1
|
Debnath SC, Chaput DL, McMurtrie J, Bell AG, Temperton B, Mohan CV, Alam MM, Hasan NA, Haque MM, Bass D, Tyler CR. Seasonal dynamics and factors shaping microbiomes in freshwater finfish earthen aquaculture ponds in Bangladesh. ENVIRONMENTAL MICROBIOME 2025; 20:38. [PMID: 40165346 PMCID: PMC11960027 DOI: 10.1186/s40793-025-00687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND The pondwater microbiome is believed to play a key role in fish health, including shaping mucosal surface microbiomes that help to protect against disease. How different physiochemical features relating to season, geographical locations, as well as crop species shape the pond water microbiome in the finfish aquaculture system, is not well established. Pangasius (Pangasianodon hypophthalmus) and tilapia (Oreochromis niloticus) are two of the most widely farmed fish species and disease is a major impediment to the expansion of their production. We applied 16S and 18S rRNA metabarcoding to assess how pond physicochemistry and geographical location shape water microbiomes in pangasius and tilapia aquaculture earthen ponds in Bangladesh. RESULTS Planctomycetota, Pseudomonadota and Actinomycetota were the dominant bacterial phyla while Stramenopiles and Alveolata were the dominant microeukaryotes (divisions) in the pangasius and tilapia ponds water. The relative abundance of Planctomycetota was higher in the pangasius ponds compared with tilapia ponds, and Actinomycetota, and Pseudomonadota were relatively higher in tilapia ponds. Tilapia pond water also exhibited a higher microbial diversity compared to that in pangasius ponds. The pondwater microbial diversity was at its lowest in winter (and/or in monsoon) and highest in the pre-monsoon period. The microbial community structures differed across the different seasons, geographical locations, culture systems, and crop species, with season and geographical locations showing the strongest effects. Of the water physicochemistry features assessed, temperature and pH were found to have a weak but significant effect on the water microbiome content for both pangasius and tilapia ponds. Pangasius and tilapia ponds shared over 46% of ASVs, and around 30% of ASVs were shared across the different study geographical locations. CONCLUSION Our findings demonstrate that microbial communities in pangasius and tilapia aquaculture systems in Bangladesh are shaped by season, geographical location, crop species, as well as effects from water physicochemistry. Our results provide insights into the dynamic nature and environmental influences on water microbiomes that may be applied for use in pond management for improving aquaculture productivity and enhancement of overall fish health.
Collapse
Affiliation(s)
- Sanjit C Debnath
- Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK.
- Sustainable Aquaculture Futures, University of Exeter, Exeter, Devon, EX4 4QD, UK.
| | - Dominique L Chaput
- Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
- Sustainable Aquaculture Futures, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Jamie McMurtrie
- Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
- Sustainable Aquaculture Futures, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Ashley G Bell
- Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
- Sustainable Aquaculture Futures, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Ben Temperton
- Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | | | - Md M Alam
- Department of Fishery Resources Conservation and Management, Khulna Agricultural University, Khulna, Bangladesh
| | - Neaz A Hasan
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Mohammad M Haque
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2200, Bangladesh
| | - David Bass
- Sustainable Aquaculture Futures, University of Exeter, Exeter, Devon, EX4 4QD, UK
- Weymouth Laboratory, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, UK
| | - Charles R Tyler
- Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK.
- Sustainable Aquaculture Futures, University of Exeter, Exeter, Devon, EX4 4QD, UK.
| |
Collapse
|
2
|
Wang J, Hu C, Tong X, Gao Y, Liang R, Liu C, Zhao K. Microbial communities associated with the skin, gill, and gut of large yellow croaker (Larimichthys crocea). BMC Microbiol 2025; 25:16. [PMID: 39799309 PMCID: PMC11724461 DOI: 10.1186/s12866-024-03695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
The microbiota inhabiting the surface of fish mucosal tissue play important roles in the nutrition, metabolism and immune system of their host. However, most investigations on microbial symbionts have focused on the fish gut, but the microbiota associated with external mucosal tissues (such as the skin and gill) is poorly understood. This study characterised the traits and dynamic of microbial communities associated with the skin, gill and gut of large yellow croaker (Larimichthys crocea) culturing with net enclosures or pens at different sampling times (with seasonal transition). Results revealed the structure and function of microbial communities differed according to the mucosal tissues of large yellow croaker. The richness and diversity of microbiota in the skin were significantly higher than that in the gill and gut. Discriminative microbial taxa such as Psychrobacter in the skin, Enterobacterales in the gill, and Fusobacterium in the gut, and discriminative predictive functions were identified in the skin, gill and gut. Furthermore, different environmental-related factors (such as sampling time/season and culture method) had impacts on the fish microbiota differently. The diversity and composition of microbiota associated with the skin, gill and gut changed over time, and the difference in skin microbiota across sampling times was most significant among the three tissues. The culture method significantly impacted the diversity and composition of skin microbiota, but no significant difference was found in the gill and gut microbiota between net enclosure and net pen. These results indicated that the skin microbiota of large yellow croaker was more diverse and affected by environmental-related factors than other tissues. This study provides new insights into the structure, environmental response pattern, and relationship with host health of microbiota associated with the mucosal tissues of large yellow croaker.
