1
|
Zhang W, Xiong W, Wang M, Zhao D, Guo X, Zhan A. Vertical exchange versus horizontal dispersal in structuring local planktonic and sedimentary bacterial communities in polluted lotic ecosystems. J Environ Sci (China) 2025; 156:859-870. [PMID: 40412982 DOI: 10.1016/j.jes.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 05/27/2025]
Abstract
Elucidating the mechanisms underlying community assembly remains a central question in community ecology, especially in aquatic ecosystems disrupted by human activities. Understanding the causes and consequences of community responses to changing environment is essential for revealing the ecological effects of anthropogenic disturbances and proposing practical strategies for ecological restoration. While stochastic dispersal and species sorting are known to influence local biological communities, most studies have focused on horizontal dispersal, often neglecting the vertical exchange of organisms between planktonic and sedimentary communities when studying stochastic dispersal. We used a highly disturbed urban river in Beijing as a model system to investigate the relative roles of stochastic dispersal versus species sorting driven by local pollution, as well as two components of stochastic dispersal, vertical exchange and horizontal dispersal, in structuring local bacterial communities. Our integrated analyses of planktonic and sedimentary bacterial communities revealed that, despite different spatial patterns along the river, both types of bacterial communities were primarily shaped by stochastic dispersal processes rather than species sorting influenced by the environmental gradient. Notably, in addition to the effect of horizontal dispersal along the river, the vertical exchange between planktonic and sedimentary bacterial communities significantly contributed to the formation of local communities. These findings suggest that both vertical exchange and horizontal dispersal should be considered when assessing the role of stochastic dispersal in shaping local community structure in microbial communities.
Collapse
Affiliation(s)
- Wei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Dongliang Zhao
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Xiaoyu Guo
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China.
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China.
| |
Collapse
|
2
|
Bandeira L, Faria C, Cavalcante F, Mesquita A, Martins C, Martins S. Metabarcoding expands knowledge on diversity and ecology of rare actinobacteria in the Brazilian Cerrado. Folia Microbiol (Praha) 2025; 70:159-175. [PMID: 38961050 DOI: 10.1007/s12223-024-01184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Rare and unknown actinobacteria from unexplored environments have the potential to produce new bioactive molecules. This study aimed to use 16 s rRNA metabarcoding to determine the composition of the actinobacterial community, particularly focusing on rare and undescribed species, in a nature reserve within the Brazilian Cerrado called Sete Cidades National Park. Since this is an inaccessible area without due legal authorization, it is understudied, and, therefore, its diversity and biotechnological potential are not yet fully understood, and it may harbor species with groundbreaking genetic potential. In total, 543 operational taxonomic units (OTUs) across 14 phyla were detected, with Actinobacteria (41.2%), Proteobacteria (26.5%), and Acidobacteria (14.3%) being the most abundant. Within Actinobacteria, 107 OTUs were found, primarily from the families Mycobacteriaceae, Pseudonocardiaceae, and Streptomycetaceae. Mycobacterium and Streptomyces were the predominant genera across all samples. Seventeen rare OTUs with relative abundance < 0.1% were identified, with 82.3% found in only one sample yet 25.5% detected in all units. Notable rare and transient genera included Salinibacterium, Nocardia, Actinomycetospora_01, Saccharopolyspora, Sporichthya, and Nonomuraea. The high diversity and distribution of Actinobacteria OTUs indicate the area's potential for discovering new rare species. Intensified prospection on underexplored environments and characterization of their actinobacterial diversity could lead to the discovery of new species capable of generating innovative natural products.
Collapse
Affiliation(s)
- Leonardo Bandeira
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil.
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil.
