etiopathology of both an increasing number of nosocomial infections and is of relevance to poultry production systems. Multidrug-resistant Acinetobacter baumannii has been reported in connection to severe challenges to clinical treatment, mostly due to an increased rate of resistance to carbapenems. Amid the possible strategies aiming to reduce the insurgence of antimicrobial resistance, phage therapy has gained particular importance for the treatment of bacterial infections. This review summarizes the different phage-therapy approaches currently in use for multiple-drug resistant Acinetobacter baumannii, including single phage therapy, phage cocktails, phage-antibiotic combination therapy, phage-derived enzymes active on Acinetobacter baumannii and some novel technologies based on phage interventions. Although phage therapy represents a potential treatment solution for multidrug-resistant Acinetobacter baumannii, further research is needed to unravel some unanswered questions, especially in regard to its in vivo applications, before possible routine clinical use.
Collapse
Affiliation(s)
- Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Yuanqing Lin
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Salvatore Galgano
- Monogastric Science Research Centre, Scotland’s Rural College, Roslin Institute Building, Edinburgh EH25 9RG, UK
| | - Jos Houdijk
- Monogastric Science Research Centre, Scotland’s Rural College, Roslin Institute Building, Edinburgh EH25 9RG, UK
| | - Weiquan Xie
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yajie Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jiameng Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Wuqiang Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yijuan Fu
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Xiuying Li
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Wenting Chui
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Wei Kan
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Cai Jia
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Guangwei Hu
- Animal Disease Prevention and Control Center in Qinghai Province, Xining 810001, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| |
Collapse
|
24
|
Chang RYK, Nang SC, Chan HK, Li J. Novel antimicrobial agents for combating antibiotic-resistant bacteria. Adv Drug Deliv Rev 2022; 187:114378. [PMID: 35671882 DOI: 10.1016/j.addr.2022.114378] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Antibiotic therapy has become increasingly ineffective against bacterial infections due to the rise of resistance. In particular, ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have caused life-threatening infections in humans and represent a major global health threat due to a high degree of antibiotic resistance. To respond to this urgent call, novel strategies are urgently needed, such as bacteriophages (or phages), phage-encoded enzymes, immunomodulators and monoclonal antibodies. This review critically analyses these promising antimicrobial therapies for the treatment of multidrug-resistant bacterial infections. Recent advances in these novel therapeutic strategies are discussed, focusing on preclinical and clinical investigations, as well as combinatorial approaches. In this 'Bad Bugs, No Drugs' era, novel therapeutic strategies can play a key role in treating deadly infections and help extend the lifetime of antibiotics.
Collapse
|
25
|
Chang C, Yu X, Guo W, Guo C, Guo X, Li Q, Zhu Y. Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Front Microbiol 2022; 13:825828. [PMID: 35495689 PMCID: PMC9048899 DOI: 10.3389/fmicb.2022.825828] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Biofilms are complex microbial microcolonies consisting of planktonic and dormant bacteria bound to a surface. The bacterial cells within the biofilm are embedded within the extracellular polymeric substance (EPS) consisting mainly of exopolysaccharides, secreted proteins, lipids, and extracellular DNA. This structural matrix poses a major challenge against common treatment options due to its extensive antibiotic-resistant properties. Because biofilms are so recalcitrant to antibiotics, they pose a unique challenge to patients in a nosocomial setting, mainly linked to lower respiratory, urinary tract, and surgical wound infections as well as the medical devices used during treatment. Another unique property of biofilm is its ability to adhere to both biological and man-made surfaces, allowing growth on human tissues and organs, hospital tools, and medical devices, etc. Based on prior understanding of bacteriophage structure, mechanisms, and its effects on bacteria eradication, leading research has been conducted on the effects of phages and its individual proteins on biofilm and its role in overall biofilm removal while also revealing the obstacles this form of treatment currently have. The expansion in the phage host-species range is one that urges for improvement and is the focus for future studies. This review aims to demonstrate the advantages and challenges of bacteriophage and its components on biofilm removal, as well as potential usage of phage cocktail, combination therapy, and genetically modified phages in a clinical setting.