Collapse
Affiliation(s)
- Jingan Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Chenghao Hu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Xiaojie Tong
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yuan Gao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Renjie Liang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Chibo Liu
- Department of Clinical Laboratory, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Kai Zhao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| |
Collapse
|
3
|
Lai KP, Boncan DAT, Qin X, Chan TF, Tse WKF. Roles and occurrences of microbiota in the osmoregulatory organs, gills and gut, in marine medaka upon hypotonic stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101285. [PMID: 39002350 DOI: 10.1016/j.cbd.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Gills and gut are the two primary osmoregulatory organs in fish. Recently, studies have expanded beyond the osmoregulatory mechanisms of these organs to explore the microbiota communities inhabiting them. It is now known that microbial communities in both organs shift in response to osmotic stress. However, there are limited studies identifying the major contributors and co-occurrence among these microbiota in both organs under seawater and freshwater transfer conditions. The current data mining report performed a bioinformatics analysis on two previous published datasets from our group, aiming to provide insights into host-bacteria relationships under osmotic stress. We divided the samples into four groups: control seawater gills (LSW); control seawater gut (TSW); freshwater transfer gills (LFW); and freshwater transfer gut (TFW). Our results showed that LSW had higher diversities, richness, and evenness compared to TSW. However, both the LFW and LSW did not show any significant differences after the freshwater transfer experiment. We further applied co-occurrence network analysis and, for the first time, reported on the interactions of taxa shaping the community structure in these two organs. Moreover, we identified enriched ectoine biosynthesis in seawater samples, suggesting its potential role in seawater environments. Increased mRNA expression levels of Na+/K+-atpase, and cftr, were observed in gills after 6 h of ectoine treatment. These findings provide a foundation for future studies on host-bacteria interactions under osmotic stress.
Collapse
Affiliation(s)
- Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Delbert Almerick T Boncan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Mes W, Lücker S, Jetten MS, Siepel H, Gorissen M, van Kessel MA. Gill-associated ammonia oxidizers are widespread in teleost fish. Microbiol Spectr 2024; 12:e0029524. [PMID: 39324788 PMCID: PMC11537070 DOI: 10.1128/spectrum.00295-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Recent advances in sequencing methods have greatly expanded the knowledge of teleost-associated microorganisms. While fish-gut microbiomes are comparatively well studied, less attention has gone toward other, external organ-microbiome associations. Gills are particularly interesting to investigate due to their functions in gas exchange, osmoregulation, and nitrogen excretion. We recently discovered a branchial symbiosis between nitrogen-cycling bacteria and teleosts (zebrafish and carp), in which ammonia-oxidizing Nitrosomonas and denitrifying bacteria together convert toxic ammonia excreted by the fish into harmless dinitrogen (N2) gas. This symbiosis can function as a "natural biofilter" in fish gills and can potentially occur in all ammonotelic fish species, but it remains unknown how widespread this symbiosis is. In this study, we analyzed all publicly available gill microbiome data sets and checked for the presence of Nitrosomonas. We discovered that more than half of the described fish gill microbiomes contain 16S rRNA gene sequences of ammonia-oxidizing bacteria (AOB). The presence of gill-specific AOB was shown in both wild and aquacultured fish, as well as in marine and freshwater fish species. Based on these findings, we propose that ammonia oxidizers are widespread in teleost fish gills. These gill-associated AOB can significantly affect fish nitrogen excretion, and the widespread nature of this association suggests that the gill-associated AOB can have similar impacts on more fish species. Future research should address the contribution of these microorganisms to fish nitrogen metabolism and the fundamental characteristics of this novel symbiosis.IMPORTANCERecent advances in sequencing have increased our knowledge of teleost-associated microbiota, but the gill microbiome has received comparatively little attention. We recently discovered a consortium of nitrogen-cycling bacteria in the gills of common carp and zebrafish, which are able to convert (toxic) ammonia into harmless dinitrogen gas. These microorganisms thus function as a natural nitrogen biofilter. We analyzed all available gill microbiome data sets to determine how widespread gill-associated ammonia-oxidizing bacteria (AOB) are. More than half of the data sets contained AOB, representing both aquacultured and wild fish from freshwater and marine habitats. In total, 182 amplicon sequencing variants were obtained, of which 115 were found specifically in the gills and not the environmental microbiomes. As gill-associated AOB are apparently widespread in teleost fish, it is important to study their impact on host nitrogen excretion and the potential to reduce ammonia accumulation in (recirculating) aquaculture of relevant fish species.
