1
|
Shen Y, Xiao Y, Xie E, Puig-Bargués J, Yao Y, Kuang N, Li Y. Biofouling control strategy through denatured extracellular proteins: An empirical evidence from reclaimed water distribution systems. WATER RESEARCH 2025; 280:123538. [PMID: 40156976 DOI: 10.1016/j.watres.2025.123538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Biofouling remains a significant challenge in water treatment fields, leading to a decline in the hydraulic performance, increased operational costs, and potential health risks. Previous biofouling control strategies primarily focused on the removal of particulates and microorganisms, often neglecting the role of extracellular proteins. Using a reclaimed water distribution system as an example, this study proposes a strategy to inhibit biofouling formation by utilizing urea, a reported protein denaturant with fertilizer functionality. Results indicated that urea significantly slowed the accumulation of biofouling, leading to a 16.4-49.4 % decrease in biofouling weight, an 18.6-55.3 % decrease in extracellular protein content, and a 25.9-45.3 % reduction in extracellular polymer substance (EPS) content. Urea mitigated biofouling through two mechanisms: (1) disrupting protein structures, which convert tightly bound EPS to loosely bound EPS, and (2) downregulating biofilm-forming signaling proteins, thereby inhibiting biofouling formation. In the process, proteins, polysaccharides, and microorganisms exhibited clear mutual promotion relationships. Additionally, urea weakened microbial symbiotic interactions by affecting protein signaling molecules, inhibiting microbial growth and polysaccharide metabolism. The research confirms that denaturing extracellular proteins to mitigate biofouling is a feasible and efficient approach. The findings aim to provide valuable insights for the development of sustainable and effective biofouling cleaning strategies.
Collapse
Affiliation(s)
- Yan Shen
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China
| | - Yang Xiao
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China
| | - En Xie
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China
| | - Jaume Puig-Bargués
- Department of Chemical and Agricultural Engineering and Technology, University of Girona, Girona 17003, Spain
| | - Yuqian Yao
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China
| | - Naikun Kuang
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China
| | - Yunkai Li
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, PR China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, PR China.
| |
Collapse
|
2
|
He X, Xu W, Li L, Jiang X, Dong Y, Liu K, Feng X, Su J, Li B, Lv G, Chen S. Network-based pharmacological and experimentally validated study on the therapeutic effects and mechanisms of Polygonatum Rhizoma Ginseng Formula in immunocompromised mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119821. [PMID: 40250634 DOI: 10.1016/j.jep.2025.119821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonatum Rhizoma Ginseng Formula (HJRS) is a traditional Chinese medicine preparation commonly used to enhance immunity. Traditionally, it is believed to "moisten dryness and nourish yin, tonify the spleen, and benefit qi." However, a systematic evaluation of its efficacy and mechanism of action is still lacking. AIM OF THE STUDY To explore the pharmacodynamic effects and underlying mechanisms of HJRS in cyclophosphamide (CTX)-induced immunocompromised model mice. METHOD To explore the immunomodulatory effects of HJRS, we used cyberpharmacology combined with in vivo experiments. An immunocompromised mouse model was established using CTX, and different doses of HJRS were administered by gavage during the modeling period. The efficacy of HJRS was evaluated by assessing immune-related parameters, including body weight, heat pain threshold, and behavioral activity. Biochemical markers (acid phosphatase, total nitric oxide synthase, and lactate dehydrogenase), immune function indicators (C3, C4, secretory immunoglobulin A [sIgA]), and immune organ indices (spleen and thymus coefficients) were measured. Additionally, intestinal mucosal immunity (Peyer's patches, sIgA, and IgM), cellular immunity (delayed-type hypersensitivity [DTH]), and humoral immunity (serum hemolysin, hemolysin, and IgM) were analyzed in the model mice. To further investigate the underlying mechanisms, we used 16S RNA sequencing, western blotting, gas chromatography-mass spectrometry, and other techniques to examine the intestinal microbiota, the short-chain fatty acids-G protein-coupled receptor 41 (SCFAs-GPR41) pathway, and the downstream mitogen-activated protein kinase (MAPK) signaling pathway. RESULT Network pharmacology analysis identified 34 active compounds and predicted 154 potential targets in HJRS that may regulate immune function by interacting with multiple targets (tumor-necrosis factor [TNF], PIK3CG, JUN, AKT1, and MAPK) and immune-related signaling pathways (MAPK and TNF-signaling pathway). Experimental validation demonstrated that HJRS alleviated symptoms of weakness and reduced behavioral activity in the model mice. It significantly enhanced the DTH response, elevated serum hemolysin levels, and restored the balance of white blood cells, lymphocytes, red blood cells, and hemoglobin percentages. HJRS also rebalanced the serum CD3+CD4+/CD3+CD8+ ratio and increased C3 and C4 levels. Furthermore, it improved immune organ function by raising the thymus and spleen coefficients and increasing serum IgA, IgA, and IgM levels. Histopathological examination revealed that HJRS ameliorated CTX-induced pathological damage in the thymus, spleen, and intestines. HJRS regulated gut microbiota composition by enhancing the richness of Bacteroidetes and increasing the Firmicutes/Bacteroidetes ratio, while reducing the abundance of Firmicutes. It decreased the relative abundance of harmful genera, such as Bacteroides and Enterorhabdus, and promoted the growth of beneficial genera, including Muribaculaceae, Clostridia, and Alloprevotella. Additionally, HJRS increased the fecal acetic acid, propionic acid, hexanoic acid, and total SCFA levels in the model mice. It activated the SCFAs-GPR41 pathway and downstream MAPK signaling, thereby enhancing intestinal mucosal immune function. CONCLUSION HJRS effectively improved immune function in CTX-induced immunocompromised mice. Its mechanism of action may be associated with the regulation of intestinal microbiota dysbiosis, activation of the intestinal "SCFA-GPR41" pathway, and modulation of the downstream MAPK signaling pathway.
