1
|
Liu X, Xiu C, He L, Zhao Y, Li B. Strong immune response and protection against Brucella abortus by Omp25 and BP26 mRNA vaccine candidates. Int Immunopharmacol 2025; 158:114765. [PMID: 40349401 DOI: 10.1016/j.intimp.2025.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Brucellosis, a globally prevalent zoonotic disease caused by Brucella species, remains without safe and effective human vaccines. This study focuses on the outer membrane proteins Omp25 and BP26 of Brucella as targets, employing a multidimensional strategy to develop novel mRNA vaccines and systematically evaluate their immunoprotective efficacy. First, bioinformatics tools were used to predict the antigenicity, immunogenicity, and physicochemical properties of Omp25 and BP26, while the C-ImmSim server simulated their potential to induce innate and adaptive immune responses. Building on these predictions, we designed and synthesized lipid nanoparticle-encapsulated nucleoside-modified mRNA vaccines (Omp25-Fc and BP26-Fc mRNA-LNPs) and compared their immunogenicity with traditional alum-adjuvanted protein vaccines (alum-BP26 and alum-Omp25). Animal experiments demonstrated that three immunizations with Omp25-Fc and BP26-Fc mRNA-LNPs induced significantly stronger humoral and cellular immune responses in mice compared to conventional vaccines. Evaluation of protective efficacy through challenge experiments revealed a marked reduction in splenic bacterial load in both mRNA vaccine groups relative to the controls. Mechanistic analysis further showed that Omp25-Fc and BP26-Fc mRNA vaccines activated mixed Th1/Th2 immune responses, effectively reducing bacterial burden and inflammatory damage in systemic infection models. Notably, the mRNA vaccines exhibited more durable immune memory and broader protective coverage than the alum-adjuvanted protein vaccines. Our findings demonstrate that Omp25- and BP26-based mRNA-LNP vaccines exhibit high immunogenicity and clinical translational potential, providing innovative strategies and experimental evidence for the development of brucellosis vaccines.
Collapse
Affiliation(s)
- Xuyan Liu
- Hebei GEO University, Shijiazhuang 050031, China.
| | - Chenlin Xiu
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang 050051, China
| | - Lei He
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yunwang Zhao
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Baolin Li
- Qinhuangdao First Hospital affiliated to Hebei Medical University, Qinhuangdao 066000, China
| |
Collapse
|
2
|
Sharma N, Joshi B, Sharma B, Kumar S, Mohanty KK, Prakash H. Customized MHC Class I & II restricted peptides from clinical isolates of Mycobacterium tuberculosis tweak strong cellular immune response in Healthy individuals and Pulmonary Tuberculosis patients: A potential candidate in vaccine design. Tuberculosis (Edinb) 2025; 152:102640. [PMID: 40262464 DOI: 10.1016/j.tube.2025.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
Tuberculosis (TB) remains a global health challenge as annual mortality rate due to drug resistant TB is increasing exponentially. This is mostly associated with the delayed diagnosis of Multidrug-resistant (MDR) or latent TB. Effective management of TB demands development of novel immunological strategies, such as peptide-based/subunit vaccines that can stimulate specific immune responses. In this context, we evaluated the immunogenic potential of two Major Histocompatibility Complex (MHC) Class I/II-restricted peptides from Mycobacterium tuberculosis (M. tuberculosis): Rv2588c and Rv0148. The peptides were tested on T and monocyte populations from healthy donors and pulmonary TB (PTB) patients. Flow cytometry analysis revealed significant T cell activation in peripheral blood mononuclear cells (PBMC) from both groups. Enzyme-linked immunosorbent assay (ELISA) demonstrated a strong IFN-γ response, confirming effective T cell activation. Additionally, these peptides induced increased nitric oxide (NO) production in macrophages, indicating their role in activating the innate immune system. Overall, Rv2588c and Rv0148 peptides exhibited robust immunogenicity, stimulating both adaptive and innate immune responses in PBMCs from healthy and PTB individuals. These findings highlight their potential as promising TB vaccine candidates, paving the way for improved TB treatment and prevention strategies.