| | | | - Fernando Cavalcante
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Ariel Mesquita
- Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Suzana Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| |
Collapse
|
3
|
Feng C, Lu J, Liu T, Shi X, Zhao S, Lv C, Shi Y, Zhang Z, Jin Y, Pang J, Sun A. Microbial community dynamics in shallow-water grass-type lakes: Habitat succession of microbial ecological assembly and coexistence mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117819. [PMID: 39908866 DOI: 10.1016/j.ecoenv.2025.117819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/05/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Aggregation and co-occurrence patterns of microbial communities are the key scientific issues in lake ecology. To explore the mechanisms of microbial ecological assembly and community succession in this unique habitat, 16 samples were collected from eight sites in Wuliangsuhai Lake. Second-generation DNA sequencing was applied to reveal the spatial dynamics of the bacterial community structure and distribution across two environmental media in this nutrient-rich shallow grassland lake and to elucidate the characteristics of the co-occurrence network. This study also examined the effects of environmental filtering and biological interactions on the formation and maintenance of the community composition and diversity. The results highlight habitat heterogeneity in microbial community composition, with no discernible latitudinal diversity patterns. The causal analysis identified electrical conductivity, pH, total nitrogen, and phosphorus as the primary factors driving changes in the bacterial community structure in the water and sediment of grass-type lakes, with TN being the key environmental driver. CL500-3 was identified as a pollution-tolerant species in aquatic environments. g__norank_f_Verrucomicrobiaceae was identified as a pollution-tolerant species in sediment environments. The bacterial communities exhibited a significant distance decay pattern, with a higher spatial turnover rate in water than in sediment. Co-occurrence network analysis revealed greater complexity and stability in the sediment bacterial communities, with three potential keystone species, than in water. The neutral and null model results indicated that the water bacterial communities were more susceptible to dispersal limitation, whereas more complex interactions in sediment increased the role of deterministic processes in community construction. This study proposed the division of aquatic plant regions in freshwater lakes and demonstrated the community characteristics of different habitat types, contributing to a comprehensive understanding of shallow-water bacterial diversity and community structure.
Collapse
Affiliation(s)
- Chen Feng
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Junping Lu
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Tingxi Liu
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Chunjian Lv
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Yujiao Shi
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Zixuan Zhang
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Yuqi Jin
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Jiaqi Pang
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Aojie Sun
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| |
Collapse
|
4
|
Vettorazzo S, Boscaini A, Cerasino L, Salmaso N. From small water bodies to lakes: Exploring the diversity of freshwater bacteria in an Alpine Biosphere Reserve. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176495. [PMID: 39341249 DOI: 10.1016/j.scitotenv.2024.176495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Small water bodies, although supporting high biodiversity, are often understudied in the Alpine region. In this work, we characterized the planktic and benthic bacterial communities, as well as the water chemistry, of a wide physiographic range of 19 freshwater bodies within an Alpine Biosphere Reserve, including ponds, pasture ponds, peat bogs, shallow lakes, and lakes. We collected both water and surface sediment samples, followed by metabarcoding analysis based on the V3-V4 regions of the 16S rRNA gene. We investigated the changes in biodiversity and the distribution of unique and shared amplicon sequence variants (ASVs) between water (11,829 ASVs) and surface sediment (19,145 ASVs) habitats, as well as across different freshwater typologies. The majority of ASVs (78 %) were unique to a single sample, highlighting the variability and uniqueness of bacterial communities in such freshwater bodies. Most freshwater environments showed higher α-diversity in sediment samples (median, 1469 ASVs) compared to water (468 ASVs). We found that water and sediment habitats harboured unique bacterial communities with significant differences in their taxonomic compositions. Benthic bacteria were associated with several biogeochemical and degradative processes occurring in the sediments, with no notable differences among freshwater typologies and with phylogenetically and ecologically similar species. Conversely, planktic communities showed greater heterogeneity: small water bodies and peat bogs were characterized by higher relative abundances of Patescibacteria (up to 33 %), while lakes and shallow lakes were dominated by Actinobacteriota (up to 36 %). Cyanobacteria (426 ASVs) were generally distributed at low abundances in both water and sediment habitats. Overall, our results provided essential insights into the bacterial ecology of understudied environments such as ponds and pasture ponds and highlighted the importance of further exploring their rich pelagic and benthic bacterial biodiversity.
Collapse
Affiliation(s)
- Sara Vettorazzo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
5
|
Liao X, Hou L, Zhang L, Grossart HP, Liu K, Liu J, Chen Y, Liu Y, Hu A. Distinct influences of altitude on microbiome and antibiotic resistome assembly in a glacial river ecosystem of Mount Everest. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135675. [PMID: 39216241 DOI: 10.1016/j.jhazmat.2024.135675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The profound influences of altitude on aquatic microbiome were well documented. However, differences in the responses of different life domains (bacteria, microeukaryotes, viruses) and antibiotics resistance genes (ARGs) in glacier river ecosystems to altitude remain unknown. Here, we employed shotgun metagenomic and amplicon sequencing to characterize the altitudinal variations of microbiome and ARGs in the Rongbu River, Mount Everest. Our results indicated the relative influences of stochastic processes on microbiome and ARGs assembly in water and sediment were in the following order: microeukaryotes < ARGs < viruses < bacteria. Moreover, distinct assembly patterns of the microbiome and ARGs were found in response to differences in altitude, the latter of which shift from deterministic to stochastic processes with increasing differences in altitude. Partial least squares path modeling revealed that mobile genetic elements (MGEs) and viral β-diversity were the major factors influencing the ARG abundances. Taken together, our work revealed that altitude-caused environmental changes led to significant changes in the composition and assembly processes of the microbiome and ARGs, while ARGs had a unique response pattern to altitude. Our findings provide novel insights into the impacts of altitude on the biogeographic distribution of microbiome and ARGs, and the associated driving forces in glacier river ecosystems.
