1
|
Li J, Zhang Q, Chen Y, Diao M, Yang C, Jia W. Neotrinia splendens ( Liliopsida: Poaceae) Growth Influences Spatial Distribution of Soil Bacterial Community in a Degraded Temperate Grassland. Microorganisms 2025; 13:894. [PMID: 40284730 PMCID: PMC12029622 DOI: 10.3390/microorganisms13040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Neotrinia splendens is widely distributed and is the dominant plant species of temperate degraded grassland in Inner Mongolia, showing a community growing habit forming a ring of individuals. However, there is a lack of attention to the soil microbial communities inside the ring (IN), outside the ring, and under the N. splendens ring (UN). This study investigated the soil bacterial community composition in three different zones of the N. splendens ring using amplicon sequencing technology, as well as soil environmental variables. The soil physicochemical properties, the composition of soil bacterial community, and the soil bacterial α-diversity varied significantly among the three zones. Especially, the growth of N. splendens promotes the soil bacterial diversity in the UN zone due to the interactions between plant and soil microbes. Soil NO3--N, TC, TN, and pH are the key factors causing the variations of soil bacterial community composition and bacterial diversity. Proteobacteria and Actinobacteria phyla of microorganisms accounted for the largest proportion in network analysis among the three zones. Overall, attention should be paid not only to the improvement of grassland vegetation and soil quality but also to the change in soil microorganisms during the formation and expansion of the N. splendens ring in the future.
Collapse
Affiliation(s)
- Jingjing Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (J.L.); (Q.Z.); (M.D.)
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Qingdao 266109, China
| | - Qian Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (J.L.); (Q.Z.); (M.D.)
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Qingdao 266109, China
| | - Yitong Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China;
| | - Mengmeng Diao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (J.L.); (Q.Z.); (M.D.)
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Qingdao 266109, China
| | - Chao Yang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (J.L.); (Q.Z.); (M.D.)
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Qingdao 266109, China
| | - Wenke Jia
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (J.L.); (Q.Z.); (M.D.)
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Qingdao 266109, China
| |
Collapse
|
2
|
Paliaga S, Muscarella SM, Alduina R, Badalucco L, Bulacio Fischer PT, Di Leto Y, Gallo G, Mannina G, Laudicina VA. The effects of enriched biochar and zeolite and treated wastewater irrigation on soil fertility and tomato growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124990. [PMID: 40106984 DOI: 10.1016/j.jenvman.2025.124990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Resource recovery from wastewater treatment is the key for sustainable environment management. Treated wastewater (TWW) represents a promising opportunity not only as irrigation water but also as a source of nutrients that can be recovered with adsorbent materials, such as biochar and zeolite. These materials efficiently adsorb phosphate and ammonium, respectively, from wastewater, and once enriched can act as soil fertilizer. This study investigated, the impact of PO43--enriched biochar and NH4+-enriched zeolite, combined or not with treated wastewater (TWW) irrigation, on soil fertility and growth of tomato plants, through a pot experiment. Five treatments were tested: control soil irrigated with tap water, soil amended with enriched biochar and zeolite with tap water or TWW, and soil amended with natural biochar and zeolite with TWW. After 80 days, shoot dry weights of tomato plants showed no significant differences across treatments. However, root dry weights decreased in plants irrigated with TWW, whether unamended or amended with natural biochar and zeolite. The TWW irrigation, both with and without enriched amendments improved soil total N and available P by 22 and 15 %, respectively, but increased soil salinity, as evidenced by 27 % rise in electrical conductivity. However, enriched and natural biochar and zeolite effectively mitigated salinity effect, promoting a more salinity-tolerant microbial community, and increasing microbial biomass carbon. These results support the integrated use of TWW with nutrient-enriched amendments to support the transition to a circular economy in the water sector.
Collapse
Affiliation(s)
- Sara Paliaga
- University of Palermo, Department of Agricultural, Food and Forest Sciences, Palermo, Italy
| | - Sofia Maria Muscarella
- University of Palermo, Department of Agricultural, Food and Forest Sciences, Palermo, Italy.
| | - Rosa Alduina
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Luigi Badalucco
- University of Palermo, Department of Agricultural, Food and Forest Sciences, Palermo, Italy
| | | | - Ylenia Di Leto
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Palermo, Italy
| | - Giuseppe Gallo
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Giorgio Mannina
- University of Palermo, Department of Engineering, Palermo, Italy
| | - Vito Armando Laudicina
- University of Palermo, Department of Agricultural, Food and Forest Sciences, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
3
|
Qiu L, Zhu Y, Li X, Qin Y, Li G, Ye Y, He Y, Huang J, Yang S. Comparison of Soil Microbial Composition in Rhizospheres Between Wilt Disease-Resistant and Susceptible Melon Varieties. Microorganisms 2025; 13:444. [PMID: 40005810 PMCID: PMC11858135 DOI: 10.3390/microorganisms13020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
To screen out the bio-control soil microorganisms for preventing melon wilt, soil microbial compositions in rhizospheres between wilt-resistant and susceptible melon varieties were analyzed. The results showed that the soil fungal richness in rhizospheres of wilt-resistant melon varieties (MT) was significantly higher than that of wilt-susceptible melon varieties (MS). Additionally, in comparison with MS, soil bacterial compositions, such as Proteobacteria, Bacteroidota, Acidibacter, Streptomyces, etc., and the soil fungal compositions, such as Penicillium, Derxomyces, Aspergillus, and Talaromyces, enriched; also, Trichoderma, Gibellulopsis, and Pseudallescheria decreased in rhizospheres of wilt-resistant melon varieties (MT). Moreover, Mycothermus, Zopfiella, and Cladorrhinum were the unique soil-dominant fungal genera in rhizospheres of MT. All the above results suggested that the soil bacterial communities, such as Proteobacteria, Bacteroidota, Acidibacter, Streptomyces, etc., and the soil fungal communities, such as Penicillium, Derxomyces, Aspergillus, Talaromyces Mycothermus, Zopfiella, and Cladorrhinum, could be speculated as the potential soil bio-control microorganisms for preventing melon wilt.
