1
|
Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, Yeh JY. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci 2023; 30:88. [PMID: 37845731 PMCID: PMC10577957 DOI: 10.1186/s12929-023-00981-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
RNA has emerged as a revolutionary and important tool in the battle against emerging infectious diseases, with roles extending beyond its applications in vaccines, in which it is used in the response to the COVID-19 pandemic. Since their development in the 1990s, RNA interference (RNAi) therapeutics have demonstrated potential in reducing the expression of disease-associated genes. Nucleic acid-based therapeutics, including RNAi therapies, that degrade viral genomes and rapidly adapt to viral mutations, have emerged as alternative treatments. RNAi is a robust technique frequently employed to selectively suppress gene expression in a sequence-specific manner. The swift adaptability of nucleic acid-based therapeutics such as RNAi therapies endows them with a significant advantage over other antiviral medications. For example, small interfering RNAs (siRNAs) are produced on the basis of sequence complementarity to target and degrade viral RNA, a novel approach to combat viral infections. The precision of siRNAs in targeting and degrading viral RNA has led to the development of siRNA-based treatments for diverse diseases. However, despite the promising therapeutic benefits of siRNAs, several problems, including impaired long-term protein expression, siRNA instability, off-target effects, immunological responses, and drug resistance, have been considerable obstacles to the use of siRNA-based antiviral therapies. This review provides an encompassing summary of the siRNA-based therapeutic approaches against viruses while also addressing the obstacles that need to be overcome for their effective application. Furthermore, we present potential solutions to mitigate major challenges.
Collapse
Affiliation(s)
- Hara Kang
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Yun Ji Ga
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Soo Hyun Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Young Hoon Cho
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung Won Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Chaeyeon Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung-Yong Yeh
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Research Institute for New Drug Development, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- KU Center for Animal Blood Medical Science, College of Veterinary Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, South Korea.
| |
Collapse
|
2
|
Hamd-Ghadareh S, Salimi A, Vaziry A. Ultrasensitive Ratiometric Fluorescence Bioassay for Accurate Detection of Covid-19-Specific Nucleocapsid Protein in Clinical Serum Samples Using Modified Cleavable Mesoporous SiO 2 Satellite-Enriched Carbon Dots. ACS Biomater Sci Eng 2023; 9:5279-5292. [PMID: 37606622 DOI: 10.1021/acsbiomaterials.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Due to the presence of various autofluorescent compounds in biological samples like serum and the photobleaching of organic fluorophores, fluorescence sensing has limited practical applicability. This study describes the development of an improved ratiometric fluorescence assay to determine the nucleocapsid protein (N protein), one of the most conserved biomarkers of Covid-19 in spiked and serum samples using highly stable buffer-based near IR-dual emission carbon dots (CDs) encapsulated into the cavities of cleavable silica nanocapsule (SNCs) nanocomposite. The cavities of cleavable silica nanocapsules (SNCs) and the formed core-shell CDs@ SNCs were used as a superior reservoir of fluorescent markers produced by cohydrolyzing tetraethyl orthosilicate and diiminosilane linker, which held hundreds of CDs in silica shell frameworks. The SiO2 nanocomposite was modified with an N protein antibody that specifically paired to the receptor binding region of the Cov-19 spike protein subunit. CDs were taken out of SNCs by NaBH4 reduction, and the released CDs exhibited dual emission at 475 and 675 nm when excited at 400 nm. Ratiometric detection is completed over a binding-induced, concentration-dependent immuno-affinity of the N protein that drives the fluorescence quenching phenomenon between the CDs as fluorophore and the AuNPs as quencher. As the N protein concentration increased, the intensity of the red emission (675 nm) dropped, whereas the intensity of the green emission (475 nm) already remained constant, which is due to sandwich immunoassays of CDs around AuNPs. Using the exceptional fluorescent characteristics of CDs and the high selectivity of nanocomposite functionalized with N-protein antibody, the developed assay efficiently eliminates the autofluorescence background interference of serum samples. The fluorescence ratio (I475/I675) provides a limit of detection of 2 pg mL-1 over a linear range of 0.01 to 5 ng mL-1 and exhibits an amplified sensitivity of 54 times compared to conventional immunoassay using CDs as fluorescent labels. With one-step signal amplification and requiring small sample quantities (only 20 μL), this sensing platform can be effectively used for the accurate detection of N protein, and no cross-reactivity is detected in the presence of different interfering agents.
