1
|
Miranda A, Baptista B, Figueira M, Sousa F, Maia CJ, Socorro S, Cruz C. Sensitive fluorescent detection of SARS-CoV-2 RNA using an enzymatic-based method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125766. [PMID: 39879958 DOI: 10.1016/j.saa.2025.125766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Rapid, quantitative, and sensitive detection of viral oligonucleotides can help to diagnose the infection before symptoms occur, monitor disease progression, and identify viral subtypes. A one-pot, simple, rapid hairpin-mediated nicking enzymatic signal amplification (HNESA) method was previously developed for nucleic acids detection. In the present work, this method was applied for the detection of SARS-CoV-2 RNA by designing an assistant probe (AP) that contains the complementary sequence for the target, the sequence of hybridization with the loop region of the molecular beacon (MB), and the recognition site of the nicking endonuclease Nt.BstNBI. MB sequences (MB1 and MB2) were also designed and optimized in length and nucleotide composition. MB2 significantly amplified the fluorescence signal of the target sequence. The linear range was from 0.1 to 1 nM with a detection limit of 170.6 pM. Results can be obtained within 45 min, considering that the cyclic amplification involves only one AP and one MB. Based on this, the use of HNESA for diagnosing viral diseases, such as SARS-CoV-2, could be a complementary approach to polymerase chain reaction (PCR), and it is a technique that is quick, efficient and has high sensitivity.
Collapse
Affiliation(s)
- André Miranda
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama 6201-001 Covilhã, Portugal
| | - Bruno Baptista
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama 6201-001 Covilhã, Portugal
| | - Marília Figueira
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique 6200-506 Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique 6200-506 Covilhã, Portugal
| | - Cláudio J Maia
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique 6200-506 Covilhã, Portugal
| | - Silvia Socorro
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique 6200-506 Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama 6201-001 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama 6201-001 Covilhã, Portugal.
| |
Collapse
|
2
|
Zhou S, Zhao X, Meng F. Method development and clinical validation of LAMP-CRISPR/Cas12a for rapid detection of respiratory pathogens in children. Front Pediatr 2025; 13:1533100. [PMID: 40292114 PMCID: PMC12021640 DOI: 10.3389/fped.2025.1533100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background Respiratory tract infections pose a substantial health burden, particularly among pediatric populations globally. The timely and accurate identification of pathogens such as Streptococcus pneumoniae (SP) and Mycoplasma pneumoniae (MP) is critical for effective clinical management. Methods In this study, a novel diagnostic approach combining loop-mediated isothermal amplification (LAMP) with CRISPR-Cas12a technology was developed for detecting SP and MP in clinical respiratory samples. A total of 23 specimens, including bronchoalveolar lavage fluid and nasopharyngeal swab samples, were assessed to evaluate the feasibility and performance of the method. After nucleic acid extraction, samples underwent LAMP amplification followed by CRISPR-Cas12a-mediated fluorescence detection. Results The LAMP-CRISPR/Cas12a method demonstrated high sensitivity and specificity for SP detection. It exhibited excellent sensitivity for SP and promising specificity for MP. Comparative analysis with standard diagnostic methods highlighted its potential to enhance diagnostic accuracy and efficiency. The assay provided results within 1 h, which is suitable for rapid point-of-care testing. Conclusion The integrated LAMP-CRISPR/Cas12a approach represents a significant advancement in detecting respiratory pathogens in clinical settings. It offers a rapid, sensitive, and specific diagnostic tool for identifying SP and MP, which is crucial for guiding precision therapies and improving patient outcomes. Future research aims to optimize assay sensitivity, streamline workflow to minimize contamination risks, and expand its detection scope so that other types of pathogens and mutation resistance genes can be detected. This molecular diagnostic strategy holds promise for the management of respiratory infections by enabling early and precise pathogen identification.