Collapse
Affiliation(s)
- Lulu Qiu
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (L.Q.); (Y.Z.); (X.L.); (Y.Q.)
| | - Yu Zhu
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (L.Q.); (Y.Z.); (X.L.); (Y.Q.)
| | - Xinni Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (L.Q.); (Y.Z.); (X.L.); (Y.Q.)
| | - Yuchen Qin
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (L.Q.); (Y.Z.); (X.L.); (Y.Q.)
| | - Guifen Li
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (G.L.); (Y.Y.); (Y.H.)
| | - Yunfeng Ye
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (G.L.); (Y.Y.); (Y.H.)
| | - Yi He
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (G.L.); (Y.Y.); (Y.H.)
| | - Jinyan Huang
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (G.L.); (Y.Y.); (Y.H.)
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (L.Q.); (Y.Z.); (X.L.); (Y.Q.)
| |
Collapse
|
4
|
Paliaga S, Muscarella SM, Alduina R, Badalucco L, Bulacio Fischer PT, Di Leto Y, Gallo G, Gaglio R, Mineo A, Laudicina VA, Mannina G. Resource recovery from wastewater treatment: Effects of water reuse and slow-release fertilizers on faba bean within Palermo University (Italy) case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123839. [PMID: 39756286 DOI: 10.1016/j.jenvman.2024.123839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/20/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
The wastewater treatment plants (WWTPs) must be transformed into Water Resource Recovery Facilities (WRRFs) in view of a more sustainable approach focusing on the circular economy concept. Different to WWTPs, the WRRFs have as a major goal not only the wastewater treatment to meet the legislation limits but also the recovery of resources such as: treated water for water reuse, carbon, nutrients, biopolymers etc. In view of boosting the WRRFs application in the real WWTs, a WRRF at Palermo University (UNIPA) has been built within the EU project: Achieving Wider-Uptake of Water Smart Solutions. This study is aimed to demonstrate the feasibility of resource recovery from wastewater treatment at UNIPA WRRF. Specifically, the effects of treated wastewater (TWW) and recovered nutrients from wastewater on faba bean were assessed. Results showed that treated water aligned with EU legislation. Further, TWW increased soil electrical conductivity and adversely impacted plant growth. However, the application of biochar and zeolite effectively mitigated these adverse effects. Microbiological investigation revealed that both broad bean pods and seeds analysed did not host pathogenic bacteria.
Collapse
Affiliation(s)
- Sara Paliaga
- Department of Agricultural, Food and Forest Sciences, Palermo University, Italy
| | | | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Palermo University, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Luigi Badalucco
- Department of Agricultural, Food and Forest Sciences, Palermo University, Italy
| | | | - Ylenia Di Leto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Palermo University, Italy
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Palermo University, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences, Palermo University, Italy
| | - Antonio Mineo
- Department of Engineering, Palermo University, Italy
| | - Vito Armando Laudicina
- Department of Agricultural, Food and Forest Sciences, Palermo University, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | | |
Collapse
|
5
|
Olanrewaju OS, Glick BR, Babalola OO. Beyond correlation: Understanding the causal link between microbiome and plant health. Heliyon 2024; 10:e40517. [PMID: 39669148 PMCID: PMC11636107 DOI: 10.1016/j.heliyon.2024.e40517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Understanding the causal link between the microbiome and plant health is crucial for the future of crop production. Established studies have shown a symbiotic relationship between microbes and plants, reshaping our knowledge of plant microbiomes' role in health and disease. Addressing confounding factors in microbiome study is essential, as standardization enables precise identification of microbiome features that influence outcomes. The microbiome significantly impacts plant development, necessitating holistic investigation for maintaining plant health. Mechanistic studies have deepened our understanding of microbiome structure and function related to plant health, though much research still needs to be carried out. This review, therefore, discusses current challenges and proposes advancing studies from correlation to causation and translation. We explore current knowledge on the microbiome and plant health, emphasizing multi-omics approaches and hypothesis-driven research. Future studies should focus on developing translational research for producing probiotics and prebiotics from biomarkers that regulate the microbiome-plant health connection, promoting sustainable crop production through microbiome applications.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Buckhurst road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
6
|
Li M, Li W, Wang C, Ji L, Han K, Gong J, Dong S, Wang H, Zhu X, Du B, Liu K, Jiang J, Wang C. Growth-promoting effects of self-selected microbial community on wheat seedlings in saline-alkali soil environments. Front Bioeng Biotechnol 2024; 12:1464195. [PMID: 39734744 PMCID: PMC11671506 DOI: 10.3389/fbioe.2024.1464195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Saline-alkali land is a type of soil environment that causes poor crop growth and low yields. Its management and utilization are, therefore of great significance for increasing arable land resources, ensuring food security, and enhancing agricultural production capacity. The application of plant growth-promoting rhizobacteria (PGPR) is an effective way to promote the establishment of symbiotic relationships between plants and the rhizosphere microenvironment, plant growth and development, and plant resistance to saline-alkali stress. In this study, multiple saline-alkali-resistant bacteria were screened from a saline-alkali land environment and some of them were found to have significantly promotive effects on the growth of wheat seedlings under saline-alkali stress. Using these PGPR, a compound microbial community was selectively obtained from the root-zone soil environment of wheat seedlings, and the metagenomic sequencing analysis of wheat root-zone soil microbiomes was performed. As a result, a compound microbial agent with a Kocuria dechangensis 5-33:Rossellomorea aquimaris S-3:Bacillus subtilis BJYX:Bacillus velezensis G51-1 ratio of 275:63:5:1 was obtained through the self-selection of wheat seedlings. The synthetic compound microbial agent significantly improved the growth of wheat seedlings in saline-alkali soil, as the physiological plant height, aboveground and underground fresh weights, and aboveground and underground dry weights of 21-day-old wheat seedlings were increased by 27.39% (p < 0.01), 147.33% (p < 0.01), 282.98% (p < 0.01), 194.86% (p < 0.01), and 218.60% (p < 0.01), respectively. The promoting effect of this compound microbial agent was also greater than that of each strain on the growth of wheat seedlings. This microbial agent could also regulate some enzyme activities of wheat seedlings and the saline-alkali soil, thereby, promoting the growth of these seedlings. In this study, we analyze an efficient microbial agent and the theoretical basis for promoting the growth of wheat seedlings under saline-alkali stress, thereby, suggesting an important solution for the management and utilization of saline-alkali land.