Collapse
Affiliation(s)
- Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, United States; Utah Water Research Laboratory, 1600 Canyon Road, Logan, UT 84321, United States
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany; Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Junzhi Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Yuying Chen
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China.
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Qiu Z, He S, Lian CA, Qiao X, Zhang Q, Yao C, Mu R, Wang L, Cao XA, Yan Y, Yu K. Large scale exploration reveals rare taxa crucially shape microbial assembly in alkaline lake sediments. NPJ Biofilms Microbiomes 2024; 10:62. [PMID: 39069527 DOI: 10.1038/s41522-024-00537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Alkaline lakes are extreme environments inhabited by diverse microbial extremophiles. However, large-scale distribution patterns, environmental adaptations, community assembly, and evolutionary dynamics of microbial communities remain largely underexplored. This study investigated the characteristics of microbial communities on rare and abundant taxa in alkaline lake sediments in west and northwest China. We observed that abundant taxa varied significantly with geographical distance, while rare taxa remained unaffected by regional differences. The assembly process of abundant taxa was influenced by dispersal limitation, whilst rare taxa were predominantly driven by heterogeneous selection. Network analysis indicated that rare taxa as core species for community interactions and community stability. Rare taxa exhibited higher speciation and transition rate than abundant taxa, serving as a genetic reservoir and potential candidates to become abundance taxa, highlighting their crucial role in maintaining microbial diversity. These insights underscore the significant influence of rare taxa on ecosystem biodiversity and stability in alkaline lakes.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Shuhang He
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Chun-Ang Lian
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Xuejiao Qiao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing Zhang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Ciqin Yao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Rong Mu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Li Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xiao-Ai Cao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yan Yan
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ke Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Ren Z, Zhang C, Li X, Luo W. Thermokarst lakes are hotspots of antibiotic resistance genes in permafrost regions on the Qinghai-Tibet Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123334. [PMID: 38218544 DOI: 10.1016/j.envpol.2024.123334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/02/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Antibiotic resistance genes (ARGs) are natural products and emerging pollutants in remote environments, including permafrost regions that are rapidly thawing due to climate warming. We investigated the role of thermokarst lakes (including sediment and water) in reserving ARGs compared to permafrost soils across the permafrost regions on the Qinghai-Tibet Plateau. As intrinsically connected distinct environments, permafrost soil, lake sediment, and lake water harbored 1239 ARGs in total, while a considerable number of same ARGs (683 out of 1239) concurrently presented in all these environments. Soil and sediment had a higher number of ARGs than water. Multidrug resistance genes were the most diverse and abundant in all three environments, where cls, ropB, mdfA, fabI, and macB were the top five most abundant ARGs while with different orders. Soil and sediment had similar ARG profiles, and the alpha and beta diversity of ARGs in sediment were positively correlated with that in soil. The beta diversity of ARG profiles between sediment and soil was highly contributed by turnover component (89%). However, turnover and nestedness components were almost equality contributed (46%-54%) to the beta diversity of ARG profiles between soil and water as well as between sediment and water. The results suggested that thermokarst lake sediments might inherit the ARGs in permafrost soils. Water ARGs are the subset of soil ARGs and sediment ARGs to a certain degree with species turnover playing a significant role. When accounting the ARGs in sediment and water together, thermokarst lakes had a significantly higher number of ARGs than permafrost soils, suggesting that thermokarst lakes act as the hotspots of ARGs in permafrost regions. These findings are disturbing especially due to the fact that tremendous number of thermokarst lakes are forming under accelerating climate change.