Collapse
Affiliation(s)
- Niharika Sharma
- Department of Immunology, ICMR- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India; Amity Centre for Translational Research, Amity University, Noida, Uttar Pradesh, India
| | - Beenu Joshi
- Department of Immunology, ICMR- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Bhawna Sharma
- Department of Immunology, ICMR- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Santosh Kumar
- TB and Chest Department, Sarojini Naidu Medial College, Agra, Uttar Pradesh, India
| | - Keshar Kunja Mohanty
- Department of Immunology, ICMR- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Hridayesh Prakash
- Amity Centre for Translational Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Ali A, Ali SL, Alamri A, Khatrawi EM, Baiduissenova A, Suleimenova F, Mishra VK, Khan A, Dusmagambetov M, Askarova G. Multi-epitope-based vaccine models prioritization against Astrovirus MLB1 using immunoinformatics and reverse vaccinology approaches. J Genet Eng Biotechnol 2025; 23:100451. [PMID: 40074425 PMCID: PMC11719404 DOI: 10.1016/j.jgeb.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024]
Abstract
Astrovirus MLB1 (HAstV-MLB1) is non-enveloped RNA virus that cause acute gastroenteritis infection. Despite research progress about infection and pathogenesis of HAstV-MLB1, Currently, no vaccine has been developed to effectively combat this pathogen. The current study is based on immunoinformatics and reverse vaccinology approaches to design next-generation, multi-epitope-based vaccine models against HAstV-MLB1. Genome-wide whole proteome data of HAstV-MLB1 strain was retrieved, and a series of analyses were conducted to explore effective B and T-cell epitopes that hold significant antigenic nature with no toxicity and allergenicity. A set of vaccine constructs were designed by different combination of lead B and T-cell epitopes with diverse linkers and adjuvants sequences. The model vaccine structures were analyzed via rigorous criteria of physiochemical properties, antigenicity, and molecular docking with HLA and TLR4 immune receptors to ensure their efficacy and safety. Based on the lowest binding energy of -82.48 kcal/mol against the HLA receptor, the MLB1-C2 vaccine model with β-definsin adjuvant was prioritized for molecular dynamic and immune simulations analyses to assess its stability and immunogenic potential. These analyses revealed that the MLB1-C2 construct has feasible molecular stability and potential to boost strong immune responses in the host cell. Besides, the model was predicted to be non-toxic, non-allergenic, and antigenic, ensuring broad population coverage and capable to elicit a robust immune response. The in-silico cloning analysis highlighted a possible gene expression potential of the MLB1-C2 construct in E.coli commercial recombinant vector molecule. The findings of the current study provide an essential template for the development of a advanced next-generation effective vaccine against HAstV-MLB1.
Collapse
Affiliation(s)
- Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Syed Luqman Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Elham Mohammed Khatrawi
- Department of Medical Microbiology and Immunology, Taibah University, College of Medicine, Madinah 42353, Saudi Arabia.
| | - Aliya Baiduissenova
- Department of Microbiology and Virology, Astana Medical University, Astana city 010000, Kazakhstan.
| | - Fatima Suleimenova
- Department of Human Anatomy, Astana Medical University, Astana 010000, Kazakhstan.
| | - Vipin Kumar Mishra
- Chemistry Division, School of Advance Sciences and Languages, VIT Bhopal University Bhopal, India.
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan.
| | - Marat Dusmagambetov
- Department of Microbiology and Virology, Astana Medical University, Astana city 010000, Kazakhstan.
| | - Gulsum Askarova
- Department of Dermatovenereology, Kazakhstan Medical University, Almaty, Kazakhstan, 050016.
| |
Collapse
|
4
|
Ali A, Ali SL, Alamri A, Khatrawi EM, Baiduissenova A, Suleimenova F, Mishra VK, Khan A, Dusmagambetov M, Askarova G. Multi-epitope-based vaccine models prioritization against Astrovirus MLB1 using immunoinformatics and reverse vaccinology approaches. J Genet Eng Biotechnol 2025; 23:100451. [DOI: https:/doi.org/10.1016/j.jgeb.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Xu Z, Zhang Y, Wang Y, Wu A, Meng C, Li W, Yi J, Chen C. Evaluation of the safety and immune protection of OMPAC, PAPF, and EBPSs recombinant subunit vaccines Developed for Escherichia coli, Staphylococcus aureus, and Streptococcus agalactiae in mice. Int Immunopharmacol 2025; 148:114151. [PMID: 39874844 DOI: 10.1016/j.intimp.2025.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/30/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Bacterial mastitis in dairy cow is often caused by a combination of bacterial infections, such as Escherichia coli, Staphylococcus aureus, and Streptococcus agalactiae. Currently, there is no effective vaccine against the disease. Therefore, we constructed a recombinant subunit vaccine by fusing gene fragments of E. coli OMPA and OMPC, S. aureus EBPS, and S. agalactiae PGK, AP1, AP2, and FBSA. These gene fragments were combined into three fusion proteins: OMPAC, EBPSs, and PAPF. Mice were immunized with the three fusion proteins either alone or in combination. The test results showed that immunization with OMPAC, EBPSs, and PAPF individually or in combination could induce high titers of antibodies in the mice. Additionally, 21 days post-immunization, IFN-γ levels were significantly increased in all groups of mice, suggesting that immunization with OMPAC, EBPSs, and PAPF, whether alone or in combination, was effective in inducing antibody production. This indicates that OMPAC, EBPSs, and PAPF were effective in inducing both humoral and cellular immunity in mice. Furthermore, immunization with OMPAC, EBPSs, and PAPF individually or in combination were effective in protecting mice from E. coli, S. aureus, and S. agalactiae infections. Importantly, a mixture of the three fusion proteins was relatively safe for pregnant female mice. In conclusion, we successfully constructed and expressed recombinant subunit vaccines of OMPAC, EBPSs and PAPF and verified that these vaccines rapidly induced high levels of specific antibodies while reducing bacterial loads in the organs of mice. This lays the theoretical foundation and data support for the development of novel subunit vaccines against mastitis in dairy cows.
