1
|
Mazzella V, Zahn G, Dell'Anno A, Pons LN. Marine Mycobiomes Colonize Mediterranean Sponge Hosts in a Random Fashion. MICROBIAL ECOLOGY 2025; 88:25. [PMID: 40208324 PMCID: PMC11985663 DOI: 10.1007/s00248-025-02523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Marine sponges are widespread, sessile, filter-feeding animals, known for living in association with complex prokaryotic communities structured by host species. Though marine fungi are ubiquitous across marine environments, little is known about sponge-associated fungal communities (mycobiome). Indeed, aside from a few studies based on the isolation of fungal strains for biotechnological purposes, little information is available to understand the diversity and structure of sponge mycobiome. Here, a metabarcoding approach based on the ITS1 marker was applied to examine the structure and composition of fungal communities associated with four Mediterranean sponges. The species: Petrosia ficiformis, Chondrosia reniformis, Crambe crambe, and Chondrilla nucula were analyzed along with the surrounding seawater, revealing Aspergillus (1-56%), Cladosporium (1-75%), Malassezia (1-38.5%), and Pennicillium (1.5-36%) as the most represented fungal genera. Our data showed high intra-specific variability and no clear core mycobiome within each of the sponge species host, suggesting stochastic and perhaps transient community membership. This study sheds light on one of the most abundant yet least understood components of the marine ecosystem. Unraveling the dynamics of fungal interactions within sponge holobionts is essential to advance our understanding of their ecological roles and functions. By addressing the enigmatic nature of sponge-associated fungi, this research opens new avenues for exploring their contributions to marine ecosystems and resolving the many unanswered questions in this field.
Collapse
Affiliation(s)
- Valerio Mazzella
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Ischia, Naples, 80077, Italy.
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy.
| | - Geoffrey Zahn
- Biology Department, Utah Valley University, 800 W University Parkway SB243c, Orem, UT 84058, USA
| | - Antonio Dell'Anno
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Laura Núñez Pons
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy.
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy.
| |
Collapse
|
2
|
Lee W, Kim JS, Jo S, Seo CW, Lim YW. Taxonomic Study of Sixteen Unrecorded and Five New Species of Hypocreales from the Korean Marine Environment. MYCOBIOLOGY 2025; 53:144-167. [PMID: 40098940 PMCID: PMC11912256 DOI: 10.1080/12298093.2024.2418664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 03/19/2025]
Abstract
The order Hypocreales, which belongs to the Ascomycota class Sordariomycetes, has a large number of species and occupies a variety of ecological niches, including saprophytic, symbiotic, and parasitic fungi. While much research has focused on terrestrial Hypocrealean fungi, there remains a significant gap in our understanding of their diversity and ecological roles in marine environments. In this study, we isolated 47 fungal strains from various marine habitats in South Korea. Through the polyphasic study, including phylogenetic analysis using multi-genetic markers (ITS, LSU, TEF1, RPB2, TUB, and ACT) and morphological analysis, we identified 21 species previously undiscovered in Korea, including 5 new and 16 unrecorded species. Our findings illustrate the species diversity of marine Hypocreales, highlighting the need for additional research into their ecological functions and potential in biotechnology and medicine.
Collapse
Affiliation(s)
- Wonjun Lee
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Korea
| | - Ji Seon Kim
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Korea
| | - Sumin Jo
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Korea
| | - Chang Wan Seo
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Varghese S, Jisha M, Rajeshkumar K, Gajbhiye V, Alrefaei AF, Jeewon R. Endophytic fungi: A future prospect for breast cancer therapeutics and drug development. Heliyon 2024; 10:e33995. [PMID: 39091955 PMCID: PMC11292557 DOI: 10.1016/j.heliyon.2024.e33995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Globally, breast cancer is a primary contributor to cancer-related fatalities and illnesses among women. Consequently, there is a pressing need for safe and effective treatments for breast cancer. Bioactive compounds from endophytic fungi that live in symbiosis with medicinal plants have garnered significant interest in pharmaceutical research due to their extensive chemical composition and prospective medicinal attributes. This review underscores the potentiality of fungal endophytes as a promising resource for the development of innovative anticancer agents specifically tailored for breast cancer therapy. The diversity of endophytic fungi residing in medicinal plants, success stories of key endophytic bioactive metabolites tested against breast cancer and the current progress with regards to in vivo studies and clinical trials on endophytic fungal metabolites in breast cancer research forms the underlying theme of this article. A thorough compilation of putative anticancer compounds sourced from endophytic fungi that have demonstrated therapeutic potential against breast cancer, spanning the period from 1990 to 2022, has been presented. This review article also outlines the latest trends in endophyte-based drug discovery, including the use of artificial intelligence, machine learning, multi-omics approaches, and high-throughput strategies. The challenges and future prospects associated with fungal endophytes as substitutive sources for developing anticancer drugs targeting breast cancer are also being highlighted.