Collapse
Affiliation(s)
- Siyan Zhou
- Pediatric Department of Respiration, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xin Zhao
- Pediatric Department of Respiration, The First Bethune Hospital of Jilin University, Changchun, China
| | - Fanzheng Meng
- Pediatric Department of Respiration, The First Bethune Hospital of Jilin University, Changchun, China
- Department of Pediatric Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Cao Y, Yan D, Zhou H, Han K, Wan Q, Peng J, Zheng H, Lin L, Yan F, Song X. Achieving precise dual detection: One-tube reverse transcription-recombinase aided amplification (RT-RAA) combined with lateral flow strip (LFS) assay for RNA and DNA target genes from pepper mild mottle virus and Colletotrichum species in crude plant samples. Talanta 2025; 281:126908. [PMID: 39303325 DOI: 10.1016/j.talanta.2024.126908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Ensuring the detection sensitivity of both RNA-derived and DNA-derived target genes in a single reaction has posed a significant challenge for on-site detection of plant pathogens. This challenge was addressed by developing a one-tube dual RT-RAA assay combined with LFS for the rapid on-site detection of pepper mild mottle virus (PMMoV) and four Colletotrichum species causing anthracnose in Solanaceous crops. By testing four different combinations of primer groups, two combinations were precisely adjusted within the dual RT-RAA system to balance amplification efficiency and maintain consistent levels of amplification in crude plant samples. Utilizing commercially accessible small-scale equipment and following a streamlined optimization strategy, the assay achieved a limit of detection of 0.32 copies/μL of target genes in the reaction. Importantly, it demonstrated no cross-reactivity with other plant pathogens, thereby affirming the high sensitivity and specificity of the developed dual RT-RAA-LFS detection assay. Moreover, the entire process took only 25 min from sample collection to the visible presentation of results. The assay was validated with 60 field samples and 10 seed samples, producing results consistent with reverse transcription quantitative polymerase chain reaction (RT-qPCR). Notably, it successfully detected PMMoV in systemic leaves without visible symptoms three days post-inoculation, underscoring its effectiveness in early disease detection. This streamlined strategy offers a valuable approach for rapid, low-cost, and highly sensitive on-site simultaneous detection of RNA genome-contained PMMoV and DNA genome-contained Colletotrichum species.
Collapse
Affiliation(s)
- Yuhao Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Dankan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Huijie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Qionglian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xuemei Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Min YH, Hong Y, Kim CH, Lee KH, Shin YB, Byun JY. Split Probe-Induced Protein Translational Amplification for Nucleic Acid Detection. ACS APPLIED BIO MATERIALS 2024; 7:8389-8397. [PMID: 39546461 DOI: 10.1021/acsabm.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Nucleic acid detection is important in a wide range of applications, including disease diagnosis, genetic testing, biotechnological research, environmental monitoring, and forensic science. However, the application of nucleic acid detection in various fields is hindered by the lack of sensitive, accurate, and inexpensive methods. This study introduces a simple approach to enhance the sensitivity for the accurate detection of nucleic acids. Our approach combined a split-probe strategy with in vitro translational amplification of reporter protein for signal generation to detect nucleic acids with high sensitivity and selectivity. This approach enables target-mediated translational amplification of reporter proteins by linking split probes in the presence of a target microRNA (miRNA). In particular, the fluorescence split-probe sensor adopts a reporter protein with various fluorescence wavelength regions, enabling the simultaneous detection of multiple target miRNAs. Moreover, luminescence detection by merely altering the reporter protein sequence can substantially enhance the sensitivity of detection of target miRNAs. Using this system, we analyzed and quantified target miRNAs in the total RNA extracted from cell lines and cell-derived extracellular vesicles with high specificity and accuracy. This split-probe sensor has potential as a powerful tool for the simple, sensitive, and specific detection of various target nucleic acids.