Collapse
Affiliation(s)
- Ze Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Cheng Zhang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Engineering Technology, Beijing Normal University, Zhuhai, 519087, China
| | - Xia Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China; Key Laboratory of Polar Ecosystem and Climate Change (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200030, China; The Technology and Equipment Engineering Centre for Polar Observations, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
8
|
Dash SP, Manu S, Kim JY, Rastogi G. Spatio-temporal structuring and assembly of abundant and rare bacteria in the benthic compartment of a marginally eutrophic lagoon. MARINE POLLUTION BULLETIN 2024; 200:116138. [PMID: 38359478 DOI: 10.1016/j.marpolbul.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The investigations on ecological processes that structure abundant and rare sub-communities are limited from the benthic compartments of tropical brackish lagoons. We examined the spatial and temporal patterns in benthic bacterial communities of a brackish lagoon; Chilika. Abundant and rare bacteria showed differences in niche specialization but exhibited similar distance-decay patterns. Abundant bacteria were mostly habitat generalists due to their broader niche breadth, environmental response thresholds, and greater functional redundancy. In contrast, rare bacteria were mostly habitat specialists due to their narrow niche breadth, lower environmental response thresholds, and functional redundancy. The spatial patterns in abundant bacteria were largely shaped by stochastic processes (88.7 %, mostly dispersal limitation). In contrast, rare bacteria were mostly structured by deterministic processes (56.4 %, mostly heterogeneous selection). These findings provided a quantitative assessment of the different forces namely spatial, environmental, and biotic that together structured bacterial communities in the benthic compartment of a marginally eutrophic lagoon.
Collapse
Affiliation(s)
- Stiti Prangya Dash
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India; KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Shivakumara Manu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500048, India
| | - Ji Yoon Kim
- Department of Biological Science, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon 752030, Odisha, India.
| |
Collapse
|
9
|
Lyu Y, Zhang J, Chen Y, Li Q, Ke Z, Zhang S, Li J. Distinct diversity patterns and assembly mechanisms of prokaryotic microbial sub-community in the water column of deep-sea cold seeps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119240. [PMID: 37837767 DOI: 10.1016/j.jenvman.2023.119240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Methane leakage from deep-sea cold seeps has a major impact on marine ecosystems. Microbes sequester methane in the water column of cold seeps and can be divided into abundant and rare groups. Both abundant and rare groups play an important role in cold seep ecosystems, and the environmental heterogeneity in cold seeps may enhance conversion between taxa with different abundances. Yet, the environmental stratification and assembly mechanisms of these microbial sub-communities remain unclear. We investigated the diversities and assembly mechanisms in microbial sub-communities with distinct abundance in the deep-sea cold seep water column, from 400 m to 1400 m. We found that bacterial β-diversity, as measured by Sørensen dissimilarities, exhibited a significant species turnover pattern that was influenced by several environmental factors including depth, temperature, SiO32-, and salinity. In contrast, archaeal β-diversity showed a relatively high percentage of nestedness pattern, which was driven by the levels of soluble reactive phosphate and SiO32-. During the abundance dependency test, abundant taxa of both bacteria and archaea showed a significant species turnover, while the rare taxa possessed a higher percentage of nestedness. Stochastic processes were prominent in shaping the prokaryotic community, but deterministic processes were more pronounced for the abundant taxa than rare ones. Furthermore, the metagenomics results revealed that the abundances of methane oxidation, sulfur oxidation, and nitrogen fixation-related genes and related microbial groups were significantly higher in the bottom water. Our results implied that the carbon, sulfur, and nitrogen cycles were potentially strongly coupled in the bottom water. Overall, the results obtained in this study highlight taxonomic and abundance-dependent microbial community diversity patterns and assembly mechanisms in the water column of cold seeps, which will help understand the impacts of fluid seepage from the sea floor on the microbial community in the water column and further provide guidance for the management of cold seep ecosystem under future environmental pressures.
Collapse
Affiliation(s)
- Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhixin Ke
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
10
|
Zhang C, Ren Z. The role of subsurface ice in sustaining bacteria in continental and maritime glaciers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165324. [PMID: 37414181 DOI: 10.1016/j.scitotenv.2023.165324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