Collapse
Affiliation(s)
- Xinglishang He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Wanfeng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Linzi Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Xiaofeng Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Yingjie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Kun Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Xiaojie Feng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China.
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China.
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China.
| | - Suhong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China.
| |
Collapse
|
3
|
Fan Q, Liu L, Wang L, Yang R, Liu X, Dong Y, Zeng X, Liu X, Du Q, Wu Z, Pan D. Nanocoating of quinoa protein and hyaluronic acid enhances viability and stability of Limosilactobacillus fermentum RC4 microcapsules. Int J Biol Macromol 2025; 307:141863. [PMID: 40058428 DOI: 10.1016/j.ijbiomac.2025.141863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/05/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Nanocoating represents an effective strategy for creating a protective barrier on probiotic surfaces, preventing them from damage. Here, we developed HAQ microcapsules comprising Limosilactobacillus fermentum RC4, which were nanocoated with hyaluronic acid and quinoa protein. We characterized the stability and safety, and investigated the intermolecular forces and transcriptome to elucidate the mechanisms underlying the nanocoating. The encapsulation efficiency, survival rates following freeze drying, simulated oro-gastrointestinal conditions, and storage at 4 °C for 56 d were 10.32 %, 12.74 %, 7.56 %, and 14.56 % higher, respectively, than those of LF RC4 alone. The HAQ microcapsules demonstrated adhesion to Caco-2 cells and safely promoted proliferation in RAW 264.7 cells. Electrostatic and hydrophobic interactions emerged as the primary forces within the HAQ microcapsules, facilitating structural rearrangements of wall materials, promoting the ordered aggregation of quinoa protein, and enhancing the stability of microcapsules. Transcriptome analysis revealed that HAQ upregulated argF and carB involved in lysine and glutamic acid biosynthesis, while downregulating mraY and murG associated with carbohydrate biosynthesis. It is postulated that these regulatory effects may enhance bacterial metabolism and proliferation, thereby facilitating the exertion of functional properties such as adhesion. Our findings offer valuable insights into the development of highly active and stable probiotic freeze-dried powders.
Collapse
Affiliation(s)
- Qing Fan
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China; College of Resources and Environment, Baoshan University, Baoshan 67800, China
| | - Lian Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Liwen Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Ruoxin Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Xueting Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yan Dong
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China.
| | - Xinanbei Liu
- College of Resources and Environment, Baoshan University, Baoshan 67800, China
| | - Qiwei Du
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Zhen Wu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| |
Collapse
|
4
|
Yang Y, Yang Y, Wang W, Chang Y, Zhu Y, Cheng Y, Yang B, Jia X, Feng L. Evolutionary research trends of polysaccharides from Polygonatum genus: A comprehensive review of its isolation, structure, health benefits, and applications. Int J Biol Macromol 2025; 306:141566. [PMID: 40023421 DOI: 10.1016/j.ijbiomac.2025.141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Polygonatum sibiricum, valued both as a medicinal and nutritional plant, has long been recognized for its health benefits. Increasing evidence highlights its polysaccharides (PSPs) as key components. As research into the structural characteristics and biological activity of PSPs continues to grow, there is rising interest in developing functional foods that harness their therapeutic potential. However, existing studies on PSPs remain fragmented, lacking a comprehensive framework for their application in functional food development and drug delivery. This review aims to fill that gap by systematically summarizing the purification, structural characterization, and diverse biological activities of PSPs. We also explore the significant potential of these polysaccharides in functional food development and their promising applications as natural, eco-friendly drug carriers. Furthermore, we address the key challenges and limitations in this field, offering insights into future research trends and opportunities for advancing PSPs in areas such as sustainable materials, functional foods, and therapeutic innovations.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yufei Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Weilin Wang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yukun Chang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yiyang Zhu
- Macau University of Science and Technology, Weilong Road, taichai, Macao 999078, PR China
| | - Yue Cheng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, Jiangning Hospital of Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
5
|
Qiu R, Pan C, Qin Y, Wei Q, Yu Y, Zhang Y, Xie X, Li J, Chen S, Li K, Fouad D, Wu Y, Zhong Q. Polygonatum kingianum polysaccharide alleviated intestinal injuries by mediating antioxidant ability and microbiota. Front Microbiol 2025; 16:1492710. [PMID: 39949622 PMCID: PMC11821965 DOI: 10.3389/fmicb.2025.1492710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Polygonatum kingianum is a well-known medicinal herb with proven bioactivities; however, little is known about the effects of its polysaccharide on intestinal injuries in animals induced by lipopolysaccharide (LPS). Methods A total of 30 Institute of Cancer Research (ICR) mice were divided into control (CH), induced (MH), and treated (H) groups. Mice in group H were supplemented with 100 mg/kg Polygonatum kingianum polysaccharides, while groups C and M were treated with the same amount of normal saline by gavage for 18 days. On the 18th day animals in groups M and H were induced by LPS (10 mg/kg). Results The results showed the weight of mice in group MH significantly dropped (P < 0.0001), while mice in the PK group had a higher weight (P < 0.01). Pathological analysis found that the majority of the villi in mice induced by LPS were broken and short, while PK-treated animals had longer and considerably integrated villi. The villi length in groups CH (P < 0.0001) and H (P < 0.0001) was longer than that in group M, and the value of villi length/crypt depth in group MH was smaller than that in groups CH (P < 0.0001) and H (P < 0.0001), while the crypt depth in group MH was higher than in groups CH (P < 0.0001) and H (P < 0.0001). Serum inspection showed that MAD (P < 0.05), IL-1β (P < 0.05), IL-6 (P < 0.05), and TNF-α (P < 0.01) were significantly higher in group MH, while SOD (P < 0.001), T-AOC (P < 0.01), and GSH-Px (P < 0.01) were notably higher in groups CH and H. Microbiome sequencing of mice obtained 844,477 raw and 725,469 filtered reads. There were 2,407 ASVs detected in animals, and there were 312 and 328 shared ASVs between CH and MH, and CH and H, respectively. There were 5 phyla and 20genera of remarkable bacteria found among mice groups including genera of Escherichia, Pseudomonas_E, Mailhella, Paramuribaculum, NM07-P-09, Odoribacter, Nanosyncoccus, SFM01, Onthenecus, Clostridium_Q, UBA6985, Ructibacterium, UBA946, Lachnoclostridium_B, Evtepia, CAG-269, Limivicinus, Formimonas, Dehalobacterium, Dwaynesavagella, and UBA6985. We revealed that Polygonatum kingianum polysaccharide could alleviate intestinal injuries by promoting oxidation resistance, decreasing inflammatory responses, and accommodating the intestinal microbiota of mice. Discussion Our results suggest the possibility of developing novel therapies for intestinal diseases.
