1
|
Hofmann W, Orthofer M, Salas Wallach N, Ruddyard A, Ungerank M, Paulik C, Rittmann SKMR. Method for automated high performance closed batch cultivation of gas-utilizing methanogens. AMB Express 2025; 15:67. [PMID: 40301238 PMCID: PMC12040808 DOI: 10.1186/s13568-025-01872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
To advance the utilization of microbial cell factories in gas fermentation processes, their physiological and biotechnological characteristics must be understood. Here, we report on the construction and operation of a novel device, the Gas and Pressure Controller (GPC), which is specifically designed for the automated control of the headspace gas pressure of closed cultivation bottles and facilitates automated gassing, sparging, monitoring and regulation of the headspace volume operated in closed batch cultivation mode in real time.As proof of concept, the physiological and biotechnological characteristics of four autotrophic, hydrogenotrophic methanogenic archaea were examined to quantify novel physiological limits through the elimination of gas limitation during growth and methane formation. We determined unprecedented high maximum specific methane productivity (qCH4) values for: Methanothermobacter marburgensis of 169.59 ± 12.52 mmol g- 1 h- 1, Methanotorris igneus of 420.21 ± 89.46 mmol g- 1 h- 1, Methanocaldococcus jannaschii of 364.52 ± 25.50 mmol g- 1 h- 1 and Methanocaldococcus villosus of 356.38 ± 20.79 mmol g- 1 h- 1. Obtained qCH4 of M. marburgensis is more than 10-fold higher compared to conventional closed batch cultivation set-ups and as high as the highest reported qCH4 value of M. marburgensis from fed-batch gas fermentation in stirred tank bioreactors. Furthermore, the GPC demonstrated reliable functionality with Methanococcus maripaludis, operating safely and autonomous during long term cultivation. This novel device enables optimal headspace pressure control, providing flexibility in application for various gas-fermenting biotechnological processes. It facilitates near optimal cultivation conditions in semi-continuous closed batch cultivation mode, the analysis of limiting factors in high-throughput experimental design and allows for automated biomass production of autotrophic, hydrogenotrophic methanogens.
Collapse
Affiliation(s)
- Walter Hofmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030, Wien, Austria
- Acib GmbH, Wien, Austria
| | - Marco Orthofer
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria
| | - Nicolás Salas Wallach
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030, Wien, Austria
- Acib GmbH, Wien, Austria
| | - Aquilla Ruddyard
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030, Wien, Austria
| | | | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030, Wien, Austria.
| |
Collapse
|
2
|
Di Z, Wang Y, Zhang E, Zhang Y, Bao Y, Zhao K, Wang Z, He S, Xiang Y. The Mechanism Underlying Enhanced Coal-to-Methane Conversion in Anaerobic Digestion With Betaine Supplementation. Biotechnol J 2025; 20:e70028. [PMID: 40285382 DOI: 10.1002/biot.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Anaerobic digestion (AD) of coal-to-methane technology represents a promising energy conversion method that not only reduces environmental pollution but also contributes to sustainable development. However, low methane conversion efficiency remains a major challenge. This study investigates the use of betaine, a green and environmentally friendly alkaloid, to enhance the AD process of coal. Our results demonstrate that betaine supplementation increases the relative abundance of key microbial populations, including Petrimonas, Desulfitibacter, Methanoculleus, and Methanosarcina, while also improving cell membrane permeability. Three-dimensional fluorescence characterization reveals elevated secretion of bacterial metabolites, leading to increased protein concentrations and enhanced enzymatic activity in the liquid phase. Moreover, the content of alkane compounds in the liquid phase increases, further confirming the enhanced conversion of coal to biological methane. In conclusion, betaine supplementation significantly improves coal AD efficiency, providing a novel approach to optimize coal fermentation and biological energy conversion.
Collapse
Affiliation(s)
- Zhiting Di
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Enxi Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Ye Zhang
- School of Pharmacy, Xi'an Medical University, Xi'an, China
| | - Yuan Bao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, China
| | - Kaile Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Zhigang Wang
- College of Energy Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Shihua He
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Yanxin Xiang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| |
Collapse
|
3
|
Buan NR, Metcalf WW. Transcriptional response of Methanosarcina acetivorans to repression of the energy-conserving methanophenazine: CoM-CoB heterodisulfide reductase enzyme HdrED. Microbiol Spectr 2024; 12:e0095724. [PMID: 39472004 PMCID: PMC11619418 DOI: 10.1128/spectrum.00957-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/10/2024] [Indexed: 12/08/2024] Open
Abstract
Methane-producing archaea are key organisms in the anaerobic carbon cycle. These organisms, also called methanogens, grow by converting substrate to methane gas in a process called methanogenesis. Previous research showed that the reduction of the terminal electron acceptor is the rate-limiting step in methanogenesis by Methanosarcina acetivorans. In order to gain insight into how the cells sense and respond to the availability of the terminal electron acceptor, we designed an experiment to deplete cells of the essential terminal oxidase enzyme, HdrED. We found that the depletion of HdrED in vivo results in a higher abundance of transcripts for methyltransferases (mtaC2, mtaB3, mtaC3), coenzyme B biosynthesis, C1 metabolism, and pyrimidine compounds. In most cases, these changes were distinct from transcript abundance changes observed during the transition from exponential growth to stationary phase cultures. These data implicate the methylotrophic methanogenesis regulator MsrC (MA4383) in CoM-S-S-CoB heterodisulfide sensing and indicate cells have a specific mechanism to sense intracellular ratio of CoM-S-S-CoB, coenzyme M, and coenzyme B thiols and further suggest transcripts encoding translation and methanogenesis functions are controlled by feed-forward regulation depending on substrate availability.IMPORTANCEMethanosarcina is an emerging model archaeon and synthetic biology platform for the production of renewable energy and sustainable chemicals to reduce dependence on petroleum. Research into metabolic networks and gene regulation in this organism and other methanogens will inform genome-scale metabolic modeling and microbial function prediction in uncultured or non-model anaerobes and archaea. This study suggests methanogens use unknown mechanisms to efficiently couple methanogenesis to gene regulation via CoM-S-S-CoB and ATP availability.