In supraglacial environments, surface and subsurface ices are two distinct and connected microhabitats in terms of physicochemical and biological aspects. At the frontline of climate change, glaciers lose tremendous ice masses to downstream ecosystems, serving as crucial sources of both biotic and abiotic materials. In this study, we studied the disparities and relationships of microbial communities between surface and subsurface ices collected from a maritime and a continental glacier during summer. The results showed that surface ices had significantly higher nutrients and were more physiochemically different than subsurface ices. Despite lower nutrients, subsurface ices had higher alpha-diversity with more unique and enriched operational taxonomic units (OTUs) than surface ices, indicating the potential role of subsurface as a bacterial refuge. Sorensen dissimilarity between bacterial communities in surface ices and subsurface ices was mainly contributed by the turnover component, suggesting strong species replacement from surface to subsurface ices due to large environmental gradients. For different glaciers, the maritime glacier had significantly higher alpha-diversity than the continental glacier. The difference between surface and subsurface communities was more pronounced in the maritime glacier than in the continental glacier. The network analysis revealed that surface-enriched and subsurface-enriched OTUs formed independent modules, with surface-enriched OTUs having closer interconnections and greater importance in the network of the maritime glacier. This study highlights the important role of subsurface ice as a bacterial refuge and enriches our knowledge of microbial properties in glaciers.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Engineering Technology, Beijing Normal University, Zhuhai, China; Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, China
| | - Ze Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
11
|
Liu H, Dai J, Fan Z, Yang B, Wang H, Hu Y, Shao K, Gao G, Tang X. Bacterial community assembly driven by temporal succession rather than spatial heterogeneity in Lake Bosten: a large lake suffering from eutrophication and salinization. Front Microbiol 2023; 14:1261079. [PMID: 37808304 PMCID: PMC10552925 DOI: 10.3389/fmicb.2023.1261079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Oligosaline lakes in arid and semi-arid regions play a crucial role in providing essential water resources for local populations. However, limited research exists on the impact of the environment on bacterial community structure in these lakes, co-occurrence patterns and the mechanisms governing bacterial community assembly. This study aims to address this knowledge gap by examining samples collected from five areas of Lake Bosten over four seasons. Using the 16S rRNA gene sequencing method, we identified a total of 510 to 1,005 operational taxonomic units (OTUs) belonging to 37 phyla and 359 genera in Lake Bosten. The major bacterial phyla were Proteobacteria (46.5%), Actinobacteria (25.9%), Bacteroidetes (13.2%), and Cyanobacteria (5.7%), while the major genera were hgcI_clade (12.9%), Limnohabitans (6.2%), and Polynucleobacter (4.7%). Water temperature emerged as the primary driver of these community structure variations on global level. However, when considering only seasonal variations, pH and nitrate were identified as key factors influencing bacterial community structures. Summer differed from other seasons in aspects of seasonal symbiotic patterns of bacterial communities, community assembly and function are different from other seasons. There were notable variations in bacterial community structures between winter and summer. Deterministic processes dominated community assembly, but there was an increase in the proportion of stochastic processes during summer. In summer, the functions related to photosynthesis, nitrogen fixation, and decomposition of organic matter showed higher abundance. Our findings shed light on the response of bacterial communities to environmental changes and the underlying mechanisms of community assembly in oligosaline lakes in arid regions.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Nanjing Hydraulic Research Institute, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jiangyu Dai
- Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Nanjing Hydraulic Research Institute, Nanjing, China
| | - Ziwu Fan
- Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Nanjing Hydraulic Research Institute, Nanjing, China
| | - Bei Yang
- Key Laboratory of Agricultural Environment of the Lower Reaches of the Yangtze River, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hang Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
12
|
Han B, Yu Q, Wang X, Feng T, Long M, Li H. Copper and temperature shaped abundant and rare community assembly respectively in the Yellow River. Appl Microbiol Biotechnol 2023; 107:3847-3858. [PMID: 37133799 DOI: 10.1007/s00253-023-12538-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Untangling assembly and microbial interaction of abundant and rare microbiota in aquatic ecosystem is pivotal for understanding how community assembly respond to environmental variables and co-occurrence patterns. Here, we explored the assembly mechanisms, their drivers, and species co-occurrence of abundant and rare microbiomes in the Yellow River using 16S rRNA gene sequencing in Lanzhou, China. Here, abundant community was ubiquitous across all sites, whereas rare community was uneven distributed. The richness and community dissimilarity of rare taxa were significantly greater than those of abundant ones. Stochastic processes structured the rare community assembly in spring and winter, while deterministic processes shaped the abundant and rare community assembly in other seasons and all sites. Copper and water temperature mediated the balance between deterministic and stochastic processes of abundant and rare community, respectively. A few abundant taxa with closer relationships frequently occupied central positions and had a great effect on other co-occurrences in the network, while the majority of keystone microbiota were rare microbiome and played a considerable part in maintaining the network structure. Our study provides some ecological proposals for water quality management and ecological stability of the Yellow River. KEY POINTS: • Deterministic process dominated abundant and rare community assembly. • Cu and TW mediated the balance of abundant and rare community assembly respectively. • Abundant taxa had a greater effect on other co-occurrences in the network.