Collapse
Affiliation(s)
- Min Li
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Wenjie Li
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chunxue Wang
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kun Han
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Jiahui Gong
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Siyuan Dong
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Binghai Du
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Kai Liu
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Chengqiang Wang
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
7
|
Thomas G, Kay WT, Fones HN. Life on a leaf: the epiphyte to pathogen continuum and interplay in the phyllosphere. BMC Biol 2024; 22:168. [PMID: 39113027 PMCID: PMC11304629 DOI: 10.1186/s12915-024-01967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
Epiphytic microbes are those that live for some or all of their life cycle on the surface of plant leaves. Leaf surfaces are a topologically complex, physicochemically heterogeneous habitat that is home to extensive, mixed communities of resident and transient inhabitants from all three domains of life. In this review, we discuss the origins of leaf surface microbes and how different biotic and abiotic factors shape their communities. We discuss the leaf surface as a habitat and microbial adaptations which allow some species to thrive there, with particular emphasis on microbes that occupy the continuum between epiphytic specialists and phytopathogens, groups which have considerable overlap in terms of adapting to the leaf surface and between which a single virulence determinant can move a microbial strain. Finally, we discuss the recent findings that the wheat pathogenic fungus Zymoseptoria tritici spends a considerable amount of time on the leaf surface, and ask what insights other epiphytic organisms might provide into this pathogen, as well as how Z. tritici might serve as a model system for investigating plant-microbe-microbe interactions on the leaf surface.
Collapse
Affiliation(s)
| | - William T Kay
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
8
|
Zhang Y, Gan G, Li Y, Li W, Jiang Y, Wang P, Hu J, Wang N, Quan X, Liu J, Raza W, Xu Y, Hohmann P, Jousset A, Wang Y, Shen Q, Jiang G, Wei Z. Exploring the temporal dynamics of a disease suppressive rhizo-microbiome in eggplants. iScience 2024; 27:110319. [PMID: 39055957 PMCID: PMC11269921 DOI: 10.1016/j.isci.2024.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The rhizosphere microbiome is important for plant health, yet their contributions to disease resistance and assembly dynamics remain unclear. This study employed rhizosphere microbiome transplantation (RMT) to delineate the impact of the rhizosphere microbiome and the immune response of eggplant (Solanum melongena) on resistance to bacterial wilt caused by Ralstonia solanacearum. We first identified disease-suppressive and disease-conducive rhizosphere microbiome in a susceptible tomato recipient. Using a non-destructive rhizobox and 16S rRNA amplicon sequencing, we monitored the dynamics of both microbiome types during the eggplant development. Most differences were observed at the early stage and then diminished over time. The suppressive microbiome maintained a higher proportion of initial community members throughout eggplant development and exhibited stronger deterministic processes in the early stage, underscoring the importance of plant selection in recruiting protective microbes for rhizosphere immunity. Our study sheds light on the development of microbiome-based strategies for plant disease management and resistance breeding.
Collapse
Affiliation(s)
- Yuling Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530000, China
| | - Yarong Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530000, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530000, China
| | - Peng Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530000, China
| | - Jie Hu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands
| | - Ningqi Wang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowen Quan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Jialin Liu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Waseem Raza
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Pierre Hohmann
- Department of Biology, Healthcare and the Environment, Universitat de Barcelona, 08028 Barcelona, Spain
- BonaPlanta, 08241 Manresa, Spain
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530000, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530000, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Law SR, Mathes F, Paten AM, Alexandre PA, Regmi R, Reid C, Safarchi A, Shaktivesh S, Wang Y, Wilson A, Rice SA, Gupta VVSR. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev 2024; 48:fuae008. [PMID: 38425054 PMCID: PMC10977922 DOI: 10.1093/femsre/fuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.
Collapse
Affiliation(s)
- Simon R Law
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Falko Mathes
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Floreat, WA 6014, Australia
| | - Amy M Paten
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Canberra, ACT 2601, Australia
| | - Pamela A Alexandre
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, St Lucia, Qld 4072, Australia
| | - Roshan Regmi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| | - Cameron Reid
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Urrbrae, SA 5064, Australia
| | - Azadeh Safarchi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Westmead, NSW 2145, Australia
| | - Shaktivesh Shaktivesh
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Data 61, Clayton, Vic 3168, Australia
| | - Yanan Wang
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Adelaide SA 5000, Australia
| | - Annaleise Wilson
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Geelong, Vic 3220, Australia
| | - Scott A Rice
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture, and Food, Westmead, NSW 2145, Australia
| | - Vadakattu V S R Gupta
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| |
Collapse
|
10
|
Mousavi SA, Ramula S. The invasive legume Lupinus polyphyllus has minor site-specific impacts on the composition of soil bacterial communities. Ecol Evol 2024; 14:e11030. [PMID: 38357596 PMCID: PMC10864723 DOI: 10.1002/ece3.11030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Plant invasions can have major impacts on ecosystems, both above- and belowground. In particular, invasions by legumes, which often host nitrogen-fixing symbionts (rhizobia), are known to modify soil bacterial communities. Here, we examined the effect of the invasive herbaceous legume Lupinus polyphyllus on the alpha diversity and community composition of soil bacteria. We also explored the relationships between these bacterial communities and vegetation cover, the cover of other (non-invasive) legumes, or the number of vascular plants present. For this, we sampled rhizosphere soil and surveyed vegetation from ten paired sites (uninvaded versus invaded more than 10 years ago) in southwestern Finland, and identified bacterial DNA using 16S rRNA gene amplicon sequencing. The presence of the plant invader and the three vegetation variables considered had no effect on the alpha diversity of soil bacteria in terms of bacterial richness or Shannon and Inverse Simpson diversity indices. However, the composition of soil bacterial communities differed between invaded and uninvaded soils at four out of the ten sites. Interestingly, the relative abundances of the top bacterial families in invaded and uninvaded soils were inconsistent across sites, including for legume-associated rhizobia in the family Bradyrhizobiaceae. Other factors-such as vegetation cover, legume cover (excluding L. polyphyllus), number of plant species-also explained a small proportion of the variation in bacterial community composition. Our findings indicate that L. polyphyllus has the potential to modify the composition of local soil bacterial community, at least in sites where it has been present for more than a decade.