Collapse
Affiliation(s)
- Nicole R. Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - William W. Metcalf
- Department of Microbiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Mühling L, Baur T, Molitor B. Methanothermobacter thermautotrophicus and Alternative Methanogens: Archaea-Based Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39363002 DOI: 10.1007/10_2024_270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Methanogenic archaea convert bacterial fermentation intermediates from the decomposition of organic material into methane. This process has relevance in the global carbon cycle and finds application in anthropogenic processes, such as wastewater treatment and anaerobic digestion. Furthermore, methanogenic archaea that utilize hydrogen and carbon dioxide as substrates are being employed as biocatalysts for the biomethanation step of power-to-gas technology. This technology converts hydrogen from water electrolysis and carbon dioxide into renewable natural gas (i.e., methane). The application of methanogenic archaea in bioproduction beyond methane has been demonstrated in only a few instances and is limited to mesophilic species for which genetic engineering tools are available. In this chapter, we discuss recent developments for those existing genetically tractable systems and the inclusion of novel genetic tools for thermophilic methanogenic species. We then give an overview of recombinant bioproduction with mesophilic methanogenic archaea and thermophilic non-methanogenic microbes. This is the basis for discussing putative products with thermophilic methanogenic archaea, specifically the species Methanothermobacter thermautotrophicus. We give estimates of potential conversion efficiencies for those putative products based on a genome-scale metabolic model for M. thermautotrophicus.
Collapse
Affiliation(s)
- Lucas Mühling
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Tina Baur
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Dinh TA, Allen KD. Toward the Use of Methyl-Coenzyme M Reductase for Methane Bioconversion Applications. Acc Chem Res 2024; 57:2746-2757. [PMID: 39190795 PMCID: PMC11411713 DOI: 10.1021/acs.accounts.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
As the main component of natural gas and renewable biogas, methane is an abundant, affordable fuel. Thus, there is interest in converting these methane reserves into liquid fuels and commodity chemicals, which would contribute toward mitigating climate change, as well as provide potentially sustainable routes to chemical production. Unfortunately, specific activation of methane for conversion into other molecules is a difficult process due to the unreactive nature of methane C-H bonds. The use of methane activating enzymes, such as methyl-coenzyme M reductase (MCR), may offer a solution. MCR catalyzes the methane-forming step of methanogenesis in methanogenic archaea (methanogens), as well as the initial methane oxidation step during the anaerobic oxidation of methane (AOM) in anaerobic methanotrophic archaea (ANME). In this Account, we highlight our contributions toward understanding MCR catalysis and structure, focusing on features that may tune the catalytic activity. Additionally, we discuss some key considerations for biomanufacturing approaches to MCR-based production of useful compounds. MCR is a complex enzyme consisting of a dimer of heterotrimers with several post-translational modifications, as well as the nickel-hydrocorphin prosthetic group, known as coenzyme F430. Since MCR is difficult to study in vitro, little information is available regarding which MCRs have ideal catalytic properties. To investigate the role of the MCR active site electronic environment in promoting methane synthesis, we performed electric field calculations based on molecular dynamics simulations with a MCR from Methanosarcina acetivorans and an ANME-1 MCR. Interestingly, the ANME-1 MCR active site better optimizes the electric field with methane formation substrates, indicating that it may have enhanced catalytic efficiency. Our lab has also worked toward understanding the structures and functions of modified F430 coenzymes, some of which we have discovered in methanogens. We found that methanogens produce modified F430s under specific growth conditions, and we hypothesize that these modifications serve to fine-tune the activity of MCR. Due to the complexity of MCR, a methanogen host is likely the best near-term option for biomanufacturing platforms using methane as a C1 feedstock. M. acetivorans has well-established genetic tools and has already been used in pilot methane oxidation studies. To make methane oxidation energetically favorable, extracellular electron acceptors are employed. This electron transfer can be facilitated by carbon-based materials. Interestingly, our analyses of AOM enrichment cultures and pure methanogen cultures revealed the biogenic production of an amorphous carbon material with similar characteristics to activated carbon, thus highlighting the potential use of such materials as conductive elements to enhance extracellular electron transfer. In summary, the possibilities for sustainable MCR-based methane conversions are exciting, but there are still some challenges to tackle toward understanding and utilizing this complex enzyme in efficient methane oxidation biomanufacturing processes. Additionally, further work is necessary to optimize bioengineered MCR-containing host organisms to produce large quantities of desired chemicals.