Collapse
Affiliation(s)
- Yoo-Hong Min
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Yoonseo Hong
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Kyung-Ho Lee
- Apteasy MJ Inc., 333 Cheomdangwagi-ro, Technopark, Gwangju 61008, Korea
| | - Yong-Beom Shin
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34109, Korea
| | - Ju-Young Byun
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Lu Z, Wang X, Chen J. AI-empowered visualization of nucleic acid testing. Life Sci 2024; 359:123209. [PMID: 39488264 DOI: 10.1016/j.lfs.2024.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
AIMS The visualization of nucleic acid testing (NAT) results plays a critical role in diagnosing and monitoring infectious and genetic diseases. The review aims to review the current status of AI-based NAT result visualization. It systematically introduces commonly used AI-based methods and techniques for NAT, emphasizing the importance of result visualization for accessible, clear, and rapid interpretation. This highlights the importance of developing a NAT visualization platform that is user-friendly and efficient, setting a clear direction for future advancements in making nucleic acid testing more accessible and effective for everyday applications. METHOD This review explores both the commonly used NAT methods and AI-based techniques for NAT result visualization. The focus then shifts to AI-based methodologies, such as color detection and result interpretation through AI algorithms. The article presents the advantages and disadvantages of these techniques, while also comparing the performance of various NAT platforms in different experimental contexts. Furthermore, it explores the role of AI in enhancing the accuracy, speed, and user accessibility of NAT results, highlighting visualization technologies adapted from other fields of experimentation. SIGNIFICANCE This review offers valuable insights for researchers and everyday users, aiming to develop effective visualization platforms for NAT, ultimately enhancing disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Zehua Lu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 10083, China
| | - Xiaogang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 10083, China.
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 10083, China.
| |
Collapse
|
6
|
Zhu J, Xing F, Li Y, Wu C, Li S, Wang Q, Huang J, Zhang Y, Zheng X, Liu Z, Rao J, Hong R, Tian S, Xiong S, Tan L, Chen X, Li Y, He W, Hong X, Xia J, Zhou Q, Zhang Z. Exploring the causes of variability in quality of oropharyngeal swab sampling for SARS-CoV-2 nucleic acid testing and proposed improvement measures: a multicenter, double-blind study. Microbiol Spectr 2024; 12:e0156724. [PMID: 39382280 PMCID: PMC11537049 DOI: 10.1128/spectrum.01567-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Although coronavirus disease 2019 (COVID-19) has not been considered a public health emergency of international concern since last year, intermittent regional impacts still persist, and accurate testing remains crucial. Ribonuclease P protein subunit P30 (RPP30) RNA, known for its broad and stable expression in tissue cells, was used to evaluate samples from 10 hospitals with over 3,000 negative nucleic acid tests. The results revealed that the overall pass rate for the collected samples was consistently low and exhibited significant heterogeneity. After reassessing the evaluative effectiveness of RPP30 RNA Ct values from the samples of 132 positive individuals under quarantine observation, it was used to identify factors affecting sampling quality. These factors included different stages ranging from sample collection to PCR processing, various characteristics of both samplers and individuals being sampled, as well as sampling season and location. The results indicated that post-sampling handling had minimal impact, winter and fever clinic samples showed higher quality, whereas children's samples had lower quality. The key finding was that the characteristics of samplers were closely related to sampling quality, emphasizing the role of subjectivity. Quality control warnings led to substantial improvements, confirming this finding. Consequently, although there are various factors during the testing process, the most critical aspect is to improve, supervise, and maintain standardized practices among sampling staff.IMPORTANCEThis study further confirmed the reliability of internal references (IRs) in assessing sample quality, and utilized a large sample IR data to comprehensively and multidimensionally identify significant interference factors in nucleic acid test results. By further reminding and intervening in the subjective practices of specimen collectors, good results could be achieved.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fanfan Xing
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yunzhu Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shasha Li