Collapse
Affiliation(s)
| | - Satu Ramula
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
11
|
Li Z, Yang Y, Liu J, Jiang W, Gao Y. Effects of water volume of drip irrigation on soil bacterial communities and its association with soil properties in jujube cultivation. Front Microbiol 2024; 14:1321993. [PMID: 38312501 PMCID: PMC10836404 DOI: 10.3389/fmicb.2023.1321993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction Jujube is one of an important crop in Xinjiang, China, a area suffered by water scarcity and DI has been proven as a suitable mode for jujube cultivation. Soil bacterial community play a vital role in biogeochemical cycles to support the crop growth, and water content is considered as one of the important factors for them. However, limited research has explored the optimum irrigation strategies, such as water volume of DI, to maximize the benefits of jujube cultivation by regulating the soil bacterial communities. Methods Therefore, in this study, we conducted DI experiments on jujube fields in Xinjiang with three different water volume levels, and measured the soil properties and bacterial communities of the flowering and fruit setting (FFS) and end of growth (EG) stages. Results and discussion Significant lower jujube yield and soil available nutrients were observed in samples with low water amount. In addition, we discovered significant effects of the water amount of DI and jujube growth stages on soil bacterial communities. Based on the compare of samples among different growth stages and water amounts some growth stage related bacterial genera (Mycobacterium, Bradyrhizobium, and Bacillus) and water amount-related bacterial phyla (Chloroflexi, Nitrospirota, and Myxococcota) were recognized. Moreover, according to the results of null model, soil bacterial communities were governed by stochastic and deterministic processes under middle and low water volumes of DI, respectively. Finally, we deduced that middle water amount (600 mm) could be the optimal condition of DI for jujube cultivation because the higher jujube yield, deterministic assembly, and stronger correlations between soil properties and bacterial community under this condition. Our findings provide guidance for promoting the application of DI in jujube cultivation, and further research is needed to investigate the underlying mechanisms of soil bacterial community to promote the jujube yield.
Collapse
Affiliation(s)
- Zhaoyang Li
- College of Water Hydraulic and Architectural Engineering, Tarim University, Alar, China
- Laboratory of Modern Agricultural Engineering, Tarim University, Alar, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, China
| | - Yuhui Yang
- College of Water Hydraulic and Architectural Engineering, Tarim University, Alar, China
- Laboratory of Modern Agricultural Engineering, Tarim University, Alar, China
| | - Jiangfan Liu
- College of Water Hydraulic and Architectural Engineering, Tarim University, Alar, China
| | - Wenge Jiang
- College of Water Hydraulic and Architectural Engineering, Tarim University, Alar, China
| | - Yang Gao
- College of Water Hydraulic and Architectural Engineering, Tarim University, Alar, China
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| |
Collapse
|
12
|
Cirillo V, Romano I, Woo SL, Di Stasio E, Lombardi N, Comite E, Pepe O, Ventorino V, Maggio A. Inoculation with a microbial consortium increases soil microbial diversity and improves agronomic traits of tomato under water and nitrogen deficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1304627. [PMID: 38126011 PMCID: PMC10731302 DOI: 10.3389/fpls.2023.1304627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Microbial-based biostimulants, functioning as biotic and abiotic stress protectants and growth enhancers, are becoming increasingly important in agriculture also in the context of climate change. The search for new products that can help reduce chemical inputs under a variety of field conditions is the new challenge. In this study, we tested whether the combination of two microbial growth enhancers with complementary modes of action, Azotobacter chroococcum 76A and Trichoderma afroharzianum T22, could facilitate tomato adaptation to a 30% reduction of optimal water and nitrogen requirements. The microbial inoculum increased tomato yield (+48.5%) under optimal water and nutrient conditions. In addition, the microbial application improved leaf water potential under stress conditions (+9.5%), decreased the overall leaf temperature (-4.6%), and increased shoot fresh weight (+15%), indicating that this consortium could act as a positive regulator of plant water relations under limited water and nitrogen availability. A significant increase in microbial populations in the rhizosphere with applications of A. chroococcum 76A and T. afroharzianum T22 under stress conditions, suggested that these inoculants could enhance soil microbial abundance, including the abundance of native beneficial microorganisms. Sampling time, limited water and nitrogen regimes and microbial inoculations all affected bacterial and fungal populations in the rhizospheric soil. Overall, these results indicated that the selected microbial consortium could function as plant growth enhancer and stress protectant, possibly by triggering adaptation mechanisms via functional changes in the soil microbial diversity and relative abundance.
Collapse
Affiliation(s)
- Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
13
|
Samain E, Duclercq J, Ait Barka E, Eickermann M, Ernenwein C, Mazoyon C, Sarazin V, Dubois F, Aussenac T, Selim S. PGPR-Soil Microbial Communities' Interactions and Their Influence on Wheat Growth Promotion and Resistance Induction against Mycosphaerella graminicola. BIOLOGY 2023; 12:1416. [PMID: 37998015 PMCID: PMC10669164 DOI: 10.3390/biology12111416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
The efficiency of plant-growth-promoting rhizobacteria (PGPR) may not be consistently maintained under field conditions due to the influence of soil microbial communities. The present study aims to investigate their impact on three PGPR-based biofertilizers in wheat. We used the PGPR Paenibacillus sp. strain B2 (PB2), PB2 in co-inoculation with Arthrobacter agilis 4042 (Mix 2), or with Arthrobacter sp. SSM-004 and Microbacterium sp. SSM-001 (Mix 3). Inoculation of PB2, Mix 2, and Mix 3 into non-sterile field soil had a positive effect on root and aboveground dry biomass, depending on the wheat cultivar. The efficiency of the PGPR was further confirmed by the protection they provided against Mycosphaerella graminicola, the causal agent of Septoria leaf blotch disease. PB2 exhibited protection of ≥37.8%, while Mix 2 showed ≥47.9% protection in the four cultivars tested. These results suggest that the interactions between PGPR and native soil microbial communities are crucial for promoting wheat growth and protection. Additionally, high-throughput sequencing of microbial communities conducted 7 days after PGPR inoculations revealed no negative effects of PB2, Mix 2, and Mix 3 on the soil microbial community structure. Interestingly, the presence of Arthrobacter spp. appeared to mitigate the potential negative effect of PB2 on bacterial community and foster root colonization by other beneficial bacterial strains.