Collapse
Affiliation(s)
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj-Iran
- Research Center for Nanotechnology, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - Asaad Vaziry
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, 66177-15175 Sanandaj, Iran
| |
Collapse
|
3
|
Kar SS, Dhar AK, Palei NN, Bhatt S. Small-molecule oligonucleotides as smart modality for antiviral therapy: a medicinal chemistry perspective. Future Med Chem 2023; 15:1091-1110. [PMID: 37584172 DOI: 10.4155/fmc-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Small-molecule oligonucleotides could be exploited therapeutically to silence the expression of viral infection-causing genes, and a few of them are now in clinical trials for the management of viral infections. The most challenging aspect of these oligonucleotides' therapeutic success involves their delivery. Thus medicinal chemistry strategies are inevitable to avoid degradation by serum nucleases, avoid kidney clearance and improve cellular uptake. Recently small-molecule oligonucleotide design has opened up new avenues to improve the treatment of drug-resistant viral infections, along with the development of COVID-19 medicines. This review is directed toward the recent advances in rational design, mechanism of action, structure-activity relationships and future perspective of the small-molecule oligonucleotides targeting viral infections, including COVID-19.
Collapse
Affiliation(s)
- Sidhartha S Kar
- Institute of Pharmacy & Technology, Salipur, Cuttack, Odisha, 754202, India
| | - Arghya Kusum Dhar
- School of Pharmacy, The Neotia University, Sarisa, D.H. Road, 24 Pgs (South) West Bengal, 743368, India
| | - Narahari N Palei
- Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India
| |
Collapse
|
4
|
Uddin N, Binzel DW, Shu D, Fu TM, Guo P. Targeted delivery of RNAi to cancer cells using RNA-ligand displaying exosome. Acta Pharm Sin B 2023; 13:1383-1399. [PMID: 37139430 PMCID: PMC10149909 DOI: 10.1016/j.apsb.2022.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
Exosome is an excellent vesicle for in vivo delivery of therapeutics, including RNAi and chemical drugs. The extremely high efficiency in cancer regression can partly be attributed to its fusion mechanism in delivering therapeutics to cytosol without endosome trapping. However, being composed of a lipid-bilayer membrane without specific recognition capacity for aimed-cells, the entry into nonspecific cells can lead to potential side-effects and toxicity. Applying engineering approaches for targeting-capacity to deliver therapeutics to specific cells is desirable. Techniques with chemical modification in vitro and genetic engineering in cells have been reported to decorate exosomes with targeting ligands. RNA nanoparticles have been used to harbor tumor-specific ligands displayed on exosome surface. The negative charge reduces nonspecific binding to vital cells with negatively charged lipid-membrane due to the electrostatic repulsion, thus lowering the side-effect and toxicity. In this review, we focus on the uniqueness of RNA nanoparticles for exosome surface display of chemical ligands, small peptides or RNA aptamers, for specific cancer targeting to deliver anticancer therapeutics, highlighting recent advances in targeted delivery of siRNA and miRNA that overcomes the previous RNAi delivery roadblocks. Proper understanding of exosome engineering with RNA nanotechnology promises efficient therapies for a wide range of cancer subtypes.
Collapse
Affiliation(s)
- Nasir Uddin
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Daniel W. Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Tian-Min Fu
- Department of Biological Chemistry & Pharmacology, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Fopase R, Panda C, Rajendran AP, Uludag H, Pandey LM. Potential of siRNA in COVID-19 therapy: Emphasis on in silico design and nanoparticles based delivery. Front Bioeng Biotechnol 2023; 11:1112755. [PMID: 36814718 PMCID: PMC9939533 DOI: 10.3389/fbioe.2023.1112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Small interfering RNA (siRNA)-mediated mRNA degradation approach have imparted its eminence against several difficult-to-treat genetic disorders and other allied diseases. Viral outbreaks and resulting pandemics have repeatedly threatened public health and questioned human preparedness at the forefront of drug design and biomedical readiness. During the recent pandemic caused by the SARS-CoV-2, mRNA-based vaccination strategies have paved the way for a new era of RNA therapeutics. RNA Interference (RNAi) based approach using small interfering RNA may complement clinical management of the COVID-19. RNA Interference approach will primarily work by restricting the synthesis of the proteins required for viral replication, thereby hampering viral cellular entry and trafficking by targeting host as well as protein factors. Despite promising benefits, the stability of small interfering RNA in the physiological environment is of grave concern as well as site-directed targeted delivery and evasion of the immune system require immediate attention. In this regard, nanotechnology offers viable solutions for these challenges. The review highlights the potential of small interfering RNAs targeted toward specific regions of the viral genome and the features of nanoformulations necessary for the entrapment and delivery of small interfering RNAs. In silico design of small interfering RNA for different variants of SARS-CoV-2 has been discussed. Various nanoparticles as promising carriers of small interfering RNAs along with their salient properties, including surface functionalization, are summarized. This review will help tackle the real-world challenges encountered by the in vivo delivery of small interfering RNAs, ensuring a safe, stable, and readily available drug candidate for efficient management of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Rushikesh Fopase
