1
|
Xiao S, Zuo W, Xiang Q, Xie Y, Xiao Y. Advances in the Role of Antimicrobial Peptides in the Management of Sexually Transmitted Infections. J Clin Lab Anal 2025:e70041. [PMID: 40366090 DOI: 10.1002/jcla.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/08/2025] [Accepted: 04/12/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Sexually transmitted infections (STIs) are a major threat to global health, and the emergence of antibiotic-resistant strains has made therapeutic strategies more complex. Antimicrobial peptides (AMPs) are a ubiquitous class of natural compounds that are expected to be an alternative to conventional antibiotics due to their broad spectrum of activity and lower propensity for resistance, promising alternatives to conventional antibiotics. OBJECTIVE To emphasize the importance of antimicrobial peptides in the fight against STIs and to review recent advances in AMPs for the treatment and prevention of STIs. METHODS This article focuses on reviewing the progress of research on AMPs in the treatment and prognosis of STIs such as gonorrhea, HIV, HPV, and chlamydia, and discusses the challenges and future directions of the field. RESULTS AMPs have great potential in the prevention and treatment of STIs. However, AMPs for the treatment of STIs face challenges such as enzymatic degradation, safety and high cost, while nanotechnology and peptide modification are expected to enhance the stability and bioavailability of AMPs. CONCLUSION AMPs have the potential to become an important tool for the treatment of STIs with further research and technological innovation.
Collapse
Affiliation(s)
- Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Xiang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Norris SJ. Establishment of the Nichols strain as the type strain of Treponema pallidum. Int J Syst Evol Microbiol 2025; 75:006697. [PMID: 40014041 PMCID: PMC11868658 DOI: 10.1099/ijsem.0.006697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/16/2025] [Indexed: 02/28/2025] Open
Abstract
In this article, it is proposed that the Nichols strain of Treponema pallidum be established as the type strain. T. pallidum was first identified as the causative agent of syphilis in 1905, and the Nichols strain was isolated in 1912 by inoculation of a rabbit with cerebrospinal fluid from a patient with neurosyphilis. The Nichols strain has been maintained by serial passage in rabbits for over a century, and historically most studies of T. pallidum have been conducted using this strain. In recent years, a procedure for continuous in vitro culture of T. pallidum in a tissue culture system has been developed, making propagation of this spirochaete easier and hence facilitating research. The Nichols strain has >99% DNA homology with a group of organisms that cause syphilis, bejel/endemic syphilis and yaws in humans, a yaws-like disease in primates and spirochaetosis in rabbits and hares. This group is highly similar in terms of their gene and G+C content, genome synteny, cell morphology, natural dependence on mammalian hosts and ability to cause long-term infections; variation occurs in host range, modes of transmission, aptitude for dissemination, manifestations, congenital infection and geographical distribution. Availability of a type strain will aid in the formal acceptance of T. pallidum subspecies first described in 1984 and supported by recent whole-genome analyses of numerous strains from the T. pallidum-related group.
Collapse
Affiliation(s)
- Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Kaminiów K, Kiołbasa M, Pastuszczak M. The Significance of the Cell-Mediated Host Immune Response in Syphilis. Microorganisms 2024; 12:2580. [PMID: 39770782 PMCID: PMC11677580 DOI: 10.3390/microorganisms12122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Syphilis, caused by the highly invasive pathogen Treponema pallidum, remains one of the oldest and most significant public health challenges. According to the World Health Organization (WHO), the number of new syphilis cases among adults aged 15-49 years in 2022 was estimated at approximately 8 million, with notable increases observed in Europe, the Americas, and Africa. The cellular immune response plays a critical role in combating this infection, and its insufficient activity may contribute to chronic progression of the disease. T. pallidum effectively evades the host immune response, enabling its prolonged survival within the host and increasing the risk of late complications such as neurosyphilis and cardiovascular syphilis. This review article discusses the mechanisms of cellular immune responses in T. pallidum infection, including T lymphocyte activation, proinflammatory cytokine production, and the roles of macrophages and dendritic cells in pathogen recognition and elimination. Additionally, it examines the immune evasion strategies employed by T. pallidum, such as the low immunogenicity of its antigens and its ability to suppress the activation of effector cells. A comprehensive understanding of the current knowledge regarding cellular immune mechanisms may contribute to the development of more effective diagnostic and therapeutic approaches in syphilis management.