Collapse
Affiliation(s)
- Reng Qiu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, Henan, China
| | - Chuangye Pan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, Henan, China
| | - Yuxi Qin
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Qianfei Wei
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yue Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ying Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xuehan Xie
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, Henan, China
| | - Jianqin Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shouhai Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yi Wu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiu Zhong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Du X, Tang Z, Yan L, Zhang L, Zheng Q, Zeng X, Hu Q, Tian Q, Liang L, Zhao X, Li J, Zhao M, Fu X. Norepinephrine may promote the progression of Fusobacterium nucleatum related colorectal cancer via quorum sensing signalling. Virulence 2024; 15:2350904. [PMID: 38725098 PMCID: PMC11085999 DOI: 10.1080/21505594.2024.2350904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is closely correlated with tumorigenesis in colorectal cancer (CRC). We aimed to investigate the effects of host norepinephrine on the carcinogenicity of F. nucleatum in CRC and reveal the underlying mechanism. The results revealed that both norepinephrine and bacterial quorum sensing (QS) molecule auto-inducer-2 (AI-2) were positively associated with the progression of F. nucleatum related CRC (p < 0.01). In vitro studies, norepinephrine induced upregulation of QS-associated genes and promoted the virulence and proliferation of F. nucleatum. Moreover, chronic stress significantly increased the colon tumour burden of ApcMin/+ mice infected with F. nucleatum (p < 0.01), which was decreased by a catecholamine inhibitor (p < 0.001). Our findings suggest that stress-induced norepinephrine may promote the progression of F. nucleatum related CRC via bacterial QS signalling. These preliminary data provide a novel strategy for the management of pathogenic bacteria by targeting host hormones-bacterial QS inter-kingdom signalling.
Collapse
Affiliation(s)
- Xinhao Du
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Zhenzhen Tang
- Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Li Yan
- Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Ling Zhang
- Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Qiao Zheng
- Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Xianghao Zeng
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Qing Hu
- Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Qian Tian
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Jun Li
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
| |
Collapse
|
7
|
Xiao L, Xu H, Wu T, Xie Q, Wen R, Wang L, Su B, Zhang H. Metabolomic Diversity in Polygonatum kingianum Across Varieties and Growth Years. Molecules 2024; 29:5180. [PMID: 39519821 PMCID: PMC11547710 DOI: 10.3390/molecules29215180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Polygonatum rhizome is a traditional Chinese medicine of the same origin as food and medicine, and it has high economic value and social benefits. To screen the excellent germplasm resources of Polygonatum kingianum (P. kingianum) and clarify the nutritional and medicinal value of the rhizome of P. kingianum, we used widely targeted metabolomics to analyze the traits and metabolomics of rhizomes of different germplasms of P. kingianum from different growth years. The results showed that different germplasms and growth years of P. kingianum were rich in different nutritional and medicinal components. Among them, Polygonatum kingianum 'Linyun 1' rhizome (PWR) was richer in amino acids and derivatives, alkaloids, and phenolic acids, while Polygonatum kingianum rhizome (PRR) was richer in flavonoids, organic acids, and phenolic acids. Most of the differential compounds were mainly enriched in PRR when the growth year was one, and PWR had a greater variety and higher content of differential compounds in the third year, which also reflected the advantages of Polygonatum kingianum 'Linyun 1' (P. kingianum 'Linyun 1') as an excellent new variety of P. kingianum. The Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis showed that in P. kingianum with the same age and different germplasms, the significantly enriched metabolic pathway was more active in biosynthesis in PWR. In the same germplasm of P. kingianum from different years, the metabolites involved in PRR were mainly the highest in one-year-old P. kingianum (PR-1) or three-year-old P. kingianum (PR-3), and the metabolites involved in PWR were mainly the highest in three-year-old P. kingianum 'Linyun 1' (PW-3). The above results showed that the three-year-old PWR had more advantages based on chemical substances. Therefore, this study provided a new theoretical reference for the development of P. kingianum products and the breeding of new varieties.