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Chinmaya Panda
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Amarnath P. Rajendran
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hasan Uludag
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lalit M. Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
6
|
Endoh T, Takahashi S, Sugimoto N. Endogenous G-quadruplex-forming RNAs inhibit the activity of SARS-CoV-2 RNA polymerase. Chem Commun (Camb) 2023; 59:872-875. [PMID: 36594508 DOI: 10.1039/d2cc05858h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Replication of RNA viruses is catalysed by virus-specific polymerases, which can be targets of therapeutic strategies. In this study, we used a selection strategy to identify endogenous RNAs from a transcriptome library derived from lung cells that interact with the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Some of the selected RNAs weakened the activity of RdRp by forming G-quadruplexes. These results suggest that certain endogenous RNAs, which potentially form G-quadruplexes, can reduce the replication of viral RNAs.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan. .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan
| |
Collapse
|
7
|
Ayass MA, Tripathi T, Griko N, Pashkov V, Dai J, Zhang J, Herbert FC, Ramankutty Nair R, Okyay T, Zhu K, Gassensmith JJ, Abi-Mosleh L. Highly efficacious and safe neutralizing DNA aptamer of SARS-CoV-2 as an emerging therapy for COVID-19 disease. Virol J 2022; 19:227. [PMID: 36581924 PMCID: PMC9800238 DOI: 10.1186/s12985-022-01943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/02/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The paucity of SARS-CoV-2-specific virulence factors has greatly hampered the therapeutic management of patients with COVID-19 disease. Although available vaccines and approved therapies have shown tremendous benefits, the continuous emergence of new variants of SARS-CoV-2 and side effects of existing treatments continue to challenge therapy, necessitating the development of a novel effective therapy. We have previously shown that our developed novel single-stranded DNA aptamers not only target the trimer S protein of SARS-CoV-2, but also block the interaction between ACE2 receptors and trimer S protein of Wuhan origin, Delta, Delta plus, Alpha, Lambda, Mu, and Omicron variants of SARS-CoV-2. We herein performed in vivo experiments that administer the aptamer to the lungs by intubation as well as in vitro studies utilizing PBMCs to prove the efficacy and safety of our most effective aptamer, AYA2012004_L. METHODS In vivo studies were conducted in transgenic mice expressing human ACE2 (K18hACE2), C57BL/6J, and Balb/cJ. Flow cytometry was used to check S-protein expressing pseudo-virus-like particles (VLP) uptake by the lung cells and test the immuogenicity of AYA2012004_L. Ames test was used to assess mutagenicity of AYA2012004_L. RT-PCR and histopathology were used to determine the biodistribution and toxicity of AYA2012004_L in vital organs of mice. RESULTS We measured the in vivo uptake of VLPs by lung cells by detecting GFP signal using flow cytometry. AYA2012004_L specifically neutralized VLP uptake and also showed no inflammatory response in mice lungs. In addition, AYA2012004_L did not induce inflammatory response in the lungs of Th1 and Th2 mouse models as well as human PBMCs. AYA2012004_L was detectable in mice lungs and noticeable in insignificant amounts in other vital organs. Accumulation of AYA2012004_L in organs decreased over time. AYA2012004_L did not induce degenerative signs in tissues as seen by histopathology and did not cause changes in the body weight of mice. Ames test also certified that AYA2012004_L is non-mutagenic and proved it to be safe for in vivo studies. CONCLUSIONS Our aptamer is safe, effective, and can neutralize the uptake of VLPs by lung cells when administered locally suggesting that it can be used as a potential therapeutic agent for COVID-19 management.
Collapse
Affiliation(s)
| | | | - Natalya Griko
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | - Victor Pashkov
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | - Jun Dai
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | - Jin Zhang
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | - Fabian C Herbert
- University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | | | - Tutku Okyay
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | - Kevin Zhu
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | | | - Lina Abi-Mosleh
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA.
| |
Collapse
|
8
|
Gerber PP, Donde MJ, Matheson NJ, Taylor AI. XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection. Nat Commun 2022; 13:6716. [PMID: 36385143 PMCID: PMC9668987 DOI: 10.1038/s41467-022-34339-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The unprecedented emergence and spread of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, underscores the need for diagnostic and therapeutic technologies that can be rapidly tailored to novel threats. Here, we show that site-specific RNA endonuclease XNAzymes - artificial catalysts composed of single-stranded synthetic xeno-nucleic acid oligonucleotides (in this case 2'-deoxy-2'-fluoro-β-D-arabino nucleic acid) - may be designed, synthesised and screened within days, enabling the discovery of a range of enzymes targeting SARS-CoV-2 ORF1ab, ORF7b, spike- and nucleocapsid-encoding RNA. Three of these are further engineered to self-assemble into a catalytic nanostructure with enhanced biostability. This XNA nanostructure is capable of cleaving genomic SARS-CoV-2 RNA under physiological conditions, and when transfected into cells inhibits infection with authentic SARS-CoV-2 virus by RNA knockdown. These results demonstrate the potential of XNAzymes to provide a platform for the rapid generation of antiviral reagents.