Collapse
Affiliation(s)
- Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland microbiome, Lanzhou University, Lanzhou, 730000, China
| | - Xiaochen Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Meng Long
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| |
Collapse
|
13
|
Ren Z, Ma K, Jia X, Wang Q, Zhang C, Li X. Metagenomics Unveils Microbial Diversity and Their Biogeochemical Roles in Water and Sediment of Thermokarst Lakes in the Yellow River Source Area. MICROBIAL ECOLOGY 2023; 85:904-915. [PMID: 35650293 DOI: 10.1007/s00248-022-02053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/25/2022] [Indexed: 05/04/2023]
Abstract
Thermokarst lakes have long been recognized as biogeochemical hotspots, especially as sources of greenhouse gases. On the Qinghai-Tibet Plateau, thermokarst lakes are experiencing extensive changes due to faster warming. For a deep understanding of internal lake biogeochemical processes, we applied metagenomic analyses to investigate the microbial diversity and their biogeochemical roles in sediment and water of thermokarst lakes in the Yellow River Source Area (YRSA). Sediment microbial communities (SMCs) had lower species and gene richness than water microbial communities (WMCs). Bacteria were the most abundant component in both SMCs and WMCs with significantly different abundant genera. The functional analyses showed that both SMCs and WMCs had low potential in methanogenesis but strong in aerobic respiration, nitrogen assimilation, exopolyphosphatase, glycerophosphodiester phosphodiesterases, and polyphosphate kinase. Moreover, SMCs were enriched in genes involved in anaerobic carbon fixation, aerobic carbon fixation, fermentation, most nitrogen metabolism pathways, dissimilatory sulfate reduction, sulfide oxidation, polysulfide reduction, 2-phosphonopropionate transporter, and phosphate regulation. WMCs were enriched in genes involved in assimilatory sulfate reduction, sulfur mineralization, phosphonoacetate hydrolase, and phosphonate transport. Functional potentials suggest the differences of greenhouse gas emission, nutrient cycling, and living strategies between SMCs and WMCs. This study provides insight into the main biogeochemical processes and their properties in thermokarst lakes in YRSA, improving our understanding of the roles and fates of these lakes in a warming world.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China.
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Kang Ma
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xuan Jia
- College of Education for the Future, Beijing Normal University, Zhuhai, 519087, China
| | - Qing Wang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Engineering Technology, Beijing Normal University, Zhuhai, 519087, China
| | - Xia Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, 18 Jinfeng Road, Xiangzhou Distract, Zhuhai, 519087, Guangdong, China
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
14
|
Zhu X, Deng Y, Huang T, Han C, Chen L, Zhang Z, Liu K, Liu Y, Huang C. Vertical variations in microbial diversity, composition, and interactions in freshwater lake sediments on the Tibetan plateau. Front Microbiol 2023; 14:1118892. [PMID: 36970704 PMCID: PMC10031068 DOI: 10.3389/fmicb.2023.1118892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Microbial communities in freshwater lake sediments exhibit a distinct depth-dependent variability. Further exploration is required to understand their biodiversity pattern and microbial interactions in vertical sediments. In this study, sediment cores from two freshwater lakes, Mugecuo (MGC) and Cuopu (CP), on the Tibetan plateau were sampled and subsequently sliced into layers at a depth of every centimeter or half a centimeter. Amplicon sequencing was used to analyze the composition, diversity, and interaction of microbial communities. Results showed that sediment samples of both lakes could be clustered into two groups at a sediment depth of about 20 cm, with obvious shifts in microbial community compositions. In lake MGC, the richness component dominated β-diversity and increased with depth, indicating that the microbial communities in the deep layer of MGC was selected from the surface layer. Conversely, the replacement component dominated β-diversity in CP, implying a high turnover rate in the surface layer and inactive seed banks with a high variety in the deep layer. A co-occurrence network analysis showed that negative microbial interactions were prevalent in the surface layers with high nutrient concentrations, while positive microbial interactions were more common in the deep layers with low nutrient concentrations, suggesting that microbial interactions are influenced by nutrient conditions in the vertical sediments. Additionally, the results highlight the significant contributions of abundant and rare taxa to microbial interactions and vertical fluctuations of β-diversity, respectively. Overall, this work deepens our understanding of patterns of microbial interactions and vertical fluctuation in β-diversity in lake sediment columns, particularly in freshwater lake sediments from the Tibetan plateau.