Collapse
Affiliation(s)
- Liangjun Xiao
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China: (L.X.); (T.W.)
| | - Huimei Xu
- College of Pharmacy, Dali University, Dali 671000, China; (H.X.); (Q.X.); (R.W.); (L.W.)
| | - Tao Wu
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China: (L.X.); (T.W.)
| | - Qiufeng Xie
- College of Pharmacy, Dali University, Dali 671000, China; (H.X.); (Q.X.); (R.W.); (L.W.)
| | - Rouyuan Wen
- College of Pharmacy, Dali University, Dali 671000, China; (H.X.); (Q.X.); (R.W.); (L.W.)
| | - Le Wang
- College of Pharmacy, Dali University, Dali 671000, China; (H.X.); (Q.X.); (R.W.); (L.W.)
| | - Baoshun Su
- Linyun Biotechnology Development Co., Ltd., Dali 671000, China
| | - Haizhu Zhang
- College of Pharmacy, Dali University, Dali 671000, China; (H.X.); (Q.X.); (R.W.); (L.W.)
| |
Collapse
|
8
|
Du L, Liu Q, Wang L, Lyu H, Tang J. Microplastics enhanced the allelopathy of pyrogallol on toxic Microcystis with additional risks: Microcystins release and greenhouse gases emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173864. [PMID: 38879032 DOI: 10.1016/j.scitotenv.2024.173864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Cyanobacteria blooms (CBs) caused by eutrophication pose a global concern, especially Microcystis aeruginosa (M. aeruginosa), which could release harmful microcystins (MCs). The impact of microplastics (MPs) on allelopathy in freshwater environments is not well understood. This study examined the joint effect of adding polystyrene (PS-MPs) as representative MPs and two concentrations (2 and 8 mg/L) of pyrogallol (PYR) on the allelopathy of M. aeruginosa. The results showed that the addition of PS-MPs intensified the inhibitory effect of 8 mg/L PYR on the growth and photosynthesis of M. aeruginosa. After a 7-day incubation period, the cell density decreased to 69.7 %, and the chl-a content decreased to 48 % compared to the condition without PS-MPs (p < 0.05). Although the growth and photosynthesis of toxic Microcystis decreased with the addition of PS-MPs, the addition of PS-MPs significantly resulted in a 3.49-fold increase in intracellular MCs and a 1.10-fold increase in extracellular MCs (p < 0.05). Additionally, the emission rates of greenhouse gases (GHGs) (carbon dioxide, nitrous oxide and methane) increased by 2.66, 2.23 and 2.17-fold, respectively (p < 0.05). In addition, transcriptomic analysis showed that the addition of PS-MPs led to the dysregulation of gene expression related to DNA synthesis, membrane function, enzyme activity, stimulus detection, MCs release and GHGs emissions in M. aeruginosa. PYR and PS-MPs triggered ROS-induced membrane damage and disrupted photosynthesis in algae, leading to increased MCs and GHG emissions. PS-MPs accumulation exacerbated this issue by impeding light absorption and membrane function, further heightening the release of MCs and GHGs emissions. Therefore, PS-MPs exhibited a synergistic effect with PYR in inhibiting the growth and photosynthesis of M. aeruginosa, resulting in additional risks such as MCs release and GHGs emissions. These results provide valuable insights for the ecological risk assessment and control of algae bloom in freshwater ecosystems.
Collapse
Affiliation(s)
- Linqing Du
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Kang JY, Kim S, Kim JM. Changes in aggregation properties and the metabolite production of probiotics following treatment with polysaccharides derived from the edible mushroom Cordyceps militaris. Lebensm Wiss Technol 2024; 210:116845. [DOI: 10.1016/j.lwt.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Zhang W, Zhong Y, Wang Z, Tang F, Zheng C. Apple polysaccharide improves age-matched cognitive impairment and intestinal aging through microbiota-gut-brain axis. Sci Rep 2024; 14:16215. [PMID: 39003416 PMCID: PMC11246462 DOI: 10.1038/s41598-024-67132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
The Apple polysaccharides (AP), extracted from the fruit of apple, has been used to treat multiple pathological diseases. In this study, we evaluated the effects of AP on cognitive impairment and intestinal aging in naturally aging mice. As a result, it was found that AP could improve spatial learning and memory impairment in aging mice through the Morris water maze experiment. Additionally, AP intervention can upregulate the expression of nerve growth factor (BDNF), postsynaptic marker (PSD95), and presynaptic marker (SYP) proteins. Moreover, AP can enhance total antioxidant capacity, reduce the level of pro-inflammatory cytokine, and inhibit the activation of the NF-κB signaling pathway, exerting anti-inflammatory and antioxidant functions. And the administration of AP restored intestinal mucosal barrier function, reduced the expression of aging and apoptosis related proteins. The administration of AP also altered the gut microbiota of mice. At the genus level, AP decreased the abundance of Helicobacter and Bilophila, while increased the abundance of Lactobacillus and Bacteroides. In summary, these data demonstrate that AP treatment can alleviate cognitive impairment, oxidative stress, and inflammatory reactions, repair the intestinal mucosal barrier, reduce intestinal aging, and alter specific microbial characteristics, ultimately improving the health of the elderly.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yuchun Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Furui Tang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Cihua Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China.