Collapse
Affiliation(s)
- Zhenyu Xu
- College of Animal Science and Technology, Shihezi University 832000 Shihezi City, Xinjiang, China
| | - Yuchen Zhang
- College of Animal Science and Technology, Shihezi University 832000 Shihezi City, Xinjiang, China
| | - Yueli Wang
- College of Animal Science and Technology, Shihezi University 832000 Shihezi City, Xinjiang, China
| | - Aodi Wu
- College of Animal Science and Technology, Shihezi University 832000 Shihezi City, Xinjiang, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Wei Li
- Xinjiang Center for Animal Disease Control and Prevention, Urumqi, China
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University 832000 Shihezi City, Xinjiang, China.
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University 832000 Shihezi City, Xinjiang, China.
| |
Collapse
|
6
|
Zhu L, Cui X, Yan Z, Tao Y, Shi L, Zhang X, Yao Y, Shi L. Design and evaluation of a multi-epitope DNA vaccine against HPV16. Hum Vaccin Immunother 2024; 20:2352908. [PMID: 38780076 PMCID: PMC11123455 DOI: 10.1080/21645515.2024.2352908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Cervical cancer, among the deadliest cancers affecting women globally, primarily arises from persistent infection with high-risk human papillomavirus (HPV). To effectively combat persistent infection and prevent the progression of precancerous lesions into malignancy, a therapeutic HPV vaccine is under development. This study utilized an immunoinformatics approach to predict epitopes of cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs) using the E6 and E7 oncoproteins of the HPV16 strain as target antigens. Subsequently, through meticulous selection of T-cell epitopes and other necessary elements, a multi-epitope vaccine was constructed, exhibiting good immunogenic, physicochemical, and structural characteristics. Furthermore, in silico simulations showed that the vaccine not only interacted well with toll-like receptors (TLR2/TLR3/TLR4), but also induced a strong innate and adaptive immune response characterized by elevated Th1-type cytokines, such as interferon-gamma (IFN-γ) and interleukin-2 (IL2). Additionally, our study investigated the effects of different immunization intervals on immune responses, aiming to optimize a time-efficient immunization program. In animal model experiments, the vaccine exhibited robust immunogenic, therapeutic, and prophylactic effects. Administered thrice, it consistently induced the expansion of specific CD4 and CD8 T cells, resulting in substantial cytokines release and increased proliferation of memory T cell subsets in splenic cells. Overall, our findings support the potential of this multi-epitope vaccine in combating HPV16 infection and signify its candidacy for future HPV vaccine development.
Collapse
Affiliation(s)
- Lanfang Zhu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xiangjie Cui
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yufen Tao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Lei Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xinwen Zhang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| |
Collapse
|
7
|
Zu X, Zhao Q, Liu W, Guo L, Liao T, Cai J, Li H. Sturgeon (Acipenser schrenckii) spinal cord peptides: Antioxidative and acetylcholinesterase inhibitory efficacy and mechanisms. Food Chem 2024; 461:140834. [PMID: 39153375 DOI: 10.1016/j.foodchem.2024.140834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Providing antioxidants and targeting acetylcholinesterase (AChE) are key strategies in treating neurocognitive dysfunction. In this study, bioactive sturgeon (Acipenser schrenckii) spinal cord peptides (SSCPs) with antioxidant and AChE inhibitory potency were extracted and separated from sturgeon spinal cord by enzymatic hydrolysis and ultrafiltration, and targeted peptide PGGW was screened via computer simulated molecular docking. Further, the molecular dynamic interactions of the PGGW with superoxide dismutase (SOD) and AChE were analyzed, and the protective effect of PGGW on glutamate-induced PC12 cells in vitro was evaluated. The <3 kDa fraction of SSCPs displays the most potent antioxidative efficacy (1 mg/mL, DPPH•: 89.07%, ABTS+: 76.35%). Molecular dynamics simulation showed that PGGW was stable within AChE and tightly bound to residues SER203, PHE295, ILE294 and TRP236. When combined with SOD, the indole group of PGGW was stuck inside SOD, but the tail chain PGG fluctuated greatly outside. Surface plasmon resonance demonstrated that PGGW has a high binding affinity for AChE (KD = 1.4 mM) and 0.01 mg/mL PGGW provided good protection against glutamate-induced apoptosis. The findings suggest a promising strategy for drug research on neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Zu
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qing Zhao
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430000, China
| | - Wenbo Liu
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China; School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lu Guo
- School of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Cai
- School of Life and Health Sciences, Hubei University of Technology, Wuhan 430000, China.
