1
|
Jintasakul V, Pattano J, Preeprem S, Mittraparp-Arthorn P. Characterization and genome analysis of lytic Vibrio phage VPK8 with potential in lysing Vibrio parahaemolyticus isolates from clinical and seafood sources. Virol J 2025; 22:21. [PMID: 39885536 PMCID: PMC11783711 DOI: 10.1186/s12985-025-02637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus. This study characterizes Vibrio phage VPK8, focusing on host specificity, efficiency of plating (EOP) variability across V. parahaemolyticus isolates from diverse sources and other Vibrio species, morphology, genomic features, and bacteriolytic potential. METHODS Vibrio phage VPK8 was isolated from blood cockles in Thailand using a mixed-host approach and purified via the double-layer agar method. Host specificity was evaluated using spot assays and EOP measurements against 120 Vibrio strains, including AHPND-associated, clinical, and seafood isolates. Phage morphology was characterized by transmission electron microscopy (TEM), while genomic features were analyzed using next-generation sequencing. Lytic characteristics, including latent period and burst size, were determined through one-step growth curves, and bacterial growth reduction was evaluated over a 24-h. RESULTS Vibrio phage VPK8 is a lytic phage with a 42,866 bp linear double-stranded genome, G + C content of 49.4%, and 48 coding sequences. Phylogenetic analysis grouped it within the Autographiviridae family, showing 95.96% similarity to Vibrio phage vB_VpaP_MGD1. Viral proteomic analysis placed VPK8 within the Pseudomonadota host group. Spot assays indicated broad lytic activity, but EOP analysis revealed high infectivity in clinical and seafood V. parahaemolyticus isolates, as well as some V. cholerae and V. mimicus strains. TEM revealed an icosahedral head (~ 60 nm) and a short tail. At a multiplicity of infection of 0.01, VPK8 exhibited a latent period of 25 min, a burst size of 115, and effectively inhibited the reference host V. parahaemolyticus PSU5124 within 6 h, maintaining its lytic activity and stability for over 24 h. CONCLUSIONS This study provides a detailed characterization of Vibrio phage VPK8 which exhibits targeted infectivity with high EOP in clinical and seafood V. parahaemolyticus isolates, as well as selected Vibrio species. Its stable lytic performance, rapid replication, and genomic safety suggest its potential for phage-based applications. Further studies should explore its in vivo efficacy and the genetic features contributing to phage resistance mechanisms, enhancing its potential applicability in managing Vibrio-related diseases.
Collapse
Affiliation(s)
- Valalak Jintasakul
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Research and Innovation Development of Microbiology for Sustainability (RIMS), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jiranan Pattano
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Research and Innovation Development of Microbiology for Sustainability (RIMS), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sutima Preeprem
- Medical and Industrial Microbiology Program, Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand
| | - Pimonsri Mittraparp-Arthorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Center of Research and Innovation Development of Microbiology for Sustainability (RIMS), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
2
|
Yang J, Zhu X, Xu X, Sun Q. Recent knowledge in phages, phage-encoded endolysin, and phage encapsulation against foodborne pathogens. Crit Rev Food Sci Nutr 2024; 64:12040-12060. [PMID: 37589483 DOI: 10.1080/10408398.2023.2246554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The use of antibiotics had reached a plateau due to antibiotic resistance, overuse, and residue. Bacteriophages have recently attracted considerable attention as alternative biocontrol agents. Here, we provide an up-to-date overview of phage applications in the food industry. We reviewed recently reported phages against ten typical foodborne pathogens, studies of competitive phage-encoded endolysins, and the primary outcomes of phage encapsulation in food packaging and pathogen detection. Furthermore, we identified existing barriers that still need to be addressed and proposed potential solutions to overcome these obstacles in the future.
Collapse
Affiliation(s)
- Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Xiaolong Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
3
|
Gao L, Zhang L, Yang J, Ma T, Wang B, Yang H, Lin F, Xu X, Yang ZQ. Immobilization of a broad host range phage on the peroxidase-like Fe-MOF for colorimetric determination of multiple Salmonella enterica strains in food. Mikrochim Acta 2024; 191:331. [PMID: 38744722 DOI: 10.1007/s00604-024-06402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
A broad host range phage-based nanozyme (Fe-MOF@SalmpYZU47) was prepared for colorimetric detection of multiple Salmonella enterica strains. The isolation of a broad host range phage (SalmpYZU47) capable of infecting multiple S. enterica strains was achieved. Then, it was directly immobilized onto the Fe-MOF to prepare Fe-MOF@SalmpYZU47, exhibiting peroxidase-like activity. The peroxidase-like activity can be specifically inhibited by multiple S. enterica strains, benefiting from the broad host range capture ability of Fe-MOF@SalmpYZU47. Based on it, a colorimetric detection approach was developed for S. enterica in the range from 1.0 × 102 to 1.0 × 108 CFU mL-1, achieving a low limit of detection (LOD) of 11 CFU mL-1. The Fe-MOF@SalmpYZU47 was utilized for detecting S. enterica in authentic food samples, achieving recoveries ranging from 91.88 to 105.34%. Hence, our proposed broad host range phage-based nanozyme exhibits significant potential for application in the colorimetric detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Lu Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Ling Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Juanli Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Tong Ma
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Bo Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Huan Yang
- School of Material Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China.