Collapse
Affiliation(s)
- Wouter Mes
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Henk Siepel
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Marnix Gorissen
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Maartje A.H.J. van Kessel
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Wei H, Zhan L, Lv X, Lin Y, Zheng J, Yang W, Liu J, Sun J, Chen S. Gut commensal Parabacteroides distasonis exerts neuroprotective effects in acute ischemic stroke with hyperuricemia via regulating gut microbiota-gut-brain axis. J Transl Med 2024; 22:999. [PMID: 39501312 PMCID: PMC11539330 DOI: 10.1186/s12967-024-05800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Hyperuricemia is considered as an independent risk factor for acute ischemic stroke (AIS), and some AIS patients are accompanied by an increase in serum uric acid. Recent studies have highlighted the important role of gut microbiota in both hyperuricemia and AIS, but there is little available data on the relationship between gut microbiota and the pathogenesis of AIS with hyperuricemia (HAS). METHODS Here we profiled the gut microbiota composition in 63 HAS patients and 269 non-HAS patients through 16s rRNA sequencing. Male rat with hyperuricemia were subjected to middle cerebral artery occlusion (MCAO) to establish HAS model and were then treated with Parabacteroides distasonis. Subsequently, the neurological deficit, pathological damages and blood-brain barrier disruption were evaluated. Moreover, the levels of ROS, inflammatory cytokines, NF-𝜿B pathway related protein, and vascular density markers were determined. RESULTS There were significant differences of gut microbiota composition between HAS patients and non-HAS patients, and a significant decrease in the abundance of Parabacteroides in HAS patients compared to non-HAS patients. Animal experiments showed that supplementation with P. distasonis increased beneficial commensal bacteria, significantly improved neurological deficits, pathological damages and BBB disruption, as well as reduced the level of serum uric acid in HAS rats. We further demonstrated that P. distasonis treatment decreased ROS level and increased SOD2 level, thereby reducing oxidative stress. Meanwhile, P. distasonis effectively inhibited NF-𝜿B signal pathway and reduced the production of inflammatory cytokines, including TNF-α and IL-1β, alleviating the inflammatory response. Notably, P. distasonis treatment increased the levels of vascular density markers including cluster of differentiation 31 (CD31) and alpha-smooth muscle actin (α-SMA), ameliorating vascular damage in HAS rats. CONCLUSIONS Together, these findings highlighted the important role of P. distasonis in the pathogenesis of HAS, and its mechanism was involved in the regulation of gut microbiota-gut-brain axis, which implied a novel strategy against HAS.