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
11
|
Du E, Jiang M, Chen F, Fan Q, Guo S, Zhao N, Jin F, Guo W, Huang S, Wei J. Dietary honokiol supplementation improves antioxidant capacity, enhances intestinal health, and modulates cecal microbial composition and function of broiler chickens. Poult Sci 2024; 103:103798. [PMID: 38703759 PMCID: PMC11079521 DOI: 10.1016/j.psj.2024.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Honokiol is a multifunctional polyphenol present in Magnolia officinalis. The effects of honokiol as a supplement in broiler chicken diets, and the underlying mechanisms, remain unclear. Therefore, the aim of the present study was to investigate the effects of honokiol on the growth performance, antioxidant capacity, and intestinal histomorphology of broiler chickens and to explore the underlying mechanisms. In total, 240 one-day-old broilers were randomly allocated to 5 dietary treatments, with 6 replicate pens and 8 birds per pen. Birds were fed a basal diet supplemented with 0 (blank control, BC), 100, 200, or 400 mg/kg honokiol (H100, H200, and H400), or 200 mg/kg bacitracin zinc (PC) for 42 d. The results showed that H200 and H400 increased body weight gain (BWG) and decreased feed conversion ratio (FCR) during the starter period (P < 0.05). H100 and H200 increased total superoxide dismutase (T-SOD) activity in the serum and decreased malondialdehyde (MDA) amount in the jejunum on d 42 (P < 0.05). Moreover, H100 increased villus height-to-crypt depth ratio in both the jejunum and ileum on d 21 (P < 0.05). PCR analysis showed that honokiol upregulated intestinal expression of glutathione peroxidase (GSH-Px) and downregulated intestinal expression of inducible nitric oxide synthase (iNOS) on d 42 (P < 0.05). The Shannon index, which represents the microbial alpha diversity, was reduced for the PC, H200, and H400 groups. Notably, honokiol treatment altered the cecal microbial community structure and promoted the enrichment of several bacteria, including Firmicutes and Lactobacillus. Higher production of short-chain fatty acids was observed in the cecal digesta of H100 birds, accompanied by an enriched glycolysis/gluconeogenesis pathway, according to the functional prediction of the cecal microbiota. This study provides evidence that honokiol improves growth performance, antioxidant capacity, and intestinal health of broiler chickens, possibly by manipulating the composition and function of the microbial community.
Collapse
Affiliation(s)
- Encun Du
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Meihan Jiang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Fang Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Qiwen Fan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Na Zhao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Feng Jin
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Wanzheng Guo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Shaowen Huang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China
| | - Jintao Wei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, P. R. China.
| |
Collapse
|
12
|
Lin C, Song D, Wang S, Chu Y, Chi C, Jia S, Lin M, He C, Jiang C, Gong F, Chen Q. Polygonatum cyrtonema polysaccharides reshape the gut microbiota to ameliorate dextran sodium sulfate-induced ulcerative colitis in mice. Front Pharmacol 2024; 15:1424328. [PMID: 38898924 PMCID: PMC11185953 DOI: 10.3389/fphar.2024.1424328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized inflammatory imbalance, intestinal epithelial mucosal damage, and dysbiosis of the gut microbiota. Polygonatum cyrtonema polysaccharides (PCPs) can regulate gut microbiota and inflammation. Here, the different doses of PCPs were administered to dextran sodium sulfate-induced UC mice, and the effects of the whole PCPs were compared with those of the fractionated fractions PCP-1 (19.9 kDa) and PCP-2 (71.6 and 4.2 kDa). Additionally, an antibiotic cocktail was administered to UC mice to deplete the gut microbiota, and PCPs were subsequently administered to elucidate the potential role of the gut microbiota in these mice. The results revealed that PCP treatment significantly optimized the lost weight and shortened colon, restored the balance of inflammation, mitigated oxidative stress, and restored intestinal epithelial mucosal damage. And, the PCPs exhibited superior efficacy in ameliorating these symptoms compared with PCP-1 and PCP-2. However, depletion of the gut microbiota diminished the therapeutic effects of PCPs in UC mice. Furthermore, fecal transplantation from PCP-treated UC mice to new UC-afflicted mice produced therapeutic effects similar to PCP treatment. So, PCPs significantly ameliorated the symptoms, inflammation, oxidative stress, and intestinal mucosal damage in UC mice, and gut microbiota partially mediated these effects.
Collapse
Affiliation(s)
- Chaoyou Lin
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Dawei Song
- Mount Jiuhuashan Sealwort Research Institute, Chizhou, China
| | - Shangwen Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yunfei Chu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Changxing Chi
- China Department of Endocrinology, Yanbian University Hospital, Yanji, China
| | - Sining Jia
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Mengyi Lin
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chenbei He
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chengxi Jiang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Qiongzhen Chen
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
13
|
Liu T, Zhou L, Li X, Song W, Liu Y, Wu S, Wang P, Dai X, Shi L. Polygonatum kingianum Polysaccharides Enhance the Preventive Efficacy of Heat-Inactivated Limosilactobacillus reuteri WX-94 against High-Fat-High-Sucrose-Induced Liver Injury and Gut Dysbacteriosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9880-9892. [PMID: 38646869 DOI: 10.1021/acs.jafc.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Limosilactobacillus reuteri (L. reuteri) is an efficacious probiotic that could reduce inflammation and prevent metabolic disorders. Here, we innovatively found that Polygonatum kingianum polysaccharides (PKP) promoted proliferation and increased stability of L. reuteri WX-94 (a probiotic strain showing anti-inflammation potentials) in simulated digestive fluids in vitro. PKP was composed of galactose, glucose, mannose, and arabinose. The cell-free supernatant extracted from L. reuteri cultured with PKP increased ABTS•+, DPPH•, and FRAP scavenging capacities compared with the supernatant of the medium without PKP and increased metabolites with health-promoting activities, e.g., 3-phenyllactic acid, indole-3-lactic acid, indole-3-carbinol, and propionic acid. Moreover, PKP enhanced alleviating effects of heat-inactivated L. reuteri on high-fat-high-sucrose-induced liver injury in rats via reducing inflammation and regulating expressions of protein and genes involved in fatty acid metabolism (such as HIF1-α, FAβO, CPT1, and AMPK) and fatty acid profiles in liver. Such benefits correlated with its prominent effects on enriching Lactobacillus and short-chain fatty acids while reducing Dubosiella, Fusicatenilacter, Helicobacter, and Oscillospira. Our work provides novel insights into the probiotic property of PKP and emphasizes the great potential of the inactivated L. reuteri cultured with PKP in contracting unhealthy diet-induced liver dysfunctions and gut dysbacteriosis.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yuan Liu
- School of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Shan Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Peng Wang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, Guangdong 518083, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
14
|
Bioactive compounds from Polygonatum genus as anti-diabetic agents with future perspectives. Food Chem 2023; 408:135183. [PMID: 36566543 DOI: 10.1016/j.foodchem.2022.135183] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is one of the most serious health problems worldwide. Species in the genus Polygonatum are traditional food and medicinal plants, which play an important role in controlling blood glucose. In this reveiw, we systematically summarized the traditional and modern applications of the genus Polygonatum in DM, focused on the material bases of polysaccharides, flavonoids and saponins. We highlighted their mechanisms of action in preventing obese diabetes, improving insulin resistance, promoting insulin secretion, regulating intestinal microecology, inhibiting advanced glycation end products (AGEs) accumulation, suppressing carbohydrate digestion and obsorption and modulating gluconeogenesis. Based on the safety and efficacy of this 'medicinal food' and its utility in the prevention and treatment of diabetes, we proposed a research and development program that includs diet design (supplementary food), medical nutrition therapy and new drugs, which could provide new pathways for the use of natural plants in prevention and treatment of DM.