Collapse
Affiliation(s)
- Erika Samain
- AGHYLE UP 2018.C101, SFR Condorcet FR CNRS 3417, UniLaSalle, 19 Rue Pierre Waguet, BP 30313, CEDEX, 60026 Beauvais, France;
- SDP, 1 Rue Quesnay, CEDEX, 02000 Laon, France;
| | - Jérôme Duclercq
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80039 Amiens, France; (J.D.); (C.M.); (F.D.)
| | - Essaïd Ait Barka
- Unité de Recherche RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, 51100 Reims, France;
| | - Michael Eickermann
- Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg;
| | | | - Candice Mazoyon
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80039 Amiens, France; (J.D.); (C.M.); (F.D.)
| | | | - Frédéric Dubois
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80039 Amiens, France; (J.D.); (C.M.); (F.D.)
| | - Thierry Aussenac
- UP Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 Rue Pierre Waguet, BP 30313, CEDEX, 60026 Beauvais, France;
| | - Sameh Selim
- AGHYLE UP 2018.C101, SFR Condorcet FR CNRS 3417, UniLaSalle, 19 Rue Pierre Waguet, BP 30313, CEDEX, 60026 Beauvais, France;
| |
Collapse
|
14
|
Adedayo AA, Babalola OO. Genomic mechanisms of plant growth-promoting bacteria in the production of leguminous crops. Front Genet 2023; 14:1276003. [PMID: 38028595 PMCID: PMC10654986 DOI: 10.3389/fgene.2023.1276003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Legumes are highly nutritious in proteins and are good food for humans and animals because of their nutritional values. Plant growth-promoting bacteria (PGPR) are microbes dwelling in the rhizosphere soil of a plant contributing to the healthy status, growth promotion of crops, and preventing the invasion of diseases. Root exudates produced from the leguminous plants' roots can lure microbes to migrate to the rhizosphere region in other to carry out their potential activities which reveals the symbiotic association of the leguminous plant and the PGPR (rhizobia). To have a better cognition of the PGPR in the rhizosphere of leguminous plants, genomic analyses would be conducted employing various genomic sequences to observe the microbial community and their functions in the soil. Comparative genomic mechanism of plant growth-promoting rhizobacteria (PGPR) was discussed in this review which reveals the activities including plant growth promotion, phosphate solubilization, production of hormones, and plant growth-promoting genes required for plant development. Progress in genomics to improve the collection of genotyping data was revealed in this review. Furthermore, the review also revealed the significance of plant breeding and other analyses involving transcriptomics in bioeconomy promotion. This technological innovation improves abundant yield and nutritional requirements of the crops in unfavorable environmental conditions.
Collapse
|
15
|
Leelastwattanagul O, Sutheeworapong S, Khoiri AN, Dulsawat S, Wattanachaisaereekul S, Tachaleat A, Duangfoo T, Paenkaew P, Prommeenate P, Cheevadhanarak S, Jirakkakul J. Soil microbiome analysis reveals effects of periodic waterlogging stress on sugarcane growth. PLoS One 2023; 18:e0293834. [PMID: 37917788 PMCID: PMC10621937 DOI: 10.1371/journal.pone.0293834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
Sugarcane is one of the major agricultural crops with high economic importance in Thailand. Periodic waterlogging has a long-term negative effect on sugarcane development, soil properties, and microbial diversity, impacting overall sugarcane production. Yet, the microbial structure in periodically waterlogged sugarcane fields across soil compartments and growth stages in Thailand has not been documented. This study investigated soil and rhizosphere microbial communities in a periodic waterlogged field in comparison with a normal field in a sugarcane plantation in Ratchaburi, Thailand, using 16S rRNA and ITS amplicon sequencing. Alpha diversity analysis revealed comparable values in periodic waterlogged and normal fields across all growth stages, while beta diversity analysis highlighted distinct microbial community profiles in both fields throughout the growth stages. In the periodic waterlogged field, the relative abundance of Chloroflexi, Actinobacteria, and Basidiomycota increased, while Acidobacteria and Ascomycota decreased. Beneficial microbes such as Arthrobacter, Azoarcus, Bacillus, Paenibacillus, Pseudomonas, and Streptomyces thrived in the normal field, potentially serving as biomarkers for favorable soil conditions. Conversely, phytopathogens and growth-inhibiting bacteria were prevalent in the periodic waterlogged field, indicating unfavorable conditions. The co-occurrence network in rhizosphere of the normal field had the highest complexity, implying increased sharing of resources among microorganisms and enhanced soil biological fertility. Altogether, this study demonstrated that the periodic waterlogged field had a long-term negative effect on the soil microbial community which is a key determining factor of sugarcane growth.
Collapse
Affiliation(s)
- Onnicha Leelastwattanagul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Ahmad Nuruddin Khoiri
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sudarat Dulsawat
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Anuwat Tachaleat
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Thanawat Duangfoo
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Prasobsook Paenkaew
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Peerada Prommeenate
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Jiraporn Jirakkakul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
16
|
Petrushin IS, Vasilev IA, Markova YA. Drought Tolerance of Legumes: Physiology and the Role of the Microbiome. Curr Issues Mol Biol 2023; 45:6311-6324. [PMID: 37623217 PMCID: PMC10453936 DOI: 10.3390/cimb45080398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Water scarcity and global warming make drought-tolerant plant species more in-demand than ever. The most drastic damage exerted by drought occurs during the critical growth stages of seed development and reproduction. In the course of their evolution, plants form a variety of drought-tolerance mechanisms, including recruiting beneficial microorganisms. Legumes (one of the three largest groups of higher plants) have unique features and the potential to adapt to abiotic stress. The available literature discusses the genetic (breeding) and physiological aspects of drought tolerance in legumes, neglecting the role of the microbiome. Our review aims to fill this gap: starting with the physiological mechanisms of legume drought adaptation, we describe the symbiotic relationship of the plant host with the microbial community and its role in facing drought. We consider two types of studies related to microbiomes in low-water conditions: comparisons and microbiome engineering (modulation). The first type of research includes diversity shifts and the isolation of microorganisms from the various plant niches to which they belong. The second type focuses on manipulating the plant holobiont through microbiome engineering-a promising biotech strategy to improve the yield and stress-resistance of legumes.