Collapse
Affiliation(s)
- Hongming Wei
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Lu Zhan
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinhuang Lv
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yan Lin
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jie Zheng
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenwen Yang
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing Sun
- Department of Geriatrics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Songfang Chen
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
6
|
Ling Y, Xu P, Afiqah-Aleng N, Ishak SD, Wang Y, Shu-Chien AC, Sung YY, Rozaimi R, Liew HJ, Fazhan H, Waiho K. Physiological adaptation and gut microbiota changes of orange mud crab Scylla olivacea in response to increased temperature condition. AQUATIC SCIENCES 2024; 86:100. [DOI: 10.1007/s00027-024-01120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/07/2024] [Indexed: 01/05/2025]
|
7
|
Kotcharoen W, Nagai Z, Watari T, Adlin N, Hatamoto M, Murakami Y, Maharjan N, Takeuchi Y, Yamazaki S, Yamaguchi T. Integration of down-flow hanging sponge reactor to oreochromis niloticus - Brassica oleracea aquaponics system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:358-368. [PMID: 39257294 DOI: 10.1080/10934529.2024.2399444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Aquaponics is a promising solution for addressing food security concerns. Nonetheless, an effective water-purification system is necessary to achieve high and stable yields of fish and vegetables. This study aimed to evaluate the nitrification and oxygen transfer performance of a laboratory-scale down-flow hanging sponge (DHS) reactor with a Brassica oleracea aquaponics system to treat water in an Oreochromis niloticus closed-aquaculture system. The DHS reactor showed a higher oxygen transfer coefficient (KLa) than the conventional aerator and provided an adequate dissolved oxygen (DO) concentration of approximately 5.5 mg/L essential for O. niloticus growth throughout the experimental period. The evaluated DHS-based aquaponic system maintained high water quality in an aquaculture tank, with a survival rate of 97%. The O. niloticusgrew at a low feed conversion ratio of 1.5-2.1 and a low feeding rate of 0.5% at high stocking densities of 17.5-22.2 kg-fish-weight/m3. 16S rRNA gene sequencing indicated that the DHS sponge carrier effectively retained nitrifying bacteria such as Nitrosomonas and Nitrospira. This study demonstrated that the DHS reactor provided a high DO concentration and that a simultaneous DHS reactor with a hydroponic tank provided a low-cost aquaponic system that could be applied for food production in the aquaculture industry.
Collapse
Affiliation(s)
- Wilasinee Kotcharoen
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
- Department of Biological Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Zen Nagai
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Nur Adlin
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yuki Murakami
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Nagaoka College, Nagaoka, Japan
| | - Namita Maharjan
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Nagaoka College, Nagaoka, Japan
| | - Yutaka Takeuchi
- Department of Biological Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Shinichi Yamazaki
- Department of Civil Engineering and Architecture, National Institute of Technology (KOSEN), Maizuru, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
8
|
Meng X, Luo L, Zhao Z, Wang S, Zhang R, Guo K. Ginger polysaccharide alleviates the effects of acute exposure to carbonate in crucian carp (Carassius auratus) by regulating immunity, intestinal microbiota, and intestinal metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116127. [PMID: 38394756 DOI: 10.1016/j.ecoenv.2024.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Alkaline stress poses a significant challenge to the healthy growth of fish. Ginger polysaccharide (GP) is one of the main active substances in ginger and has pharmacological effects, such as anti-oxidation and immune regulation. However, the physiological regulatory mechanism of GP addition to diet on alkalinity stress in crucian carp remains unclear. This study aimed to investigate the potential protective effects of dietary GP on antioxidant capacity, gene expression levels, intestinal microbiome, and metabolomics of crucian carp exposed to carbonate (NaHCO3). The CK group (no GP supplementation) and COG group (NaHCO3 stress and no GP supplementation) were set up. The GPCS group (NaHCO3 stress and 0.4% GP supplementation) was stressed for seven days. Based on these data, GP significantly increased the activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), acid phosphatase (ACP), and alkaline phosphatase (AKP) in carp under alkalinity stress (p < 0.05) and decreased the activity of malon dialdehyde (MDA) (p < 0.05). GP restored the activity of GSH-PX, ACP, and AKP to CK levels. The expression levels of tumor necrosis factor β (TGF-β), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin 8 (IL-8) genes were decreased, and the expression levels of determination factor kappa-B (NF-κB) and interleukin 10 (IL-10) genes were increased (p < 0.05). Based on 16 S rRNA high-throughput sequencing, GP improved the changes in the intestinal microbial diversity and structural composition of crucian carp caused by NaHCO3 exposure. In particular, GP increased the relative abundance of Proteobacteria and Bacteroidetes and decreased the relative abundance of Actinobacteria. The metabolic response of GP to NaHCO3 exposed crucian carp guts was studied using LC/MS. Compared to the COG group, the GPCS group had 64 different metabolites and enriched 10 metabolic pathways, including lipid metabolism, nucleotide metabolism, and carbohydrate metabolism. The addition of GP to feed can promote galactose metabolism and provide an energy supply to crucian carp, thus alleviating the damage induced by alkalinity stress. In conclusion, GP can mitigate the effects of NaHCO3 alkalinity stress by regulating immune function, intestinal flora, and intestinal metabolism in crucian carp. These findings provide a novel idea for studying the mechanism of salt-alkali tolerance in crucian carp by adding GP to feed.