Collapse
|
15
|
Zhao Q, Dai MY, Huang RY, Duan JY, Zhang T, Bao WM, Zhang JY, Gui SQ, Xia SM, Dai CT, Tang YM, Gonzalez FJ, Li F. Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice. Nat Commun 2023; 14:1829. [PMID: 37005411 PMCID: PMC10067939 DOI: 10.1038/s41467-023-37459-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Parabacteroides distasonis (P. distasonis) plays an important role in human health, including diabetes, colorectal cancer and inflammatory bowel disease. Here, we show that P. distasonis is decreased in patients with hepatic fibrosis, and that administration of P. distasonis to male mice improves thioacetamide (TAA)- and methionine and choline-deficient (MCD) diet-induced hepatic fibrosis. Administration of P. distasonis also leads to increased bile salt hydrolase (BSH) activity, inhibition of intestinal farnesoid X receptor (FXR) signaling and decreased taurochenodeoxycholic acid (TCDCA) levels in liver. TCDCA produces toxicity in mouse primary hepatic cells (HSCs) and induces mitochondrial permeability transition (MPT) and Caspase-11 pyroptosis in mice. The decrease of TCDCA by P. distasonis improves activation of HSCs through decreasing MPT-Caspase-11 pyroptosis in hepatocytes. Celastrol, a compound reported to increase P. distasonis abundance in mice, promotes the growth of P. distasonis with concomitant enhancement of bile acid excretion and improvement of hepatic fibrosis in male mice. These data suggest that supplementation of P. distasonis may be a promising means to ameliorate hepatic fibrosis.
Collapse
Affiliation(s)
- Qi Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Man-Yun Dai
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruo-Yue Huang
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing-Yi Duan
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Zhang
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Min Bao
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, 650101, China
| | - Jing-Yi Zhang
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Shao-Qiang Gui
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Shu-Min Xia
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Cong-Ting Dai
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Ying-Mei Tang
- Department of Gastroenterology, The second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fei Li
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Wang Z, Liu H, Fu R, Ou J, Wang B. Structural characterization and anti-inflammatory activity of a novel polysaccharide PKP2-1 from Polygonatum kingianum. Front Nutr 2023; 10:1156798. [PMID: 37051130 PMCID: PMC10083337 DOI: 10.3389/fnut.2023.1156798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionThis study aimed to investigate the structure characterization and antiinflammatory activity of a novel polysaccharide, PKP2-1, from the rhizomes of Polygonatum kingianum Coll. and Hemsl.MethodsWe isolated a novel polysaccharide, PKP2-1, from the rhizomes of Polygonatum kingianum Coll. and Hemsl. for the first time, which was then successively purified through hot-water extraction, 80% alcohol precipitation, anion exchange and gel permeation chromatography. The in vitro anti-inflammatory activity of PKP2-1 in MH7A cells was assessed using a CCK-8 kit assay.ResultsMonosaccharide composition assay revealed that PKP2-1 was mainly composed of glucose, galactose, mannose, and glucuronic acid at an approximate molar ratio of 6:2:2:1. It had a molecular weight of approximately 17.34 kDa. Structural investigation revealed that the backbone of PKP2-1 consisted of (→2, 3)-α-D-Galp(4→, →2)-α-D-Manp(3→, →2)-β-D-Glcp(4→) and α-D-Glcp(3→) residues with side chains (→2)-β-D-Glcp(4→, →1)-α-D-Galp(4→) and α-D-Glcp(3→) branches located at O-3 position of (→2, 3)-α-D-Galp(4→). The in vitro anti-inflammatory activity of PKP2-1 in MH7A cells revealed that PKP2-1 could reduce the expression of IL-11β and IL-6, increase the expression of IL-10 and induce apoptosis of synovial fibroblasts.ConclusionThe PKP2-1 could inhibit MH7A cell growth and potentially be exploited as an anti-inflammatory agent.
Collapse
|
17
|
Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides. Molecules 2023; 28:molecules28031350. [PMID: 36771015 PMCID: PMC9919897 DOI: 10.3390/molecules28031350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Polygonati Rhizoma, a typical homology of medicine and food, possesses remarkable anti-fatigue, anti-aging, metabolic regulatory, immunomodulatory, anti-inflammatory, neuroprotective, anti-diabetes, and anti-cancer effects. Among bioactive phytochemicals in Polygonati Rhizoma, polysaccharides play important roles in the health-promoting activities through the mechanisms mentioned above and potential synergistic effects with other bioactives. In this review, we briefly introduce the updated biosynthesis of polysaccharides, the purification method, the structure characterization, and food applications, and discuss in detail the biological activities of Polygonati Rhizoma polysaccharides and associated mechanisms, aiming at broadening the usage of Polygonati Rhizoma as functional food and medicine.