- Division of Liver Disease, The Second People's Hospital of Fuyang City, Fuyang, China
| | - Qin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinyue Huang
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yafei Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowei Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Zhenjun Liu
- Department of Infectious Diseases, Anqing Municipal Hospital, Anqing, China
| | - Jianguo Rao
- Department of Infectious Diseases, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, China
| | - Rui Hong
- Department of Infectious Diseases, Tongling Municipal Hospital, Tongling, China
| | - Shuilin Tian
- Division of Liver Disease, Traditional Chinese Hospital of LuAn, Anhui University of Traditional Chinese Medicine, Lu'an, China
| | - Shuangyun Xiong
- Department of Infectious Diseases, Funan County People's Hospital, Fuyang, China
| | - Lin Tan
- Division of Liver Disease, The Second People's Hospital of Fuyang City, Fuyang, China
| | - Xinlei Chen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanwu Li
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei He
- Division of Liver Disease, Traditional Chinese Hospital of LuAn, Anhui University of Traditional Chinese Medicine, Lu'an, China
| | - Xiaodan Hong
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianbo Xia
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Ryu JY, Choi TS, Kim KT. Fluorescein-switching-based lateral flow assay for the detection of microRNAs. Org Biomol Chem 2024; 22:8182-8188. [PMID: 39291769 DOI: 10.1039/d4ob01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lateral flow assays (LFAs) are a cost-effective and rapid colorimetric technology that can be effectively used for nucleic acid tests (NATs) in various fields such as medical diagnostics and biotechnology. Given their importance, developing more diverse LFAs that operate through novel working mechanisms is essential for designing highly selective and sensitive NATs and providing insights for designing various practical point-of-care testing (POCT) systems. Herein we report a new type of lateral flow assay (LFA) based on fluorescein-switching, enabled by nucleic acid-templated photooxidation of reduced fluorescein by riboflavin tetraacetate (RFTA). The LFA design leverages the fact that a reduced form of fluorescein, which weakly binds to gold nanoparticle (GNP)-conjugated anti-fluorescein antibodies, is oxidized in the presence of target nucleic acids to yield its native state, which then strongly binds to the antibodies. The study involved designing and optimizing probe sequences to detect miR-6090 and miR-141, which are significant markers for prostate cancer. To minimize background signals of LFAs, sodium borohydride (NaBH4) was specifically introduced as a reducing agent, and detailed procedures were established. The developed LFA system accurately identified low fmol levels of target microRNAs with minimal false positives, all detectable with the naked eye, making the system a promising tool for point-of-care diagnostics.
Collapse
Affiliation(s)
- Ji Young Ryu
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Tae Su Choi
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
8
|
Zhu Y, Zhang M, Jie Z, Guo S, Zhu Z, Tao SC. Strategic nucleic acid detection approaches for diagnosing African swine fever (ASF): navigating disease dynamics. Vet Res 2024; 55:131. [PMID: 39375775 PMCID: PMC11460097 DOI: 10.1186/s13567-024-01386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease caused by African swine fever virus (ASFV) and leads to significant economic losses in the pig farming industry. Given the absence of an effective vaccine or treatment, the mortality rate of ASF is alarmingly close to 100%. Consequently, the ability to rapidly and accurately detect ASFV on site and promptly identify infected pigs is critical for controlling the spread of this pandemic. The dynamics of the ASF virus load and antibody response necessitate the adoption of various detection strategies at different stages of infection, a topic that has received limited attention to date. This review offers detailed guidance for choosing appropriate ASF diagnostic techniques tailored to the clinical manifestations observed from the acute to chronic phases, including asymptomatic cases. We comprehensively summarize and evaluate the latest advancements in ASFV detection methods, such as CRISPR-based diagnostics, biosensors, and microfluidics. Additionally, we address the challenges of false negatives or positives due to ASF variants or the use of injected live attenuated vaccines. This review provides an exhaustive list of diagnostic tests suitable for detecting each stage of symptoms and potential target genes for developing new detection methods. In conclusion, we highlight the current challenges and future directions in ASFV detection, underscoring the need for continued research and innovation in this field.