Collapse
Affiliation(s)
- Konrad Kaminiów
- Clinical Department of Dermatology, Medical University of Silesia, Marii Curie-Skłodowskiej 10, 41-800 Zabrze, Poland; (M.K.); (M.P.)
| | | | | |
Collapse
|
4
|
Houston S, Marshall S, Gomez A, Cameron CE. Proteomic analysis of the Treponema pallidum subsp. pallidum SS14 strain: coverage and comparison with the Nichols strain proteome. Front Microbiol 2024; 15:1505893. [PMID: 39723147 PMCID: PMC11668736 DOI: 10.3389/fmicb.2024.1505893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Strains of the syphilis spirochete, Treponema pallidum ssp. pallidum, group into one of two deep-branching clades: the Nichols clade or the globally dominant Street Strain 14 (SS14) clade. To date, in-depth proteome-wide analyses have focused on Nichols clade strains. Methods The T. pallidum SS14 clade reference strain (SS14) proteome was characterized via protein detection and quantification analyses using mass spectrometry, and comparison was made to the Nichols clade reference strain (Nichols) proteome. Results Approximately two thirds of all proteins from T. pallidum SS14 were detected and quantitated, allowing confirmation of expression of 259 proteins for the first time in this strain, including 11 known/putative outer membrane proteins (OMPs). SS14 and Nichols proteome comparative analyses demonstrated similar protein expression/quantification profiles between the two strains, and showed that inter-strain amino acid sequence differences are located primarily within predicted surface-exposed regions in 16 known/putative OMPs. Discussion This study provides the first comparative analyses of the proteomes from the T. pallidum SS14 and Nichols strains. The findings inform syphilis vaccine design by confirming the expression of known/predicted OMP vaccine candidates in SS14 treponemes, and via the finding that most inter-strain variable residues found in OMPs are predicted to be located in surface-exposed, host-facing regions of these proteins.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Steven Marshall
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Houston S, Gomez A, Geppert A, Goodyear MC, Cameron CE. In-Depth Proteome Coverage of In Vitro-Cultured Treponema pallidum and Quantitative Comparison Analyses with In Vivo-Grown Treponemes. J Proteome Res 2024; 23:1725-1743. [PMID: 38636938 PMCID: PMC11077495 DOI: 10.1021/acs.jproteome.3c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Previous mass spectrometry (MS)-based global proteomics studies have detected a combined total of 86% of all Treponema pallidum proteins under infection conditions (in vivo-grown T. pallidum). Recently, a method was developed for the long-term culture of T. pallidum under in vitro conditions (in vitro-cultured T. pallidum). Herein, we used our previously reported optimized MS-based proteomics approach to characterize the T. pallidum global protein expression profile under in vitro culture conditions. These analyses provided a proteome coverage of 94%, which extends the combined T. pallidum proteome coverage from the previously reported 86% to a new combined total of 95%. This study provides a more complete understanding of the protein repertoire of T. pallidum. Further, comparison of the in vitro-expressed proteome with the previously determined in vivo-expressed proteome identifies only a few proteomic changes between the two growth conditions, reinforcing the suitability of in vitro-cultured T. pallidum as an alternative to rabbit-based treponemal growth. The MS proteomics data have been deposited in the MassIVE repository with the data set identifier MSV000093603 (ProteomeXchange identifier PXD047625).
Collapse
Affiliation(s)
- Simon Houston
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Alloysius Gomez
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Andrew Geppert
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mara C. Goodyear
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Caroline E. Cameron
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Department
of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Kazaka T, Zrelovs N, Akopjana I, Bogans J, Jansons J, Dislers A, Kazaks A. Recombinant design of the enzymatically active domain of phage Enc34 endolysin to improve its activity against Gram-negative bacteria. FEMS Microbiol Lett 2024; 371:fnae103. [PMID: 39673269 DOI: 10.1093/femsle/fnae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/29/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
Endolysins are bacteriophage-encoded peptidoglycan-degrading enzymes with potential applications for treating multidrug-resistant bacterial infections. While exogenously applied endolysins are active against Gram-positive bacteria in their native form, Gram-negative bacteria are protected from such activity of most native endolysins by an outer membrane. However, it was shown that recombinant endolysins can be designed to efficiently lyse Gram-negative bacteria from without as well. During our previous efforts, we purified and structurally characterized the enzymatically active domain (EAD) of phage Enc34 endolysin. In this work, we investigated the lytic potential of products resulting from different variants of fusions involving this EAD with a panel of selected antimicrobial peptides. A set of constructs was generated and expressed in Escherichia coli cells. While most such recombinant proteins accumulated intracellularly, some of them could lyse cells from within and appear in the expression medium. The fusion protein variants produced were purified and tested for their bactericidal activity against Gram-negative bacteria. The best candidate caused rapid degradation of E. coli XL1-Blue cells during the first minutes after addition, reducing the viable cell count more than three-fold. We believe that these results might be helpful in the design of new antibacterial tools.