| | - Xuechao Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, Zhejiang, China.
| | - Zhen-Quan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| |
Collapse
|
4
|
Wang Z, Yang X, Wang H, Wang S, Fang R, Li X, Xing J, Wu Q, Li Z, Song N. Characterization and efficacy against carbapenem-resistant Acinetobacter baumannii of a novel Friunavirus phage from sewage. Front Cell Infect Microbiol 2024; 14:1382145. [PMID: 38736748 PMCID: PMC11086170 DOI: 10.3389/fcimb.2024.1382145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) has become a new threat in recent years, owing to its rapidly increasing resistance to antibiotics and new effective therapies are needed to combat this pathogen. Phage therapy is considered to be the most promising alternative for treating CRAB infections. In this study, a novel phage, Ab_WF01, which can lyse clinical CRAB, was isolated and characterized from hospital sewage. The multiplicity of infection, morphology, one-step growth curve, stability, sensitivity, and lytic activity of the phage were also investigated. The genome of phage Ab_WF01 was 41, 317 bp in size with a GC content of 39.12% and encoded 51 open reading frames (ORFs). tRNA, virulence, and antibiotic resistance genes were not detected in the phage genome. Comparative genomic and phylogenetic analyses suggest that phage Ab_WF01 is a novel species of the genus Friunavirus, subfamily Beijerinckvirinae, and family Autographiviridae. The in vivo results showed that phage Ab_WF01 significantly increased the survival rate of CRAB-infected Galleria mellonella (from 0% to 70% at 48 h) and mice (from 0% to 60% for 7 days). Moreover, after day 3 post-infection, phage Ab_WF01 reduced inflammatory response, with strongly ameliorated histological damage and bacterial clearance in infected tissue organs (lungs, liver, and spleen) in mouse CRAB infection model. Taken together, these results show that phage Ab_WF01 holds great promise as a potential alternative agent with excellent stability for against CRAB infections.
Collapse
Affiliation(s)
- Zhitao Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xue Yang
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Qianqian Wu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
5
|
Cevallos-Urena A, Kim JY, Kim BS. Vibrio-infecting bacteriophages and their potential to control biofilm. Food Sci Biotechnol 2023; 32:1719-1727. [PMID: 37780594 PMCID: PMC10533469 DOI: 10.1007/s10068-023-01361-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 10/03/2023] Open
Abstract
The emergence and spread of antibiotic-resistant pathogenic bacteria have necessitated finding new control alternatives. Under these circumstances, lytic bacteriophages offer a viable and promising option. This review focuses on Vibrio-infecting bacteriophages and the characteristics that make them suitable for application in the food and aquaculture industries. Bacteria, particularly Vibrio spp., can produce biofilms under stress conditions. Therefore, this review summarizes several anti-biofilm mechanisms that phages have, such as stimulating the host bacteria to produce biofilm-degrading enzymes, utilizing tail depolymerases, and penetrating matured biofilms through water channels. Additionally, the advantages of bacteriophages over antibiotics, such as a lower probability of developing resistance and the ability to infect dormant cells, are discussed. Finally, this review presents future research prospects related to further utilization of phages in diverse fields.
Collapse
Affiliation(s)
- Ana Cevallos-Urena
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jeong Yeon Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
6
|
Lin LC, Tsai YC. Isolation and characterization of a Vibrio owensii phage phi50-12. Sci Rep 2022; 12:16390. [PMID: 36180722 PMCID: PMC9525291 DOI: 10.1038/s41598-022-20831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio owensii is a widely distributed marine vibrio species that causes acute hepatopancreatic necrosis in the larvae of Panulirus ornatus and Penaeus vannamei, and is also associated with Montipora white syndrome in corals. We characterized V. owensii GRA50-12 as a potent pathogen using phenotypic, biochemical, and zebrafish models. A virulent phage, vB_VowP_phi50-12 (phi50-12), belonging to the N4-like Podoviridae, was isolated from the same habitat as that of V. owensii GRA50-12 and characterized. This phage possesses a unique sequence with no similar hits in the public databases and has a short latent time (30 min), a large burst size (106 PFU/infected cell), and a wide range of pH and temperature stabilities. Moreover, phi50-12 also demonstrated a strong lysis ability against V. owensii GRA50-12. SDS-PAGE revealed at least nine structural proteins, four of which were confirmed using LC–MS/MS analysis. The size of the phi50-12 genome was 68,059 bp, with 38.5% G + C content. A total of 101 ORFs were annotated, with 17 ORFs having closely related counterparts in the N4-like vibrio phage. Genomic sequencing confirmed the absence of antibiotic resistance genes or virulence factors. Comparative studies have shown that phi50-12 has a unique genomic arrangement, except for the well-conserved core regions of the N4-like phages. Phylogenetic analysis demonstrated that it belonged to a group of smaller genomes of N4-like vibrio phages. The therapeutic effect in the zebrafish model suggests that phi50-12 could be a potential candidate for application in the treatment of V. owensii infection or as a biocontrol agent. However, further research must be carried out to confirm the efficacy of phage50-12.
Collapse
Affiliation(s)
- Ling-Chun Lin
- Masters Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan.
| | - Yu-Chuan Tsai
- Masters Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan
| |
Collapse
|