Collapse
Affiliation(s)
- Yuanshou Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, 200240, China
| | - Shujuan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Pennisi I, Cavuto ML, Miglietta L, Malpartida-Cardenas K, Stringer OW, Mantikas KT, Reid R, Frise R, Moser N, Randell P, Davies F, Bolt F, Barclay W, Holmes A, Georgiou P, Rodriguez-Manzano J. Rapid, Portable, and Electricity-free Sample Extraction Method for Enhanced Molecular Diagnostics in Resource-Limited Settings. Anal Chem 2024; 96:11181-11188. [PMID: 38967089 PMCID: PMC11256010 DOI: 10.1021/acs.analchem.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The COVID-19 pandemic has highlighted the need for rapid and reliable diagnostics that are accessible in resource-limited settings. To address this pressing issue, we have developed a rapid, portable, and electricity-free method for extracting nucleic acids from respiratory swabs (i.e. nasal, nasopharyngeal and buccal swabs), successfully demonstrating its effectiveness for the detection of SARS-CoV-2 in residual clinical specimens. Unlike traditional approaches, our solution eliminates the need for micropipettes or electrical equipment, making it user-friendly and requiring little to no training. Our method builds upon the principles of magnetic bead extraction and revolves around a low-cost plastic magnetic lid, called SmartLid, in combination with a simple disposable kit containing all required reagents conveniently prealiquoted. Here, we clinically validated the SmartLid sample preparation method in comparison to the gold standard QIAamp Viral RNA Mini Kit from QIAGEN, using 406 clinical isolates, including 161 SARS-CoV-2 positives, using the SARS-CoV-2 RT-qPCR assays developed by the US Centers for Disease Control and Prevention (CDC). The SmartLid method showed an overall sensitivity of 95.03% (95% CI: 90.44-97.83%) and a specificity of 99.59% (95% CI: 97.76-99.99%), with a positive agreement of 97.79% (95% CI: 95.84-98.98%) when compared to QIAGEN's column-based extraction method. There are clear benefits to using the SmartLid sample preparation kit: it enables swift extraction of viral nucleic acids, taking less than 5 min, without sacrificing significant accuracy when compared to more expensive and time-consuming alternatives currently available on the market. Moreover, its simplicity makes it particularly well-suited for the point-of-care where rapid results and portability are crucial. By providing an efficient and accessible means of nucleic acid extraction, our approach aims to introduce a step-change in diagnostic capabilities for resource-limited settings.
Collapse
Affiliation(s)
- Ivana Pennisi
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, London SW72AZ, U.K.
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College, London SW72BT, U.K.
| | - Matthew L. Cavuto
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, London SW72AZ, U.K.
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College, London SW72BT, U.K.
| | - Luca Miglietta
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, London SW72AZ, U.K.
| | | | - Oliver W. Stringer
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, London SW72AZ, U.K.
| | - Katerina-Theresa Mantikas
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College, London SW72BT, U.K.
| | - Ruth Reid
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, London SW72AZ, U.K.
| | - Rebecca Frise
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, London SW72AZ, U.K.
| | - Nicolas Moser
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College, London SW72BT, U.K.
| | - Paul Randell
- Department
of Infectious Diseases, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London W6 8RP, U.K.
| | - Frances Davies
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, London SW72AZ, U.K.
- Department
of Infectious Diseases, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London W6 8RP, U.K.
| | - Frances Bolt
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, London SW72AZ, U.K.
| | - Wendy Barclay
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, London SW72AZ, U.K.
| | - Alison Holmes
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, London SW72AZ, U.K.
| | - Pantelis Georgiou
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College, London SW72BT, U.K.
| | - Jesus Rodriguez-Manzano
- Department
of Infectious Disease, Faculty of Medicine, Imperial College London, London SW72AZ, U.K.
| |
Collapse
|
10
|
Tekin YS, Kul SM, Sagdic O, Rodthongkum N, Geiss B, Ozer T. Optical biosensors for diagnosis of COVID-19: nanomaterial-enabled particle strategies for post pandemic era. Mikrochim Acta 2024; 191:320. [PMID: 38727849 PMCID: PMC11087243 DOI: 10.1007/s00604-024-06373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
The COVID-19 pandemic underlines the need for effective strategies for controlling virus spread and ensuring sensitive detection of SARS-CoV-2. This review presents the potential of nanomaterial-enabled optical biosensors for rapid and low-cost detection of SARS-CoV-2 biomarkers, demonstrating a comprehensive analysis including colorimetric, fluorescence, surface-enhanced Raman scattering, and surface plasmon resonance detection methods. Nanomaterials including metal-based nanomaterials, metal-organic frame-based nanoparticles, nanorods, nanoporous materials, nanoshell materials, and magnetic nanoparticles employed in the production of optical biosensors are presented in detail. This review also discusses the detection principles, fabrication methods, nanomaterial synthesis, and their applications for the detection of SARS-CoV-2 in four categories: antibody-based, antigen-based, nucleic acid-based, and aptamer-based biosensors. This critical review includes reports published in the literature between the years 2021 and 2024. In addition, the review offers critical insights into optical nanobiosensors for the diagnosis of COVID-19. The integration of artificial intelligence and machine learning technologies with optical nanomaterial-enabled biosensors is proposed to improve the efficiency of optical diagnostic systems for future pandemic scenarios.