Collapse
Affiliation(s)
- Xianwei Meng
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China; Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Liang Luo
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| | - Zhigang Zhao
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Shihui Wang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Rui Zhang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Kun Guo
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| |
Collapse
|
9
|
Yang H, Zhong J, Leng X, Wu J, Cheng P, Shen L, Wu J, Li P, Du H. Effectiveness assessment of using water environmental microHI to predict the health status of wild fish. Front Microbiol 2024; 14:1293342. [PMID: 38274749 PMCID: PMC10808811 DOI: 10.3389/fmicb.2023.1293342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Aquatic wildlife health assessment is critically important for aquatic wildlife conservation. However, the health assessment of aquatic wildlife (especially aquatic wild animals) is difficult and often accompanied by invasive survey activities and delayed observability. As there is growing evidence that aquatic environmental microbiota could impact the health status of aquatic animals by influencing their symbiotic microbiota, we propose a non-invasive method to monitor the health status of wild aquatic animals using the environmental microbiota health index (microHI). However, it is unknown whether this method is effective for different ecotype groups of aquatic wild animals. To answer this question, we took a case study in the middle Yangtze River and studied the water environmental microbiota and fish gut microbiota at the fish community level, population level, and ecotype level. The results showed that the gut microHI of the healthy group was higher than that of the unhealthy group at the community and population levels, and the overall gut microHI was positively correlated with the water environmental microHI, whereas the baseline gut microHI was species-specific. Integrating these variations in four ecotype groups (filter-feeding, scraper-feeding, omnivorous, and carnivorous), only the gut microHI of the carnivorous group positively correlated with water environmental microHI. Alcaligenaceae, Enterobacteriaceae, and Achromobacter were the most abundant groups with health-negative-impacting phenotypes, had high positive correlations between gut sample group and environment sample group, and had significantly higher abundance in unhealthy groups than in healthy groups of carnivorous, filter-feeding, and scraper-feeding ecotypes. Therefore, using water environmental microHI to indicate the health status of wild fish is effective at the community level, is effective just for carnivorous fish at the ecotype level. In the middle Yangtze River, Alcaligenaceae, Enterobacteriaceae (family level), and Achromobacter (genus level) were the key water environmental microbial groups that potentially impacted wild fish health status. Of course, more data and research that test the current hypothesis and conclusion are encouraged.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
10
|
Bellec L, Milinkovitch T, Dubillot E, Pante É, Tran D, Lefrancois C. Fish gut and skin microbiota dysbiosis induced by exposure to commercial sunscreen formulations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106799. [PMID: 38113619 DOI: 10.1016/j.aquatox.2023.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
UV filters (organic or mineral) present in sunscreen products are emerging contaminants of coastal aquatic environments. There is an urgent need to understand marine organisms responses to these compounds. In this study, we investigated the effect of exposure to dilutions of commercial sunscreen formulations on bacterial communities of mullet (Chelon sp.). The gut and skin mucus microbial communities were characterized using a metabarcoding approach targeting the 16S rRNA gene. Our results revealed that mullets had its own bacterial communities that differ from their surrounding habitats and specific to tissue. The dilutions of commercial sunscreens modified the relative abundance of Actinobacteroita, Bacteriodota and Proteobacteria for both gut and skin microbiota. They also allowed to bacteria affiliated to Mycobacterium, Nocardia and Tenacibaculum genera, known to house pathogenic species, to colonize the epithelium which may have implications for fish host health.