Collapse
|
18
|
Zhang NN, Jiang ZM, Li SZ, Yang X, Liu EH. Evolving interplay between natural products and gut microbiota. Eur J Pharmacol 2023; 949:175557. [PMID: 36716810 DOI: 10.1016/j.ejphar.2023.175557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Growing evidence suggests gut microbiota status affects human health, and microbiota imbalance will induce multiple disorders. Natural products are gaining increasing attention for their therapeutical effects and less side effects. The emerging studies support that the activities of many natural products are dependent on gut microbiota, meanwhile gut microbiota is modulated by natural products. In this review, we summarized the interplay between the gut microbiota and host disease, and the emerging molecular mechanisms of the interaction between natural products and gut microbiota. Focusing on gut microbiota metabolite of various natural products, and the effects of natural products on gut microbiota, we summarized the biotransformation pathways of natural products, and discussed the effect of natural products on the composition modulation of gut microbiota, protection of gut mucosal barrier and modulation of the gut microbiota metabolites. Dissecting the interplay between gut microbiota and natural products will help elucidate the therapeutic mechanisms of natural products.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Shang-Zhen Li
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
19
|
Wang L, Lian J, Zheng Q, Wang L, Wang Y, Yang D. Composition analysis and prebiotics properties of polysaccharides extracted from Lepista sordida submerged cultivation mycelium. Front Microbiol 2023; 13:1077322. [PMID: 36713178 PMCID: PMC9879602 DOI: 10.3389/fmicb.2022.1077322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
In this paper, Lepista sordida polysaccharides (LSP) were separated from Lepista sordida (L. sordida) mainly using the Ultrasonic-Micro Wave Synergy Extraction (UMSE) method and purified by graded alcohol precipitation. Three polysaccharide components: 40%-LSP-UMSE, 60%-LSP-UMSE, and 80%-LSP-UMSE were obtained and further analyzed the physicochemical properties, structural characteristics, and antioxidant activity. And the effects on the proliferation of Lactobacillus casei of three polysaccharide components were studied. The characteristic absorption peaks and the β-glycosidic bond of three polysaccharide components were the direct expression at UV 200 nm using UV and FT-IR spectroscopy. The three polysaccharide components were mainly composed of glucose, mannose, galactose, and ribose using high-performance liquid chromatography (HPLC) analysis. The antioxidant activity study revealed that the polysaccharides obtained by the UMSE method had better antioxidant activity compared to the traditional "Hot Water Extraction (HWE)" method. In addition, the polysaccharide components promoted the proliferation of L. casei to some extent. 40%-LSP-UMSE, 80%-LSP-UMSE as the carbon source had better acid production than the control inulin. Three LSP-UMSE used as a carbon source compared with glucose for culturing L. casei could significantly improve its tolerance to bile salts. Results are helpful to develop the bioactive polysaccharides from Lepista sordida and beneficial to develop a unique health and functional product in the future.
Collapse
|
20
|
Meng F, Zhang F, Meng M, Chen Q, Yang Y, Wang W, Xie H, Li X, Gu W, Yu J. Effects of the synbiotic composed of mangiferin and Lactobacillus reuteri 1-12 on type 2 diabetes mellitus rats. Front Microbiol 2023; 14:1158652. [PMID: 37152739 PMCID: PMC10157401 DOI: 10.3389/fmicb.2023.1158652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Many synbiotics are effective for the prevention and treatment of type 2 diabetes mellitus (T2DM). In the treatment of T2DM, synbiotics often regulate the composition of intestinal flora, which autoinducer-2 (AI-2) may play an important role. Whether the changes of intestinal flora are related to AI-2 during synbiotics treatment of T2DM is a topic worth studying. We elucidated the effects of synbiotic composed of mangiferin and Lactobacillus reuteri 1-12 (SML) on T2DM rats. Male Spraque-Dawley rats were injected intraperitoneally with streptozotocin (STZ) and randomly grouped. After that, biochemical parameters, intestinal flora, fecal AI-2, and intestinal colonization of L. reuteri were detected. The results showed that SML had a hypoglycemic effect and mitigated the organ lesions of the liver and pancreas. Also, SML regulated biochemical parameters such as short chain fatty acids (SCFAs), lipopolysaccharides (LPS), intercellular cell adhesion molecule-1 (ICAM-1), and tumor necrosis factor-α (TNF-α). On the other hand, the proportion of probiotics, such as Lactobacillus acidophilus, L. reuteri, Bifidobacterium pseudolongum, Lactobacillus murinus, and Lactobacillus johnsonii, were elevated by the treatment of SML. In addition, SML promoted the colonization and proliferation of L. reuteri in the gut. Another thing to consider was that AI-2 was positively correlated with the total number of OTUs sequences and SML boosted AI-2 in the gut. Taken together, these results supported that SML may modulate intestinal flora through AI-2 to treat T2DM. This study provided a novel alternative strategy for the treatment of T2DM in future.
Collapse
Affiliation(s)
- Fanying Meng
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Fan Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qiuding Chen
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yaqin Yang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wenbo Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haina Xie
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xue Li
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Gu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Wen Gu,
| | - Jie Yu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Jie Yu,
| |
Collapse
|
21
|
Zhu H, Guo L, Yu D, Du X. New insights into immunomodulatory properties of lactic acid bacteria fermented herbal medicines. Front Microbiol 2022; 13:1073922. [DOI: 10.3389/fmicb.2022.1073922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID-19 pandemic has brought more attention to the immune system, the body’s defense against infectious diseases. The immunomodulatory ability of traditional herbal medicine has been confirmed through clinical trial research, and has obvious advantages over prescription drugs due to its high number of potential targets and low toxicity. The active compounds of herbal drugs primarily include polysaccharides, saponins, flavonoids, and phenolics and can be modified to produce new active compounds after lactic acid bacteria (LAB) fermentation. LAB, primary source of probiotics, can produce additional immunomodulatory metabolites such as exopolysaccharides, short-chain fatty acids, and bacteriocins. Moreover, several compounds from herbal medicines can promote the growth and production of LAB-based immune active metabolites. Thus, LAB-mediated fermentation of herbal medicines has become a novel strategy for regulating human immune responses. The current review discusses the immunomodulatory properties and active compounds of LAB fermented herbal drugs, the interaction between LAB and herbal medicines, and changes in immunoregulatory components that occur during fermentation. This study also discusses the mechanisms by which LAB-fermented herbal medicines regulate the immune response, including activation of the innate or adaptive immune system and the maintenance of intestinal immune homeostasis.