Collapse
Affiliation(s)
- Ivan S. Petrushin
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia; (I.A.V.); (Y.A.M.)
| | | | | |
Collapse
|
17
|
Ayangbenro AS, Adem MR, Babalola OO. Bambara Nut Root-Nodules Bacteria from a Semi-Arid Region of South Africa and Their Plant Growth-Promoting Traits. Int J Microbiol 2023; 2023:8218721. [PMID: 37426699 PMCID: PMC10328734 DOI: 10.1155/2023/8218721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Rhizobial nitrogen-fixing bacteria are the main inhabitants of the root nodules of legume plants. Studying the bacterial community of legume nodules is important in understanding plant growth and nutrient requirements. Culture-based technique was used to examine the bacterial community of these underground organs from Vigna subterranea L. Verdc (Bambara nut), an underutilized legume in Africa, for plant growth-promoting traits. In this study, Bambara nuts were planted to trap root-nodule bacteria, and the bacteria were morphologically, biochemically, and molecularly characterized. Five selected isolates were screened in vitro for their plant growth-promoting traits and exhibited differences in their phenotypic traits. The polymerase chain reaction (PCR) products were subjected to partial 16S rRNA gene sequencing for phylogenetic analysis. Based on 16S rRNA gene sequence, the isolates were identified as BA1 (Stenotrophomonas maltophilia), BA2 (Chryseobacterium sp.), BA3 (Pseudomonas alcaligenes), BA4 (Pseudomonas plecoglossicida), and BA5 (Pseudomonas hibiscicola). Results showed that four of the five isolates could produce IAA. The capability to solubilize phosphate in Pikovskaya's agar plates was positively shown by four isolates (BA2, BA3, BA4, and BA5). Three isolates could produce hydrogen cyanide while isolates BA1, BA3, BA4, and BA5 were found to have ammonia-production traits. The results suggest that these plant growth-promoting isolates can be used as inoculants for plant growth and productivity.
Collapse
Affiliation(s)
- Ayansina Segun Ayangbenro
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mohomud Rashid Adem
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
18
|
Fu X, Ma Y, Wang D, Zhan L, Guo Z, Fan K, Yang T, Chu H. Long-term chemical fertilization results in a loss of temporal dynamics of diazotrophic communities in the wheat rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162663. [PMID: 36894087 DOI: 10.1016/j.scitotenv.2023.162663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Diazotrophs are potential bacterial biofertilizers with efficacy for plant nutrition, which convert atmospheric N2 into plant available nitrogen. Although they are known to respond strongly to fertilization, little is known about the temporal dynamics of diazotrophic communities throughout plant developmental under different fertilization regimes. In this study, we investigated diazotrophic communities in the wheat rhizosphere at four developmental stages under three long-term fertilization regimes: no fertilizer (Control), chemical NPK fertilizer only (NPK), and NPK fertilizer plus cow manure (NPKM). Fertilization regime had greater effect (explained of 54.9 %) on diazotrophic community structure than developmental stage (explained of 4.8 %). NPK fertilization decreased the diazotrophic diversity and abundance to one-third of the Control, although this was largely recovered by the addition of manure. Meanwhile, Control treatment resulted in significant variation in diazotrophic abundance, diversity, and community structure (P = 0.001) depending on the developmental stage, while the NPK fertilization resulted in the loss of temporal dynamics of the diazotrophic community (P = 0.330), which could be largely recovered by the addition of manure (P = 0.011). Keystone species identified in this study were quite different among the four developmental stages under Control and NPKM treatment but were similar among stages under NPK treatment. These findings suggest that long-term chemical fertilization not only reduces diazotrophic diversity and abundance, but also results in a loss of temporal dynamics of rhizosphere diazotrophic communities.
Collapse
Affiliation(s)
- Xiao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Daozhong Wang
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei 230001, China
| | - Linchuan Zhan
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei 230001, China
| | - Zhibin Guo
- Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province, Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei 230001, China
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Wei W, Guan D, Ma M, Jiang X, Fan F, Meng F, Li L, Zhao B, Zhao Y, Cao F, Chen H, Li J. Long-term fertilization coupled with rhizobium inoculation promotes soybean yield and alters soil bacterial community composition. Front Microbiol 2023; 14:1161983. [PMID: 37275141 PMCID: PMC10232743 DOI: 10.3389/fmicb.2023.1161983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
Microbial diversity is an important indicator of soil fertility and plays an indispensable role in farmland ecosystem sustainability. The short-term effects of fertilization and rhizobium inoculation on soil microbial diversity and community structure have been explored extensively; however, few studies have evaluated their long-term effects. Here, we applied quantitative polymerase chain reaction (qPCR) and amplicon sequencing to characterize the effect of 10-year fertilizer and rhizobium inoculation on bacterial communities in soybean bulk and rhizosphere soils at the flowering-podding and maturity stages. Four treatments were examined: non-fertilization control (CK), phosphorus and potassium fertilization (PK), nitrogen and PK fertilization (PK + N), and PK fertilization and Bradyrhizobium japonicum 5821 (PK + R). Long-term co-application of rhizobium and PK promoted soybean nodule dry weight by 33.94% compared with PK + N, and increased soybean yield by average of 32.25%, 5.90%, and 5.00% compared with CK, PK, and PK + N, respectively. The pH of PK + R was significantly higher than that of PK and PK + N at the flowering-podding stage. The bacterial abundance at the flowering-podding stage was positively correlated with soybean yield, but not at the maturity stage. The significant different class Gemmatimonadetes, and the genera Gemmatimonas, and Ellin6067 in soil at the flowering-podding stage were negatively correlated with soybean yield. However, the bacterial community at class and genus levels at maturity had no significant effect on soybean yield. The key bacterial communities that determine soybean yield were concentrated in the flowering-podding stage, not at maturity stage. Rhizosphere effect, growth period, and treatment synergies resulted in significant differences in soil bacterial community composition. Soil organic matter (OM), total nitrogen (TN), pH, and available phosphorus (AP) were the main variables affecting bacterial community structure. Overall, long-term co-application of rhizobium and fertilizer not only increased soybean yield, but also altered soil bacterial community structure through niche reconstruction and microbial interaction. Rhizobium inoculation plays key role in reducing nitrogen fertilizer application and promoting sustainable agriculture practices.