Collapse
Affiliation(s)
- Cheng Chang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Xinbo Yu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wennan Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Chaoyi Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, China
| |
Collapse
|
26
|
Vázquez R, Díez-Martínez R, Domingo-Calap P, García P, Gutiérrez D, Muniesa M, Ruiz-Ruigómez M, Sanjuán R, Tomás M, Tormo-Mas MÁ, García P. Essential Topics for the Regulatory Consideration of Phages as Clinically Valuable Therapeutic Agents: A Perspective from Spain. Microorganisms 2022; 10:microorganisms10040717. [PMID: 35456768 PMCID: PMC9025261 DOI: 10.3390/microorganisms10040717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance is one of the major challenges that humankind shall face in the short term. (Bacterio)phage therapy is a valuable therapeutic alternative to antibiotics and, although the concept is almost as old as the discovery of phages, its wide application was hindered in the West by the discovery and development of antibiotics in the mid-twentieth century. However, research on phage therapy is currently experiencing a renaissance due to the antimicrobial resistance problem. Some countries are already adopting new ad hoc regulations to favor the short-term implantation of phage therapy in clinical practice. In this regard, the Phage Therapy Work Group from FAGOMA (Spanish Network of Bacteriophages and Transducing Elements) recently contacted the Spanish Drugs and Medical Devices Agency (AEMPS) to promote the regulation of phage therapy in Spain. As a result, FAGOMA was asked to provide a general view on key issues regarding phage therapy legislation. This review comes as the culmination of the FAGOMA initiative and aims at appropriately informing the regulatory debate on phage therapy.
Collapse
Affiliation(s)
- Roberto Vázquez
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium;
| | | | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, University of Valencia-CSIC, 46980 Paterna, Spain; (P.D.-C.); (R.S.)
| | - Pedro García
- Center for Biological Research Margarita Salas (CIB-CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28040 Madrid, Spain;
| | - Diana Gutiérrez
- Telum Therapeutics SL, 31110 Noáin, Spain; (R.D.-M.); (D.G.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain;
| | - María Ruiz-Ruigómez
- Internal Medicine, Infectious Diseases Unit, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, University of Valencia-CSIC, 46980 Paterna, Spain; (P.D.-C.); (R.S.)
| | - María Tomás
- Department of Microbiology, Hospital Universitario de A Coruña (INIBIC-CHUAC, SERGAS), 15006 A Coruña, Spain;
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Ángeles Tormo-Mas
- Severe Infection Group, Hospital Universitari i Politècnic La Fe, Health Research Institute Hospital La Fe, IISLaFe, 46026 Valencia, Spain;
| | - Pilar García
- Dairy Research Institute of Asturias, IPLA-CSIC, 33300 Villaviciosa, Spain
- DairySafe Group, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence:
| |
Collapse
|
27
|
Cernooka E, Rumnieks J, Zrelovs N, Tars K, Kazaks A. Diversity of the lysozyme fold: structure of the catalytic domain from an unusual endolysin encoded by phage Enc34. Sci Rep 2022; 12:5005. [PMID: 35322067 PMCID: PMC8943055 DOI: 10.1038/s41598-022-08765-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Endolysins are bacteriophage-encoded peptidoglycan-degrading enzymes with potential applications for treatment of multidrug-resistant bacterial infections. Hafnia phage Enc34 encodes an unusual endolysin with an N-terminal enzymatically active domain and a C-terminal transmembrane domain. The catalytic domain of the endolysin belongs to the conserved protein family PHA02564 which has no recognizable sequence similarity to other known endolysin types. Turbidity reduction assays indicate that the Enc34 enzyme is active against peptidoglycan from a variety of Gram-negative bacteria including the opportunistic pathogen Pseudomonas aeruginosa PAO1. The crystal structure of the catalytic domain of the Enc34 endolysin shows a distinctive all-helical architecture that distantly resembles the α-lobe of the lysozyme fold. Conserved catalytically important residues suggest a shared evolutionary history between the Enc34 endolysin and GH73 and GH23 family glycoside hydrolases and propose a molecular signature for substrate cleavage for a large group of peptidoglycan-degrading enzymes.
Collapse
Affiliation(s)
- Elina Cernooka
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Janis Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia.,Faculty of Biology, University of Latvia, Jelgavas 1, Riga, 1004, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia.
| |
Collapse
|
28
|
Complete Genome Sequence of Pseudomonas aeruginosa Bacteriophage PASA16, Used in Multiple Phage Therapy Treatments Globally. Microbiol Resour Announc 2022; 11:e0009222. [PMID: 35258339 PMCID: PMC9022550 DOI: 10.1128/mra.00092-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PASA16 is a
Pseudomonas aeruginosa
phage isolated from a soil sample and used to treat several patients suffering from persistent infections in various countries. PASA16’s genome was sequenced, analyzed, and deposited in GenBank.