Collapse
|
22
|
Jiedu-Yizhi Formula Alleviates Neuroinflammation in AD Rats by Modulating the Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4023006. [PMID: 35958910 PMCID: PMC9357688 DOI: 10.1155/2022/4023006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023]
Abstract
Background The Jiedu-Yizhi formula (JDYZF) is a Chinese herbal prescription used to treat Alzheimer's disease (AD). It was previously confirmed that JDYZF can inhibit the expression of pyroptosis-related proteins in the hippocampus of AD rats and inhibit gut inflammation in AD rats. Therefore, it is hypothesized that JDYZF has a regulatory effect on the gut microbiota. Methods In this study, an AD rat model was prepared by bilateral hippocampal injection of Aβ25-35 and AD rats received high, medium, and low doses of JDYZF orally for 8 weeks. The body weights of the AD rats were observed to assess the effect of JDYZF. The 16S rRNA sequencing technique was used to study the regulation of the gut microbiota by JDYZF in AD rats. Immunohistochemical staining was used to observe the expression levels of Caspase-1 and Caspase-11 in the hippocampus. Results JDYZF reduced body weight in AD rats, and this effect may be related to JDYZF regulating body-weight-related gut microbes. The 16S rRNA analysis showed that JDYZF increased the diversity of the gut microbiota in AD rats. At the phylum level, JDYZF increased the abundances of Bacteroidota and Actinobacteriota and decreased the abundances of Firmicutes, Campilobacterota, and Desulfobacterota. At the genus level, the abundances of Lactobacillus, Prevotella, Bacteroides, Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, and Blautia were increased and the abundances of Lachnospiraceae-NK4A136-group, Anaerobiospirillum, Turicibacter, Oscillibacter, Desulfovibrio, Helicobacter, and Intestinimonas were decreased. At the species level, the abundances of Lactobacillus johnsonii, Lactobacillus reuteri, and Lactobacillus faecis were increased and the abundances of Helicobacter rodentium and Ruminococcus_sp_N15.MGS-57 were decreased. Immunohistochemistry showed that JDYZF reduced the levels of Caspase-1- and Caspase-11-positive staining. Conclusion JDYZF has a regulatory effect on the gut microbiota of AD rats, which may represent the basis for the anti-inflammatory effect of JDYZF.
Collapse
|
23
|
Making Sense of Quorum Sensing at the Intestinal Mucosal Interface. Cells 2022; 11:cells11111734. [PMID: 35681429 PMCID: PMC9179481 DOI: 10.3390/cells11111734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome can produce metabolic products that exert diverse activities, including effects on the host. Short chain fatty acids and amino acid derivatives have been the focus of many studies, but given the high microbial density in the gastrointestinal tract, other bacterial products such as those released as part of quorum sensing are likely to play an important role for health and disease. In this review, we provide of an overview on quorum sensing (QS) in the gastrointestinal tract and summarise what is known regarding the role of QS molecules such as auto-inducing peptides (AIP) and acyl-homoserine lactones (AHL) from commensal, probiotic, and pathogenic bacteria in intestinal health and disease. QS regulates the expression of numerous genes including biofilm formation, bacteriocin and toxin secretion, and metabolism. QS has also been shown to play an important role in the bacteria–host interaction. We conclude that the mechanisms of action of QS at the intestinal neuro–immune interface need to be further investigated.
Collapse
|
24
|
Luo Y, Fang Q, Lai Y, Lei H, Zhang D, Niu H, Wang R, Song C. Polysaccharides from the leaves of Polygonatum sibiricum Red. regulate the gut microbiota and affect the production of short-chain fatty acids in mice. AMB Express 2022; 12:35. [PMID: 35312878 PMCID: PMC8938542 DOI: 10.1186/s13568-022-01376-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Polysaccharides from the rhizome of Polygonatum sibiricum display a variety of biological activities, including the regulation of intestinal microbiota, but the polysaccharides from the leaves of P. sibiricum have not been studied extensively. Here, we extracted crude polysaccharides from the leaves of P. sibiricum and further separated and purified them to study the effects of P. sibiricum polysaccharides (PsPs) on intestinal microbes and short-chain fatty acids (SCFAs). The PsPs had a total sugar content of 97.48% and a monosaccharide composition comprising mannose, rhamnose, galacturonic acid, glucose, xylose, and arabinose, with molar ratios of 6.6:15.4:4.5:8.8:40.7:24, respectively. The effects of PsPs on intestinal microflora in mice were also studied, with 16S sequencing results showing an increase in the relative abundance of Firmicutes and a decrease in Bacteroidetes at the phylum level. The abundance of Lactobacillus increased, while those of Lachnospiraceae and Bacteroides reduced (at the genus level) by PsPs treatment. The composition of microbes changed. Levels of SCFAs in the PsPs group were significantly increased compared with control mice, including acetic acid, propionic acid, and butyric acid. These results suggest that PsPs can act as prebiotics, regulating the intestinal tract probiotics.
Collapse
|