Collapse
Affiliation(s)
- Xinshu Zhu
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- *Correspondence: Yongcui Deng, ; Tao Huang,
| | - Tao Huang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- *Correspondence: Yongcui Deng, ; Tao Huang,
| | - Cheng Han
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Lei Chen
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Zhigang Zhang
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| | - Changchun Huang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| |
Collapse
|
15
|
Barry KR, Hill TCJ, Moore KA, Douglas TA, Kreidenweis SM, DeMott PJ, Creamean JM. Persistence and Potential Atmospheric Ramifications of Ice-Nucleating Particles Released from Thawing Permafrost. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3505-3515. [PMID: 36811552 DOI: 10.1021/acs.est.2c06530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Permafrost underlies approximately a quarter of the Northern Hemisphere and is changing amidst a warming climate. Thawed permafrost can enter water bodies through top-down thaw, thermokarst erosion, and slumping. Recent work revealed that permafrost contains ice-nucleating particles (INPs) with concentrations comparable to midlatitude topsoil. These INPs may impact the surface energy budget of the Arctic by affecting mixed-phase clouds, if emitted into the atmosphere. In two 3-4-week experiments, we placed 30,000- and 1000-year-old ice-rich silt permafrost in a tank with artificial freshwater and monitored aerosol INP emissions and water INP concentrations as the water's salinity and temperature were varied to mimic aging and transport of thawed material into seawater. We also tracked aerosol and water INP composition through thermal treatments and peroxide digestions and bacterial community composition with DNA sequencing. We found that the older permafrost produced the highest and most stable airborne INP concentrations, with levels comparable to desert dust when normalized to particle surface area. Both samples showed that the transfer of INPs to air persisted during simulated transport to the ocean, demonstrating a potential to influence the Arctic INP budget. This suggests an urgent need for quantifying permafrost INP sources and airborne emission mechanisms in climate models.
Collapse
Affiliation(s)
- Kevin R Barry
- Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, Colorado 80523-1371, United States
| | - Thomas C J Hill
- Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, Colorado 80523-1371, United States
| | - Kathryn A Moore
- Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, Colorado 80523-1371, United States
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, 9th Avenue, Building 4070, Fort Wainwright, Alaska 99703, United States
| | - Sonia M Kreidenweis
- Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, Colorado 80523-1371, United States
| | - Paul J DeMott
- Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, Colorado 80523-1371, United States
| | - Jessie M Creamean
- Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, Colorado 80523-1371, United States
| |
Collapse
|
16
|
Ren Z, Cao S, Chen T, Zhang C, Yu J. Bacterial functional redundancy and carbon metabolism potentials in soil, sediment, and water of thermokarst landscapes across the Qinghai-Tibet Plateau: Implications for the fate of permafrost carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158340. [PMID: 36041614 DOI: 10.1016/j.scitotenv.2022.158340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Permafrost thaw create widespread thermokarst landscapes. As a result, distinct habitats are provided to harbor different bacterial communities in degraded permafrost soil (PBCs), thermokarst lake sediment (SBCs), and lake water (WBCs), driving carbon metabolism differentially. In this study, we investigated functional diversity and redundancy, and carbon metabolism potentials of PBCs, SBCs, and WBCs in thermokarst landscapes across the Qinghai-Tibet Plateau. The results showed that PBCs and SBCs had higher taxonomic and functional alpha diversity than WBCs, while WBCs had lower functional redundancy. WBCs had the highest beta diversity followed by SBCs and PBCs, suggesting strong determination of taxonomic variations on functional differences. Community assembly processes also had significant influences on beta diversity, especially for SBCs. Metabolism pathways of carbohydrate metabolism, methane metabolism, and carbon fixation were enriched differentially in PBCs, SBCs, and WBCs, suggesting different C fate in distinct habitats. Carbohydrate metabolism data suggested that PBCs might have stronger potentials to mineralize a greater diversity of organic carbon substrate than SBCs and WBCs, promoting degradation of organic carbon stocks in degraded permafrost soils. Methane metabolism data showed that SBCs had a stronger methanogenesis potential followed by PBCs and WBCs, while PBCs had a stronger methane oxidation potential. High abundance of genes involving in formaldehyde assimilation might suggested that a large proportion of produced methane might be assimilated by methanotrophs in the thermokarst landscapes. Both aerobic and anaerobic carbon fixation pathways were enriched in PBCs. The results added our understanding of functional properties and biogeochemical carbon cycles in thermokarst landscapes, improving our abilities in accurate modeling of carbon dynamics and the ultimate fate of permafrost carbon in a warming world.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Shengkui Cao
- School of Geographical Science, Qinghai Normal University, Xining 810008, China.