Collapse
|
29
|
Schuch R, Cassino C, Vila-Farres X. Direct Lytic Agents: Novel, Rapidly Acting Potential Antimicrobial Treatment Modalities for Systemic Use in the Era of Rising Antibiotic Resistance. Front Microbiol 2022; 13:841905. [PMID: 35308352 PMCID: PMC8928733 DOI: 10.3389/fmicb.2022.841905] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Direct lytic agents (DLAs) are novel antimicrobial compounds with unique mechanisms of action based on rapid cell wall destabilization and bacteriolysis. DLAs include two classes of purified polypeptides—lysins (peptidoglycan hydrolase enzymes) and amurins (outer membrane targeting peptides). Their intended use is to kill bacteria in a manner that is complimentary to and synergistic with traditional antibiotics without selection for DLA resistance. Lysins were originally described as having activity against Gram-positive pathogens and of those, exebacase, is the first to have advanced into Phase 3 of clinical development. Recently, both engineered and native DLAs have now been described with potent bactericidal activity against a range of Gram-negative pathogens, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Importantly, novel DLAs targeting Gram-negatives, including the lysin CF-370 and the amurin peptides, are active in biological matrices (blood/serum) and, as such, offer promise for therapeutic use as systemically administered agents for the treatment of life-threatening invasive infections. In this review, DLAs are discussed as potential new classes of antimicrobial biologics that can be used to treat serious systemic infections.
Collapse
|
30
|
Vasina DV, Antonova NP, Vorobev AM, Laishevtsev AI, Kapustin AV, Zulkarneev ER, Bochkareva SS, Kiseleva IA, Anurova MN, Aleshkin AV, Tkachuk AP, Gushchin VA. Efficacy of the Endolysin-Based Antibacterial Gel for Treatment of Anaerobic Infection Caused by Fusobacterium necrophorum. Antibiotics (Basel) 2021; 10:1260. [PMID: 34680839 PMCID: PMC8532708 DOI: 10.3390/antibiotics10101260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Abscess formation is a common complication of severe life-threatening infections caused by obligate anaerobes. Fusobacterium necrophorum is among the frequently detected anaerobic pathogens from clinical specimens associated with liver abscesses, skin and soft tissue infections, or oral abscesses. The antimicrobial therapy for this kind of infection needs to be optimized. Here, we examined the possibility of treating F. necrophorum-induced abscess wound infections with candidate therapeutics based on three endolysins with activity against a broad spectrum of aerobe Gram-negative pathogens. Antibacterial gel containing three Gram-negative bacteria-targeting endolysins, LysAm24, LysAp22, and LysECD7, was formulated for topical use. Abscess formation was induced in rabbits with F. necrophorum and caused systemic infection. The survival and lifespan of the animals, general parameters, and biochemical and hematological blood tests were analyzed to assess the effectiveness of the gel treatment for the wound infection. The administration of the investigated gel twice per day for 5 days resulted in less acute inflammation, with decreased leukocytes and segmented neutrophils in the blood, retardation of infection progression, and an almost two-fold increase in the lifespan of the animals compared to the placebo group. The results indicate that endolysin-based therapy is an effective approach to treat anaerobic bacterial infections. The use of endolysins as independent pharmaceuticals, or their combination with antibiotics, could significantly reduce the development of complications in infectious diseases caused by sensitive bacterial species.
Collapse
Affiliation(s)
- Daria V. Vasina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (A.P.T.)
| | - Nataliia P. Antonova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (A.P.T.)
| | - Aleksei M. Vorobev
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia; (A.M.V.); (E.R.Z.); (S.S.B.); (I.A.K.); (A.V.A.)
| | - Aleksei I. Laishevtsev
- Federal State Budget Scientific Institution “Federal Scientific Centre VIEV” (FSC VIEV), 117218 Moscow, Russia; (A.I.L.); (A.V.K.)
| | - Andrei V. Kapustin
- Federal State Budget Scientific Institution “Federal Scientific Centre VIEV” (FSC VIEV), 117218 Moscow, Russia; (A.I.L.); (A.V.K.)
| | - Eldar R. Zulkarneev
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia; (A.M.V.); (E.R.Z.); (S.S.B.); (I.A.K.); (A.V.A.)
| | - Svetlana S. Bochkareva
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia; (A.M.V.); (E.R.Z.); (S.S.B.); (I.A.K.); (A.V.A.)
| | - Irina A. Kiseleva
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia; (A.M.V.); (E.R.Z.); (S.S.B.); (I.A.K.); (A.V.A.)
| | - Mariia N. Anurova
- Department of Pharmaceutical Technology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
| | - Andrei V. Aleshkin
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia; (A.M.V.); (E.R.Z.); (S.S.B.); (I.A.K.); (A.V.A.)
| | - Artem P. Tkachuk
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (A.P.T.)
| | - Vladimir A. Gushchin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (N.P.A.); (A.P.T.)
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|