Collapse
Affiliation(s)
- Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Maria J Donde
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Alexander I Taylor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Friedrich M, Pfeifer G, Binder S, Aigner A, Vollmer Barbosa P, Makert GR, Fertey J, Ulbert S, Bodem J, König EM, Geiger N, Schambach A, Schilling E, Buschmann T, Hauschildt S, Koehl U, Sewald K. Selection and Validation of siRNAs Preventing Uptake and Replication of SARS-CoV-2. Front Bioeng Biotechnol 2022; 10:801870. [PMID: 35309990 PMCID: PMC8925020 DOI: 10.3389/fbioe.2022.801870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
In 2019, the novel highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak rapidly led to a global pandemic with more than 346 million confirmed cases worldwide, resulting in 5.5 million associated deaths (January 2022). Entry of all SARS-CoV-2 variants is mediated by the cellular angisin-converting enzyme 2 (ACE2). The virus abundantly replicates in the epithelia of the upper respiratory tract. Beyond vaccines for immunization, there is an imminent need for novel treatment options in COVID-19 patients. So far, only a few drugs have found their way into the clinics, often with modest success. Specific gene silencing based on small interfering RNA (siRNA) has emerged as a promising strategy for therapeutic intervention, preventing/limiting SARS-CoV-2 entry into host cells or interfering with viral replication. Here, we pursued both strategies. We designed and screened nine siRNAs (siA1-9) targeting the viral entry receptor ACE2. SiA1, (siRNA against exon1 of ACE2 mRNA) was most efficient, with up to 90% knockdown of the ACE2 mRNA and protein for at least six days. In vitro, siA1 application was found to protect Vero E6 and Huh-7 cells from infection with SARS-CoV-2 with an up to ∼92% reduction of the viral burden indicating that the treatment targets both the endosomal and the viral entry at the cytoplasmic membrane. Since the RNA-encoded genome makes SARS-CoV-2 vulnerable to RNA interference (RNAi), we designed and analysed eight siRNAs (siV1-8) directly targeting the Orf1a/b region of the SARS-CoV-2 RNA genome, encoding for non-structural proteins (nsp). As a significant hallmark of this study, we identified siV1 (siRNA against leader protein of SARS-CoV-2), which targets the nsp1-encoding sequence (a.k.a. ‘host shutoff factor’) as particularly efficient. SiV1 inhibited SARS-CoV-2 replication in Vero E6 or Huh-7 cells by more than 99% or 97%, respectively. It neither led to toxic effects nor induced type I or III interferon production. Of note, sequence analyses revealed the target sequence of siV1 to be highly conserved in SARS-CoV-2 variants. Thus, our results identify the direct targeting of the viral RNA genome (ORF1a/b) by siRNAs as highly efficient and introduce siV1 as a particularly promising drug candidate for therapeutic intervention.
Collapse
Affiliation(s)
- Maik Friedrich
- Institute of Clinical Immunology, Faculty of Leipzig University of Leipzig, Max-Bürger-Forschungszentrum (MBFZ), Leipzig, Germany
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- *Correspondence: Maik Friedrich,
| | - Gabriele Pfeifer
- Institute of Clinical Immunology, Faculty of Leipzig University of Leipzig, Max-Bürger-Forschungszentrum (MBFZ), Leipzig, Germany
| | - Stefanie Binder
- Institute of Clinical Immunology, Faculty of Leipzig University of Leipzig, Max-Bürger-Forschungszentrum (MBFZ), Leipzig, Germany
| | - Achim Aigner
- Rudolf Boehm Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | | | - Gustavo R. Makert
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Jasmin Fertey
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Sebastian Ulbert
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Jochen Bodem
- Institute of Virology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Eva-Maria König
- Institute of Virology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Nina Geiger
- Institute of Virology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Erik Schilling
- Institute of Clinical Immunology, Faculty of Leipzig University of Leipzig, Max-Bürger-Forschungszentrum (MBFZ), Leipzig, Germany
| | - Tilo Buschmann
- Institute of Clinical Immunology, Faculty of Leipzig University of Leipzig, Max-Bürger-Forschungszentrum (MBFZ), Leipzig, Germany
| | | | - Ulrike Koehl
- Institute of Clinical Immunology, Faculty of Leipzig University of Leipzig, Max-Bürger-Forschungszentrum (MBFZ), Leipzig, Germany
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|