Collapse
Affiliation(s)
- Thuc-Anh Dinh
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Karlicki M, Bednarska A, Hałakuc P, Maciszewski K, Karnkowska A. Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning. FEMS Microbiol Ecol 2024; 100:fiae104. [PMID: 39039016 DOI: 10.1093/femsec/fiae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.
Collapse
Affiliation(s)
- Michał Karlicki
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Bednarska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
7
|
Gaspari M, Ghiotto G, Centurion VB, Kotsopoulos T, Santinello D, Campanaro S, Treu L, Kougias PG. Decoding Microbial Responses to Ammonia Shock Loads in Biogas Reactors through Metagenomics and Metatranscriptomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:591-602. [PMID: 38112274 PMCID: PMC10785759 DOI: 10.1021/acs.est.3c07840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
The presence of elevated ammonia levels is widely recognized as a significant contributor to process inhibition in biogas production, posing a common challenge for biogas plant operators. The present study employed a combination of biochemical, genome-centric metagenomic and metatranscriptomic data to investigate the response of the biogas microbiome to two shock loads induced by single pulses of elevated ammonia concentrations (i.e., 1.5 g NH4+/LR and 5 g NH4+/LR). The analysis revealed a microbial community of high complexity consisting of 364 Metagenome Assembled Genomes (MAGs). The hydrogenotrophic pathway was the primary route for methane production during the entire experiment, confirming its efficiency even at high ammonia concentrations. Additionally, metatranscriptomic analysis uncovered a metabolic shift in the methanogens Methanothrix sp. MA6 and Methanosarcina flavescens MX5, which switched their metabolism from the acetoclastic to the CO2 reduction route during the second shock. Furthermore, multiple genes associated with mechanisms for maintaining osmotic balance in the cell were upregulated, emphasizing the critical role of osmoprotection in the rapid response to the presence of ammonia. Finally, this study offers insights into the transcriptional response of an anaerobic digestion community, specifically focusing on the mechanisms involved in recovering from ammonia-induced stress.
Collapse
Affiliation(s)
- Maria Gaspari
- Soil
and Water Resources Institute, Hellenic Agricultural Organisation
Dimitra, Thermi, Thessaloniki 57001, Greece
- Department
of Hydraulics, Soil Science and Agricultural Engineering, School of
Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Gabriele Ghiotto
- Department
of Biology, University of Padova, Padova 35121, Italy
| | | | - Thomas Kotsopoulos
- Department
of Hydraulics, Soil Science and Agricultural Engineering, School of
Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | - Laura Treu
- Department
of Biology, University of Padova, Padova 35121, Italy
| | - Panagiotis G. Kougias
- Soil
and Water Resources Institute, Hellenic Agricultural Organisation
Dimitra, Thermi, Thessaloniki 57001, Greece
| |
Collapse
|
8
|
Abdel Azim A, Vizzarro A, Bellini R, Bassani I, Baudino L, Pirri CF, Verga F, Lamberti A, Menin B. Perspective on the use of methanogens in lithium recovery from brines. Front Microbiol 2023; 14:1233221. [PMID: 37601371 PMCID: PMC10434214 DOI: 10.3389/fmicb.2023.1233221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Methanogenic archaea stand out as multipurpose biocatalysts for different applications in wide-ranging industrial sectors due to their crucial role in the methane (CH4) cycle and ubiquity in natural environments. The increasing demand for raw materials required by the manufacturing sector (i.e., metals-, concrete-, chemicals-, plastic- and lubricants-based industries) represents a milestone for the global economy and one of the main sources of CO2 emissions. Recovery of critical raw materials (CRMs) from byproducts generated along their supply chain, rather than massive mining operations for mineral extraction and metal smelting, represents a sustainable choice. Demand for lithium (Li), included among CRMs in 2023, grew by 17.1% in the last decades, mostly due to its application in rechargeable lithium-ion batteries. In addition to mineral deposits, the natural resources of Li comprise water, ranging from low Li concentrations (seawater and freshwater) to higher ones (salt lakes and artificial brines). Brines from water desalination can be high in Li content which can be recovered. However, biological brine treatment is not a popular methodology. The methanogenic community has already demonstrated its ability to recover several CRMs which are not essential to their metabolism. Here, we attempt to interconnect the well-established biomethanation process with Li recovery from brines, by analyzing the methanogenic species which may be suitable to grow in brine-like environments and the corresponding mechanism of recovery. Moreover, key factors which should be considered to establish the techno-economic feasibility of this process are here discussed.
Collapse
Affiliation(s)
- Annalisa Abdel Azim
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Arianna Vizzarro
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Ruggero Bellini
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Ilaria Bassani
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Luisa Baudino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Francesca Verga
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Lamberti
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Barbara Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Milan, Italy
| |
Collapse
|