Collapse
Affiliation(s)
- Yusuf Samil Tekin
- Department of Biomedical Engineering, Graduate Education Institute, Malatya Turgut Ozal University, 44210, Battalgazi, Malatya, Turkey
| | - Seyda Mihriban Kul
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Bangkok, 10330, Patumwan, Thailand
| | - Brian Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1019, USA.
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220, Istanbul, Turkey.
| |
Collapse
|
11
|
Zhi S, Wu W, Ding Y, Zhang Y, Pan L, Liu G, Li W. Development of rapid nucleic acid testing techniques for common respiratory infectious diseases in the Chinese population. Front Chem 2024; 12:1381738. [PMID: 38694405 PMCID: PMC11061412 DOI: 10.3389/fchem.2024.1381738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Background: Most respiratory viruses can cause serious lower respiratory diseases at any age. Therefore, timely and accurate identification of respiratory viruses has become even more important. This study focused on the development of rapid nucleic acid testing techniques for common respiratory infectious diseases in the Chinese population. Methods: Multiplex fluorescent quantitative polymerase chain reaction (PCR) assays were developed and validated for the detection of respiratory pathogens including the novel coronavirus (SARS-CoV-2), influenza A virus (FluA), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). Results: The assays demonstrated high specificity and sensitivity, allowing for the simultaneous detection of multiple pathogens in a single reaction. These techniques offer a rapid and reliable method for screening, diagnosis, and monitoring of respiratory pathogens. Conclusion: The implementation of these techniques might contribute to effective control and prevention measures, leading to improved patient care and public health outcomes in China. Further research and validation are needed to optimize and expand the application of these techniques to a wider range of respiratory pathogens and to enhance their utility in clinical and public health settings.
Collapse
Affiliation(s)
- Shenshen Zhi
- Department of Blood Transfusion, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wenyan Wu
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Yan Ding
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Yuanyuan Zhang
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Liyan Pan
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Guo Liu
- Zeal Dental, Chongqing, China
| | - Wei Li
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
12
|
de Stigter Y, van der Veer HJ, Rosier BJHM, Merkx M. Bioluminescent Intercalating Dyes for Ratiometric Nucleic Acid Detection. ACS Chem Biol 2024; 19:575-583. [PMID: 38315567 PMCID: PMC10877566 DOI: 10.1021/acschembio.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Rapid and sensitive DNA detection methods that can be conducted at the point of need may aid in disease diagnosis and monitoring. However, translation of current assays has proven challenging, as they typically require specialized equipment or probe-specific modifications for every new target DNA. Here, we present Luminescent Multivalent Intercalating Dye (LUMID), off-the-shelf bioluminescent sensors consisting of intercalating dyes conjugated to a NanoLuc luciferase, which allow for nonspecific detection of double-stranded DNA through a blue-to-green color change. Through the incorporation of multiple, tandem-arranged dyes separated by positively charged linkers, DNA-binding affinities were improved by over 2 orders of magnitude, detecting nanomolar DNA concentrations with an 8-fold change in green/blue ratio. We show that LUMID is easily combined with loop-mediated isothermal amplification (LAMP), enabling sequence-specific detection of viral DNA with attomolar sensitivity and a smartphone-based readout. With LUMID, we have thus developed a tool for simple and sensitive DNA detection that is particularly attractive for point-of-need applications.
Collapse
Affiliation(s)
- Yosta de Stigter
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Harmen J. van der Veer
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Bas J. H. M. Rosier
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
13
|
Kim KW, Lee B, Eom S, Shin D, Park C, Kim S, Yi H. Universal primers for rift valley fever virus whole-genome sequencing. Sci Rep 2023; 13:18688. [PMID: 37907670 PMCID: PMC10618441 DOI: 10.1038/s41598-023-45848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease causing acute hemorrhagic fever. Accurate identification of mutations and phylogenetic characterization of RVF virus (RVFV) require whole-genome analysis. Universal primers to amplify the entire RVFV genome from clinical samples with low copy numbers are currently unavailable. Thus, we aimed to develop universal primers applicable for all known RVFV strains. Based on the genome sequences available from public databases, we designed eight pairs of universal PCR primers covering the entire RVFV genome. To evaluate primer universality, four RVFV strains (ZH548, Kenya 56 (IB8), BIME-01, and Lunyo), encompassing viral phylogenetic diversity, were chosen. The nucleic acids of the test strains were chemically synthesized or extracted via cell culture. These RNAs were evaluated using the PCR primers, resulting in successful amplification with expected sizes (0.8-1.7 kb). Sequencing confirmed that the products covered the entire genome of the RVFV strains tested. Primer specificity was confirmed via in silico comparison against all non-redundant nucleotide sequences using the BLASTn alignment tool in the NCBI database. To assess the clinical applicability of the primers, mock clinical specimens containing human and RVFV RNAs were prepared. The entire RVFV genome was successfully amplified and sequenced at a viral concentration of 108 copies/mL. Given the universality, specificity, and clinical applicability of the primers, we anticipate that the RVFV universal primer pairs and the developed method will aid in RVFV phylogenomics and mutation detection.