Collapse
Affiliation(s)
- Sherin Varghese
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - M.S. Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - K.C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Gr., Agharkar Research Institute, G.G. Agharkar Road, Pune, 411 004, Maharashtra, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, G.G. Agharkar Road, Pune, 411 004, Maharashtra, India
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rajesh Jeewon
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| |
Collapse
|
4
|
Bonito G. Ecology and evolution of algal-fungal symbioses. Curr Opin Microbiol 2024; 79:102452. [PMID: 38461593 DOI: 10.1016/j.mib.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/12/2024]
Abstract
Ecological interactions and symbiosis between algae and fungi are ancient, widespread, and diverse with many independent origins. The heterotrophic constraint on fungal nutrition drives fungal interactions with autotrophic organisms, including algae. While ancestors of modern fungi may have evolved as parasites of algae, there remains a latent ability in algae to detect and respond to fungi through a range of symbioses that are witnessed today in the astounding diversity of lichens, associations with corticoid and polypore fungi, and endophytic associations with macroalgae. Research into algal-fungal interactions and biotechnological innovation have the potential to improve our understanding of their diversity and functions in natural systems, and to harness this knowledge to develop sustainable and novel approaches for producing food, energy, and bioproducts.
Collapse
Affiliation(s)
- Gregory Bonito
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Markussen Bjorbaekmo MF, Brodie J, Krabberød AK, Logares R, Fuss J, Fredriksen S, Wold-Dobbe A, Shalchian-Tabrizi K, Bass D. 18S rDNA gene metabarcoding of microeukaryotes and epi-endophytes in the holobiome of seven species of large brown algae. JOURNAL OF PHYCOLOGY 2023; 59:859-878. [PMID: 37726938 DOI: 10.1111/jpy.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/21/2023]
Abstract
Brown algae (Phaeophyceae) are habitat-forming species in coastal ecosystems and include kelp forests and seaweed beds that support a wide diversity of marine life. Host-associated microbial communities are an integral part of phaeophyte biology, and whereas the bacterial microbial partners have received considerable attention, the microbial eukaryotes associated with brown algae have hardly been studied. Here, we used broadly targeted "pan-eukaryotic" primers (metabarcoding) to investigate brown algal-associated eukaryotes (the eukaryome). Using this approach, we aimed to investigate the eukaryome of seven large brown algae that are important and common species in coastal ecosystems. We also aimed to assess whether these macroalgae harbor novel eukaryotic diversity and to ascribe putative functional roles to the host-associated eukaryome based on taxonomic affiliation and phylogenetic placement. We detected a significant diversity of microeukaryotic and algal lineages associated with the brown algal species investigated. The operational taxonomic units (OTUs) were taxonomically assigned to 10 of the eukaryotic major supergroups, including taxonomic groups known to be associated with seaweeds as epibionts, endobionts, parasites, and commensals. Additionally, we revealed previously unrecorded sequence types, including novel phaeophyte OTUs, particularly in the Fucus spp. samples, that may represent fucoid genomic variants, sequencing artifacts, or undescribed epi-/endophytes. Our results provide baseline data and technical insights that will be useful for more comprehensive seaweed eukaryome studies investigating the evidently lineage-rich and functionally diverse symbionts of brown algae.
Collapse
Affiliation(s)
- Marit F Markussen Bjorbaekmo
- Norwegian Institute for Water Research (NIVA), Section for Marine Biology, Oslo, Norway
- Natural History Museum (NHM), Science, London, UK
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | | | - Anders K Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Janina Fuss
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - Stein Fredriksen
- Department of Biosciences, Section for Aquatic Biology and Toxicology (AQUA), University of Oslo, Oslo, Norway
| | - Anders Wold-Dobbe
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - Kamran Shalchian-Tabrizi
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - David Bass
- Natural History Museum (NHM), Science, London, UK
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Dorset, UK
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
6
|
Yao H, Liu S, Liu T, Ren D, Yang Q, Zhou Z, Mao J. Screening of marine sediment-derived microorganisms and their bioactive metabolites: a review. World J Microbiol Biotechnol 2023; 39:172. [PMID: 37115432 DOI: 10.1007/s11274-023-03621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Marine sediments are one of the largest habitats on Earth, and their unique ecology, such as high salinity, high pressure, and hypoxia, may activate certain silent genes in marine microbes, resulting in microbes, enzymes, active products, and specific metabolic pathways that can adapt to these specific ecological environments. Marine sediment-derived microorganisms and their bioactive metabolites are of great significance and have potential commercial development prospects for food, pharmaceutical, chemical industries, agriculture, environmental protection and human nutrition and health. In recent years, although there have been numerous scientific reports surrounding marine sediment-derived microorganisms and their bioactive metabolites, a comprehensive review of their research progress is lacking. This paper presents the development and renewal of traditional culture-dependent and omics analysis techniques and their application to the screening of marine sediment-derived microorganisms producing bioactive substances. It also highlights recent research advances in the last five years surrounding the types, functional properties and potential applications of bioactive metabolites produced by marine sediment-derived microorganisms. These bioactive metabolites mainly include antibiotics, enzymes, enzyme inhibitors, sugars, proteins, peptides, and some other small molecule metabolites. In addition, the review ends with concluding remarks on the challenges and future directions for marine sediment-derived microorganisms and their bioactive metabolites. The review report not only helps to deepen the understanding of marine sediment-derived microorganisms and their bioactive metabolites, but also provides some useful information for the exploitation and utilization of marine microbial resources and the mining of new compounds with potential functional properties.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|