Collapse
Affiliation(s)
- Wanling Wei
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Fenliang Fan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fangang Meng
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Jilin, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Baisuo Zhao
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Yubin Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Huijun Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| |
Collapse
|
20
|
Wang Z, Yang T, Mei X, Wang N, Li X, Yang Q, Dong C, Jiang G, Lin J, Xu Y, Shen Q, Jousset A, Banerjee S. Bio-Organic Fertilizer Promotes Pear Yield by Shaping the Rhizosphere Microbiome Composition and Functions. Microbiol Spectr 2022; 10:e0357222. [PMID: 36453930 PMCID: PMC9769518 DOI: 10.1128/spectrum.03572-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Bio-organic fertilizers (BOF) containing both organic amendments and beneficial microorganisms have been consistently shown to improve soils fertility and yield. However, the exact mechanisms which link amendments and yields remain disputed, and the complexity of bio-organic fertilizers may work in parallel in several ways. BOF may directly improve yield by replenishing soil nutrients or introducing beneficial microbial genes or indirectly by altering the soil microbiome to enrich native beneficial microorganisms. In this work, we aim to disentangle the relative contributions of direct and indirect effects on pear yield. We treated pear trees with either chemical fertilizer or organic fertilizer with/without the plant-beneficial bacterium Bacillus velezensis SQR9. We then assessed, in detail, soil physicochemical and biological properties (metagenome sequencing) as well as pear yield. We then evaluated the relative importance of direct and indirect effects of soil amendments on pear yield. Both organic treatments increased plant yield by up to 20%, with the addition of bacteria tripling the increase driven by organic fertilizer alone. This increase could be linked to alterations in soil physicochemical properties, bacterial community function, and metabolism. Supplementation of organic fertilizer SQR9 increased rhizosphere microbiome richness and functional diversity. Fertilizer-sensitive microbes and functions responded as whole guilds. Pear yield was most positively associated with the Mitsuaria- and Actinoplanes-dominated ecological clusters and with gene clusters involved in ion transport and secondary metabolite biosynthesis. Together, these results suggested that bio-organic fertilizers mainly act indirectly on plant yield by creating soil chemical properties which promote a plant-beneficial microbiome. IMPORTANCE Bio-organic fertilization is a widely used, eco-friendly, sustainable approach to increasing plant productivity in the agriculture and fruit industries. However, it remains unclear whether the promotion of fruit productivity is related to specific changes in microbial inoculants, the resident microbiome, and/or the physicochemical properties of rhizosphere soils. We found that bio-organic fertilizers alter soil chemical properties, thus manipulating specific microbial taxa and functions within the rhizosphere microbiome of pear plants to promote yield. Our work unveils the ecological mechanisms which underlie the beneficial impacts of bio-organic fertilizers on yield promotion in fruit orchards, which may help in the design of more efficient biofertilizers to promote sustainable fruit production.
Collapse
Affiliation(s)
- Zhonghua Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Tianjie Yang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xinlan Mei
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Ningqi Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xiaogang Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Qingsong Yang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Caixia Dong
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jing Lin
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Yangchun Xu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
21
|
Ajilogba CF, Habig J, Babalola OO. Carbon source utilization pattern of soil bacterial microbiome of bambara groundnut rhizosphere at the different growth stages determines soil fertility. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1012818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The diversity of microbes in the soil of plants is important for sustainable agriculture as these microbes are important in carrying out different functional processes to improve the soil and invariably plant growth. Inversely the presence of the crop also affects the types of microbial communities in the soil. In this study, bambara groundnut was grown during the planting season in South Africa, from November to March 2014/2015 and 2015/2016 and soil samples were taken after every 4 weeks after planting. Soil samples were taken 15 cm deep from 2 different landraces named VBR and VL. Microbial diversity was determined by soil microbial Carbon Source Utilization Profiles (CSUP) using BIOLOG™ GN2 plates. The abundance and richness of the soil microbes was also determined using the Shannon-Weaver and Evenness diversity indices. The diversity of the soil microbial population changed over the stages of plant growth, according to cluster analysis. Bacterial abundance and diversity were higher at 4 and 8 weeks after planting (WAP). The microbial abundance (richness index) in this study ranged from 0.64 to 0.94 with cultivar VL2 at 8 WAP being the highest while bulk soil (control), R2 was the lowest. The Shannon-Weaver index varied between 2.19 and 4.00 with the lowest corresponding to control while the highest was VL2 at 8 WAP. Carbon sources utilized by bacterial communities spread across the 96 carbon sources. The highest utilization of carboxylic acids, ester, amino acids and polymers and carbohydrates was found in the bacterial communities of the different landraces across growth stages. The highest utilization of alcohols, amides, amines, aromatic chemicals, brominated chemicals and phosphorylated chemicals was found in the control landraces. This indicates that the soil samples between 4 WAP and 12 WAP were richer in diversity of microbial species and their abundance. This soil diversity and richness is an indicator of the quality of the soil in order to increase crop yields and agricultural production.
Collapse
|
22
|
The Endophytic Fungi Diversity, Community Structure, and Ecological Function Prediction of Sophora alopecuroides in Ningxia, China. Microorganisms 2022; 10:microorganisms10112099. [PMID: 36363690 PMCID: PMC9695620 DOI: 10.3390/microorganisms10112099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 02/04/2023] Open
Abstract
Sophora alopecuroides L. has great medicinal and ecological value in northwestern China. The host and its microbiota are mutually symbiotic, collectively forming a holobiont, conferring beneficial effects to the plant. However, the analysis of diversity, mycobiota composition, and the ecological function of endophytic fungi in the holobiont of S. alopecuroides is relatively lacking. In this article, the fungal community profiling of roots, stems, leaves, and seeds of S. alopecuroides (at the fruit maturity stage) from Huamachi and Baofeng in Ningxia, China were investigated based on the ITS1 region, using high-throughput sequencing technology. As a result, a total of 751 operational taxonomic units (OTUs) were obtained and further classified into 9 phyla, 27 classes, 66 orders, 141 families, 245 genera, and 340 species. The roots had the highest fungal richness and diversity, while the stems had the highest evenness and pedigree diversity. There also was a significant difference in the richness of the endophytic fungal community between root and seed (p < 0.05). The organ was the main factor affecting the community structure of endophytic fungi in S. alopecuroides. The genera of unclassified Ascomycota, Tricholoma, Apiotrichum, Alternaria, and Aspergillus made up the vast majority of relative abundance, which were common in all four organs as well. The dominant and endemic genera and biomarkers of endophytic fungi in four organs of S. alopecuroides were different and exhibited organ specificity or tissue preference. The endophytic fungi of S. alopecuroides were mainly divided into 15 ecological function groups, among which saprotroph was absolutely dominant, followed by mixotrophic and pathotroph, and the symbiotroph was the least. With this study, we revealed the diversity and community structure and predicted the ecological function of the endophytic fungi of S. alopecuroides, which provided a theoretical reference for the further development and utilization of the endophytic fungi resources of S. alopecuroides.