Collapse
Affiliation(s)
- Kwan Woo Kim
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Banseok Lee
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
- Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Sujeong Eom
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
- Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Donghoon Shin
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
- Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Changwoo Park
- Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Seil Kim
- Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea.
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea.
- Department of Bio-Analysis Science, University of Science and Technology, Daejeon, Republic of Korea.
| | - Hana Yi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea.
- Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea.
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Hu Q, Jia H, Wang Y, Xu S. Force-Induced Visualization of Nucleic Acid Functions with Single-Nucleotide Resolution. SENSORS (BASEL, SWITZERLAND) 2023; 23:7762. [PMID: 37765816 PMCID: PMC10536483 DOI: 10.3390/s23187762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Nucleic acids are major targets for molecular sensing because of their wide involvement in biological functions. Determining their presence, movement, and binding specificity is thus well pursued. However, many current techniques are usually sophisticated, expensive, and often lack single-nucleotide resolution. In this paper, we report the force-induced visualization method that relies on the novel concept of mechanical force to determine the functional positions of nucleic acids with single-nucleotide resolution. The use of an adjustable mechanical force overcomes the variation of analyte concentration and differences in buffer conditions that are common in biological settings. Two examples are described to validate the method: one is probing the mRNA movement during ribosomal translocation, and the other is revealing the interacting sites and strengths of DNA-binding drugs based on the force amplitude. The flexibility of the method, simplicity of the associated device, and capability of multiplexed detection will potentially enable a broad range of biomedical applications.
Collapse
Affiliation(s)
- Qiongzheng Hu
- Department of Chemistry, University of Houston, Houston, TX 77204, USA; (Q.H.)
| | - Haina Jia
- Department of Chemistry, University of Houston, Houston, TX 77204, USA; (Q.H.)
| | - Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Shoujun Xu
- Department of Chemistry, University of Houston, Houston, TX 77204, USA; (Q.H.)
| |
Collapse
|
15
|
Zhu Y, Odiwuor N, Sha Z, Chen Y, Shao N, Wu X, Chen J, Li Y, Guo S, Shi D, Liu P, Zhang Y, Wei H, Tao SC. Rapid and Accurate Detection of SARS-CoV-2 Using an iPad-Controlled, High-Throughput, Portable, and Multiplex Hive-Chip Platform ( HiCube). ACS Sens 2023; 8:1960-1970. [PMID: 37093957 PMCID: PMC10152401 DOI: 10.1021/acssensors.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
Rapid and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the most effective measures to control the coronavirus disease 2019 (COVID-19) pandemic. However, there is still lack of an ideal detection platform capable of high sample throughput, portability, and multiplicity. Herein, by combining Hive-Chip (capillary microarray) and reverse transcriptional loop-mediated isothermal amplification (RT-LAMP), we developed an iPad-controlled, high-throughput (48 samples at one run), portable (smaller than a backpack), multiplex (monitoring 8 gene fragments in one reaction), and real-time detection platform for SARS-CoV-2 detection. This platform is composed of a portable Hive-Chip device (HiCube; 32.7 × 29.7 × 20 cm, 5 kg), custom-designed software, and optimized Hive-Chips. RT-LAMP primers targeting seven SARS-CoV-2 genes (S, E, M, N, ORF1ab, ORF3a, and ORF7a) and one positive control (human RNase P) were designed and prefixed in the Hive-Chip. On-chip RT-LAMP showed that the limit of detection (LOD) of SARS-CoV-2 synthetic RNAs is 1 copy/μL, and there is no cross-reaction among different target genes. The platform was validated by 100 clinical samples of SARS-CoV-2, and the results were highly consistent with those of the traditional real-time PCR assay. In addition, on-chip detection of 6 other respiratory pathogens showed no cross-reactivity. Overall, our platform has great potential for fast, accurate, and on-site detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Yuanshou Zhu