Collapse
Affiliation(s)
- Tatjana Kazaka
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Andris Dislers
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| |
Collapse
|
7
|
Houston S, Gomez A, Geppert A, Eshghi A, Smith DS, Waugh S, Hardie DB, Goodlett DR, Cameron CE. Deep proteome coverage advances knowledge of Treponema pallidum protein expression profiles during infection. Sci Rep 2023; 13:18259. [PMID: 37880309 PMCID: PMC10600179 DOI: 10.1038/s41598-023-45219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Comprehensive proteome-wide analysis of the syphilis spirochete, Treponema pallidum ssp. pallidum, is technically challenging due to high sample complexity, difficulties with obtaining sufficient quantities of bacteria for analysis, and the inherent fragility of the T. pallidum cell envelope which further complicates proteomic identification of rare T. pallidum outer membrane proteins (OMPs). The main aim of the present study was to gain a deeper understanding of the T. pallidum global proteome expression profile under infection conditions. This will corroborate and extend genome annotations, identify protein modifications that are unable to be predicted at the genomic or transcriptomic levels, and provide a foundational knowledge of the T. pallidum protein expression repertoire. Here we describe the optimization of a T. pallidum-specific sample preparation workflow and mass spectrometry-based proteomics pipeline which allowed for the detection of 77% of the T. pallidum protein repertoire under infection conditions. When combined with prior studies, this brings the overall coverage of the T. pallidum proteome to almost 90%. These investigations identified 27 known/predicted OMPs, including potential vaccine candidates, and detected expression of 11 potential OMPs under infection conditions for the first time. The optimized pipeline provides a robust and reproducible workflow for investigating T. pallidum protein expression during infection. Importantly, the combined results provide the deepest coverage of the T. pallidum proteome to date.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Andrew Geppert
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Azad Eshghi
- University of Victoria-Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - Derek S Smith
- University of Victoria-Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - Sean Waugh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Darryl B Hardie
- University of Victoria-Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - David R Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria-Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Waugh S, Ranasinghe A, Gomez A, Houston S, Lithgow KV, Eshghi A, Fleetwood J, Conway KME, Reynolds LA, Cameron CE. Syphilis and the host: multi-omic analysis of host cellular responses to Treponema pallidum provides novel insight into syphilis pathogenesis. Front Microbiol 2023; 14:1254342. [PMID: 37795301 PMCID: PMC10546344 DOI: 10.3389/fmicb.2023.1254342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Syphilis is a chronic, multi-stage infection caused by the extracellular bacterium Treponema pallidum ssp. pallidum. Treponema pallidum widely disseminates through the vasculature, crosses endothelial, blood-brain and placental barriers, and establishes systemic infection. Although the capacity of T. pallidum to traverse the endothelium is well-described, the response of endothelial cells to T. pallidum exposure, and the contribution of this response to treponemal traversal, is poorly understood. Methods To address this knowledge gap, we used quantitative proteomics and cytokine profiling to characterize endothelial responses to T. pallidum. Results Proteomic analyses detected altered host pathways controlling extracellular matrix organization, necroptosis and cell death, and innate immune signaling. Cytokine analyses of endothelial cells exposed to T. pallidum revealed increased secretion of interleukin (IL)-6, IL-8, and vascular endothelial growth factor (VEGF), and decreased secretion of monocyte chemoattractant protein-1 (MCP-1). Discussion This study provides insight into the molecular basis of syphilis disease symptoms and the enhanced susceptibility of individuals infected with syphilis to HIV co-infection. These investigations also enhance understanding of the host response to T. pallidum exposure and the pathogenic strategies used by T. pallidum to disseminate and persist within the host. Furthermore, our findings highlight the critical need for inclusion of appropriate controls when conducting T. pallidum-host cell interactions using in vitro- and in vivo-grown T. pallidum.
Collapse
Affiliation(s)
- Sean Waugh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Akash Ranasinghe
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Karen V. Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Azad Eshghi
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Jenna Fleetwood
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Kate M. E. Conway
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|