Collapse
|
23
|
Olanrewaju OS, Babalola OO. Plant growth-promoting rhizobacteria for orphan legume production: Focus on yield and disease resistance in Bambara groundnut. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.922156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Orphan legumes are now experiencing growing demand due to the constraints on available major food crops. However, due to focus on major food crops, little research has been conducted on orphan legumes compared to major food crops, especially in microbiome application to improve growth and yield. Recent developments have demonstrated the enormous potential of beneficial microbes in growth promotion and resistance to stress and diseases. Hence, the focus of this perspective is to examine the potential of plant growth promoting rhizobacteria (PGPR) to improve Bambara groundnut yield and quality. Further insights into the potential use of PGPR as a biological control agent in the crop are discussed. Finally, three PGPR genera commonly associated with plant growth and disease resistance (Bacillus, Pseudomonas, and Streptomyces) were highlighted as case studies for the growth promotion and disease control in BGN production.
Collapse
|
24
|
F. Ajilogba C, Babalola OO, Adebola P, Adeleke R. Bambara Groundnut Rhizobacteria Antimicrobial and Biofertilization Potential. FRONTIERS IN PLANT SCIENCE 2022; 13:854937. [PMID: 35909751 PMCID: PMC9326403 DOI: 10.3389/fpls.2022.854937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Bambara groundnut, an underutilized crop has been proved to be an indigenous crop in Africa with the potential for food security. The rhizosphere of Bambara groundnut contains Rhizobacteria, with the ability to grow, adapt, and colonize their surroundings even in unfavorable conditions and have not been explored for their plant growth-promoting properties. The aim of this research was to determine the potential of rhizobacteria from Bambara groundnut soil samples as either biofertilizers or biocontrol agents or both to help provide sustainable agriculture in Africa and globally. Bambara groundnut rhizospheric soil samples were collected and analyzed for their chemical composition. Rhizobacteria isolates were cultured from the soil samples. Plant growth-promoting, antifungal activities and phylogenetic analysis using 16S rRNA were carried out on the isolates to identify the rhizobacteria. A 2-year field study planting was carried out to determine the effect of these rhizobacteria as biofertilizers for Bambara groundnut (Vigna subterranean). The study was carried out in a complete randomized block experimental design with three replications. All the isolates were able to produce ammonia and 1-aminocyclopropane-1-carboxylate, while 4.65, 12.28, and 27.91% produced hydrogen cyanide, indole acetic acid, and solubilized phosphate, respectively, making them important targets as biocontrol and biofertilizer agents. The field results revealed that treatment with rhizobacteria had significant results compared with the control. Characterization of selected isolates reveals their identity as B. amyloliquefaciens, B. thuringiensis, and Bacillus sp. These Bacillus isolates have proved to be plant growth-promoting agents that can be used as biofertilizers to enhance the growth of crops and consequent improved yield. This is the first time the rhizobacteria from the Bambara groundnut rhizosphere are applied as biofertilizer.
Collapse
Affiliation(s)
- Caroline F. Ajilogba
- Niche Area for Food Security and Safety, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
- Agricultural Research Council-Natural Resources and Engineering, Pretoria, South Africa
| | - Olubukola O. Babalola
- Niche Area for Food Security and Safety, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
| | - Patrick Adebola
- Agricultural Research Council-Vegetable and Ornamental Plants, Pretoria, South Africa
- International Institute of Tropical Agriculture, Abuja, Nigeria
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
25
|
Medina-Paz F, Herrera-Estrella L, Heil M. All Set before Flowering: A 16S Gene Amplicon-Based Analysis of the Root Microbiome Recruited by Common Bean ( Phaseolus vulgaris) in Its Centre of Domestication. PLANTS (BASEL, SWITZERLAND) 2022; 11:1631. [PMID: 35807585 PMCID: PMC9269403 DOI: 10.3390/plants11131631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Plant roots recruit most prokaryotic members of their root microbiota from the locally available inoculum, but knowledge on the contribution of native microorganisms to the root microbiota of crops in native versus non-native areas remains scarce. We grew common bean (Phaseolus vulgaris) at a field site in its centre of domestication to characterise rhizosphere and endosphere bacterial communities at the vegetative, flowering, and pod filling stage. 16S r RNA gene amplicon sequencing of ten samples yielded 9,401,757 reads, of which 8,344,070 were assigned to 17,352 operational taxonomic units (OTUs). Rhizosphere communities were four times more diverse than in the endosphere and dominated by Actinobacteria, Bacteroidetes, Crenarchaeota, and Proteobacteria (endosphere: 99% Proteobacteria). We also detected high abundances of Gemmatimonadetes (6%), Chloroflexi (4%), and the archaeal phylum Thaumarchaeota (Candidatus Nitrososphaera: 11.5%): taxa less frequently reported from common bean rhizosphere. Among 154 OTUs with different abundances between vegetative and flowering stage, we detected increased read numbers of Chryseobacterium in the endosphere and a 40-fold increase in the abundances of OTUs classified as Rhizobium and Aeromonas (equivalent to 1.5% and over 6% of all reads in the rhizosphere). Our results indicate that bean recruits specific taxa into its microbiome when growing 'at home'.
Collapse
Affiliation(s)
- Francisco Medina-Paz
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato 36824, GTO, Mexico;
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, Irapuato 36824, GTO, Mexico; or
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79424, USA
| | - Martin Heil
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato 36824, GTO, Mexico;
| |
Collapse
|