| | - Tao Chen
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Engineering Technology, Beijing Normal University, Zhuhai 519087, China
| | - Jinlei Yu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| |
Collapse
|
17
|
Ren Z, Luo W. Metagenomic analysis reveals the diversity and distribution of antibiotic resistance genes in thermokarst lakes of the Yellow River Source Area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120102. [PMID: 36075331 DOI: 10.1016/j.envpol.2022.120102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Thermokarst lakes form as the results of ice-rich permafrost thawing and act as important water resources in cold regions. However, the distributions of antibiotic resistance genes (ARGs) in thermokarst lakes are far less studied. Using metagenomic sequencing approach, we provided the first study to document ARGs in thermokarst lakes of the Yellow River Source Area on the Qinghai-Tibet Plateau (QTP). The results revealed that both sediment and water of the thermokarst lakes harbor diverse ARGs. Multidrug resistance genes were the most diverse, while rifamycin resistance genes were the most abundant with rpoB2 and rpoB genes having the highest proportion. Sediment samples contained more ARGs than water samples, but their composition differed between the two types of samples. However, the composition variations of sediment and water ARGs were closely correlated. The Sorensen dissimilarities of ARGs were controlled by strong turnover processes in sediment samples, and by turnover and nestedness in water samples. High contributions of nestedness were found between sediment and water samples. Moreover, ARGs in water had more significant relationships with environmental variables than that in sediment. Given the role of thermokarst lakes as important water resources in permafrost landscape, as well as intensifying influences of climate change and anthropogenetic activities, thermokarst lakes could bring potential ARG risks, warranting further investigation and evaluation.
Collapse
Affiliation(s)
- Ze Ren
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
18
|
Wang Y, Wang J, Zou X, Qu M, Li J. Groundwater depth regulates assembly processes of abundant and rare bacterial communities across arid inland river basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115767. [PMID: 35982567 DOI: 10.1016/j.jenvman.2022.115767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Although numerous studies on bacterial biogeographic patterns in dryland have been conducted, bacterial community assembly across arid inland river basins is unclear. Here, we assessed the ecological drivers that regulate the assembly processes of abundant (ABS) and rare (RBS) bacterial subcommunities based on 162 soil samples collected in an arid inland river basin of China. The results showed that: (1) ABS exhibited a steeper distance-decay slope, and were more strongly affected by dispersal limitation (75.5% and 84.5%), than RBS in surface and subsurface soil. RBS were predominantly controlled by variable selection (54.6% and 50.2%). (2) Soil electric conductivity played a decisive role in mediating the balance between deterministic and stochastic processes of ABS and RBS in surface soil, increasing soil electric conductivity increased the importance of deterministic process. For subsurface soil, soil available phosphorus (SAP) and soil pH drove the balance in the assembly processes of ABS and RBS, respectively. The RBS shifted from determinism to stochasticity with decreased pH, while the dominance of deterministic processes was higher in low-SAP sites. (3) Groundwater depth seasonality had substantial effects on the assembly processes of ABS and RBS, but groundwater depth seasonality affected them indirectly mainly by regulating soil properties. Collectively, our study provides robust evidence that groundwater-driven variations in soil properties mediates the community assembly process of soil bacteria in arid inland river basins. This finding is of importance for forecasting the dynamics of soil microbial community and soil process in response to current and future depleted groundwater.
Collapse
Affiliation(s)
- Yin Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Jianming Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Xuge Zou
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Mengjun Qu
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Jingwen Li
- School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
19
|
Ren Z, Luo W, Zhang C. Rare bacterial biosphere is more environmental controlled and deterministically governed than abundant one in sediment of thermokarst lakes across the Qinghai-Tibet Plateau. Front Microbiol 2022; 13:944646. [PMID: 35958159 PMCID: PMC9358708 DOI: 10.3389/fmicb.2022.944646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Thermokarst lakes are widely distributed in cold regions as a result of ice-rich permafrost thaw. Disentangling the biogeography of abundant and rare microbes is essential to understanding the environmental influences, assembly mechanisms, and responses to climate change of bacterial communities in thermokarst lakes. In light of this, we assessed the abundant and rare bacterial subcommunities in sediments from thermokarst lakes across the Qinghai-Tibet Plateau (QTP). The operational taxonomic unit (OTU) richness was more strongly associated with location and climate factors for abundant subcommunities, while more strongly associated with physicochemical variables for rare subcommunities. The relative abundance of abundant and rare taxa showed opposite patterns with abundant taxa having greater relative abundance at higher latitude and pH, but at lower mean annual precipitation and nutrients. Both the abundant and rare subcommunities had a clear distribution pattern along the gradient of latitude and mean annual precipitation. Abundant subcommunities were dominantly shaped by dispersal limitation processes (80.9%), while rare subcommunities were shaped almost equally by deterministic (47.3%) and stochastic (52.7%) processes. The balance between stochastic and deterministic processes was strongly environmentally adjusted for rare subcommunities, while not associated with environmental changes for abundant subcommunities. The results shed light on biogeography patterns and structuring mechanisms of bacterial communities in thermokarst lakes, improving our ability to predict the influences of future climate change on these lakes.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- School of Environment, Beijing Normal University, Beijing, China
- *Correspondence: Ze Ren
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Wei Luo
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- School of Engineering Technology, Beijing Normal University, Zhuhai, China
| |
Collapse
|