Collapse
Affiliation(s)
- Laure Bellec
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| | | | - Emmanuel Dubillot
- La Rochelle Univ., CNRS, LIENSs, UMR 7266, La Rochelle F-17000, France
| | - Éric Pante
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, IUEM, F-29280 Plouzané, France
| | - Damien Tran
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | | |
Collapse
|
11
|
Zhang C, Hu L, Hao J, Cai W, Qin M, Gao Q, Nie M, Qi D, Ma R. Effects of plant-derived protein and rapeseed oil on growth performance and gut microbiomes in rainbow trout. BMC Microbiol 2023; 23:255. [PMID: 37704987 PMCID: PMC10498547 DOI: 10.1186/s12866-023-02998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Rainbow trout (Oncorhynchus mykiss) is becoming popular with the increased demand for fish protein. However, the limited resources and expense of fish meal and oil have become restrictive factors for the development of the rainbow trout related industry. To solve this problem, plant-derived proteins and vegetable oils have been developed as alternative resources. The present study focuses on evaluating the effects of two experimental diets, FMR (fish meal replaced with plant-derived protein) and FOR (fish oil replaced with rapeseed oil), through the alteration of the gut microbiota in triploid rainbow trout. The commercial diet was used in the control group (FOM). RESULTS Amplicon sequencing of the 16S and 18S rRNA genes was used to assess the changes in gut bacteria and fungi. Our analysis suggested that the α-diversity of both bacteria and fungi decreased significantly in the FMR and FOR groups, and β-diversity was distinct between FOM/FMR and FOM/FOR based on principal coordinate analysis (PCoA). The abundance of the Planctomycetota phylum increased significantly in the FMR group, while that of Firmicutes and Bacteroidetes decreased. We also found that the fungal phylum Ascomycota was significantly increased in the FMR and FOR groups. At the genus level, we found that the abundance of Citrobacter was the lowest and that of pathogenic Schlesneria, Brevundimonas, and Mycoplasma was highest in the FMR and FOR groups. Meanwhile, the pathogenic fungal genera Verticillium and Aspergillus were highest in the FMR and FOR groups. Furthermore, canonical correspondence analysis (CCA) and network analysis suggested that the relatively low-abundance genera, including the beneficial bacteria Methylobacterium, Enterococcus, Clostridium, Exiguobacterium, Sphingomonas and Bacteroides and the fungi Papiliotrema, Preussia, and Stachybotrys, were positively correlated with plant protein or rapeseed oil. There were more modules that had the above beneficial genera as the hub nodes in the FMR and FOR groups. CONCLUSIONS Our study suggested that the FMR and FOR diets could affect the gut microbiome in rainbow trout, which might offset the effects of the dominant and pathogenic microbial genera. This could be the underlying mechanism of explaining why no significant difference was observed in body weight between the different groups.
Collapse
Affiliation(s)
- Cunfang Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810001, China
| | - Lingyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Jiahui Hao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810001, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810001, China
| | - Weijie Cai
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810001, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810001, China
| | - Minxin Qin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810001, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810001, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810001, China
| | - Miaomiao Nie
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810001, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810001, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810001, China.
| |
Collapse
|
12
|
Zhang Y, Feng S, Gao F, Wen H, Zhu L, Li M, Xi Y, Xiang X. The Relationship between Brachionus calyciflorus-Associated Bacterial and Bacterioplankton Communities in a Subtropical Freshwater Lake. Animals (Basel) 2022; 12:ani12223201. [PMID: 36428428 PMCID: PMC9686566 DOI: 10.3390/ani12223201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Zooplankton bodies are organic-rich micro-environments that support fast bacterial growth. Therefore, the abundance of zooplankton-associated bacteria is much higher than that of free-living bacteria, which has profound effects on the nutrient cycling of freshwater ecosystems. However, a detailed analysis of associated bacteria is still less known, especially the relationship between those bacteria and bacterioplankton. In this study, we analyzed the relationships between Brachionus calyciflorus-associated bacterial and bacterioplankton communities in freshwater using high-throughput sequencing. The results indicated that there were significant differences between the two bacterial communities, with only 29.47% sharing OTUs. The alpha diversity of the bacterioplankton community was significantly higher than that of B. calyciflorus-associated bacteria. PCoA analysis showed that the bacterioplankton community gathered deeply, while the B. calyciflorus-associated bacterial community was far away from the whole bacterioplankton community, and the distribution was relatively discrete. CCA analysis suggested that many environmental factors (T, DO, pH, TP, PO43-, NH4+, and NO3-) regulated the community composition of B. calyciflorus-associated bacteria, but the explanatory degree of variability was only 37.80%. High-throughput sequencing revealed that Raoultella and Delftia in Proteobacteria were the dominant genus in the B. calyciflorus-associated bacterial community, and closely related to the biodegradation function. Moreover, several abundant bacterial members participating in carbon and nitrogen cycles were found in the associated bacterial community by network analysis. Predictive results from FAPROTAX showed that the predominant biogeochemical cycle functions of the B. calyciflorus-associated bacterial community were plastic degradation, chemoheterotrophy, and aerobic chemoheterotrophy. Overall, our study expands the current understanding of zooplankton-bacteria interaction and promotes the combination of two different research fields.
Collapse
Affiliation(s)
- Yongzhi Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Sen Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Fan Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Hao Wen
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lingyun Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Meng Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Xianling Xiang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241002, China
- Correspondence: author:
| |
Collapse
|