- Shanghai Center for Systems Biomedicine, Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China
- School of Biomedical Engineering,
Shanghai Jiao Tong University, Shanghai 200240,
China
| | - Nelson Odiwuor
- CAS Key Laboratory of Special Pathogens and Biosafety,
Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese
Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of
Science, Beijing 100049, China
| | - Zigan Sha
- Shanghai Center for Systems Biomedicine, Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Yanjing Chen
- Sports & Medicine Integrative Innovation Center
(SMIC), Capital University of Physical Education and Sports,
Beijing 100191, China
| | - Ning Shao
- Shanghai Center for Systems Biomedicine, Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Xudong Wu
- Department of Biomedical Engineering, School of Medicine,
Tsinghua University, Beijing 100084,
China
| | - Jianwei Chen
- Shanghai Center for Systems Biomedicine, Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Yang Li
- Shanghai Center for Systems Biomedicine, Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Shujuan Guo
- Shanghai Center for Systems Biomedicine, Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Dawei Shi
- National Institutes for Food and Drug
Control, Beijing 102629, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine,
Tsinghua University, Beijing 100084,
China
| | - Yan Zhang
- Sports & Medicine Integrative Innovation Center
(SMIC), Capital University of Physical Education and Sports,
Beijing 100191, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety,
Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese
Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of
Science, Beijing 100049, China
| | - Sheng-ce Tao
- Shanghai Center for Systems Biomedicine, Key
Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China
- School of Biomedical Engineering,
Shanghai Jiao Tong University, Shanghai 200240,
China
- Perfect Diagnosis Biotechnology (ZhenCe)
Co., Ltd., Shanghai 200240, China
| |
Collapse
|
16
|
Yamashita K, Taniguchi T, Niizeki N, Nagao Y, Suzuki A, Toguchi A, Takebayashi S, Ishikawa J, Nagura O, Furuhashi K, Iwaizumi M, Maekawa M. Cycle Threshold (Ct) Values of SARS-CoV-2 Detected with the GeneXpert ® System and a Mutation Associated with Different Target Gene Failure. Curr Issues Mol Biol 2023; 45:4124-4134. [PMID: 37232731 DOI: 10.3390/cimb45050262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
SARS-CoV-2 nucleic acid detection tests enable rapid virus detection; however, it is challenging to identify genotypes to comprehend the local epidemiology and infection routes in real-time qRT-PCR. At the end of June 2022, our hospital experienced an in-hospital cluster of COVID-19. When examined using the GeneXpert® System, the cycle threshold (Ct) value of the N2 region of the nucleocapsid gene of SARS-CoV-2 was approximately 10 cycles higher than that of the envelope gene. Sanger sequencing revealed a G29179T mutation in the primer and probe binding sites. A review of past test results revealed differences in Ct values in 21 of 345 SARS-CoV-2-positive patients, of which 17 cases were cluster-related and 4 were not. Including these 21 cases, 36 cases in total were selected for whole-genome sequencing (WGS). The viral genomes in the cluster-related cases were identified as BA.2.10, and those in the non-cluster cases were closely related and classified as being downstream of BA.2.10 and other lineages. Although WGS can provide comprehensive information, its use is limited in various laboratory settings. A measurement platform reporting and comparing Ct values of different target genes can improve test accuracy, enhance our understanding of infection spread, and be applied to the quality control of reagents.
Collapse
Affiliation(s)
- Keita Yamashita
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Terumi Taniguchi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Noriyasu Niizeki
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yuki Nagao
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Akira Suzuki
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Akihiro Toguchi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Shiori Takebayashi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Jinko Ishikawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Osanori Nagura
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kazuki Furuhashi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Moriya Iwaizumi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|