| | - Hailan Li
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
8
|
Zhuang L, Ali A, Yang L, Ye Z, Li L, Ni R, An Y, Ali SL, Gong W. Leveraging computer-aided design and artificial intelligence to develop a next-generation multi-epitope tuberculosis vaccine candidate. INFECTIOUS MEDICINE 2024; 3:100148. [DOI: https:/doi.org/10.1016/j.imj.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Zhuang L, Ali A, Yang L, Ye Z, Li L, Ni R, An Y, Ali SL, Gong W. Leveraging computer-aided design and artificial intelligence to develop a next-generation multi-epitope tuberculosis vaccine candidate. INFECTIOUS MEDICINE 2024; 3:100148. [PMID: 39687693 PMCID: PMC11647498 DOI: 10.1016/j.imj.2024.100148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Tuberculosis (TB) remains a global public health challenge. The existing Bacillus Calmette-Guérin vaccine has limited efficacy in preventing adult pulmonary TB, necessitating the development of new vaccines with improved protective effects. METHODS Computer-aided design and artificial intelligence technologies, combined with bioinformatics and immunoinformatics approaches, were used to design a multi-epitope vaccine (MEV) against TB. Comprehensive bioinformatics analyses were conducted to evaluate the physicochemical properties, spatial structure, immunogenicity, molecular dynamics (MD), and immunological characteristics of the MEV. RESULTS We constructed a MEV, designated ZL12138L, containing 13 helper T lymphocyte epitopes, 12 cytotoxic T lymphocyte epitopes, 8 B-cell epitopes, as well as Toll-like receptor (TLR) agonists and helper peptides. Bioinformatics analyses revealed that ZL12138L should exhibit excellent immunogenicity and antigenicity, with no toxicity or allergenicity, and had potential to induce robust immune responses and high solubility, the immunogenicity score was 4.14449, the antigenicity score was 0.8843, and the immunological score was 0.470. Moreover, ZL12138L showed high population coverage for human leukocyte antigen class I and II alleles, reaching 92.41% and 90.17%, respectively, globally. Molecular docking analysis indicated favorable binding affinity of ZL12138L with TLR-2 and TLR-4, with binding energies of -1173.4 and -1360.5 kcal/mol, respectively. Normal mode analysis and MD simulations indicated the stability and dynamic properties of the vaccine construct. Immune simulation predictions suggested that ZL12138L could effectively activate innate and adaptive immune cells, inducing high levels of Type 1 T helper cell cytokines. CONCLUSIONS This study provides compelling evidence for ZL12138L as a promising TB vaccine candidate. Future research will focus on experimental validation and further optimization of the vaccine design.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Zhaoyang Ye
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Linsheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Ruizi Ni
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yajing An
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Syed Luqman Ali
- Department of Biochemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| |
Collapse
|
10
|
Wajeeha AW, Mukhtar M, Zaidi NUSS. Unlocking Hope: Paving the Way for a Cutting-Edge Multi-Epitope Dengue Virus Vaccine. Mol Biotechnol 2024:10.1007/s12033-024-01294-4. [PMID: 39388049 DOI: 10.1007/s12033-024-01294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Dengue fever is a significant health issue in Pakistan, demanding a vaccine effective against all the viral strains. This study employs reverse vaccinology to develop potential dengue vaccine candidates (DVAX I-III). The study thoroughly examined conserved areas of dengue virus serotypes 1-4's structural and non-structural proteins. Key viral proteins were analyzed to find antigenic peptides, which were incorporated into vaccine candidates and potentiated with adjuvants. Computational methods predicted peptide structures and evaluated their binding to immune receptors TLR 2, TLR 4, HLA *A1101, and DRB*401. A molecular dynamics simulation lasting 100 ns of the DVAX II-TLR4 complex at different time intervals clearly indicated that the ligand is attached to the receptor. Normal mode analysis assessed the stability and flexibility of these interactions. Encouragingly, all three vaccine candidates demonstrated favorable interactions with these immune receptors and the potential to induce a robust immune response. These findings suggest their safety and warrant further in vivo studies to evaluate their efficacy for clinical development.
Collapse
Affiliation(s)
- Amtul Wadood Wajeeha
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mamuna Mukhtar
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Najam Us Sahar Sadaf Zaidi
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Khanpur Road, Mang Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
11
|
Ye Z, Li L, Yang L, Zhuang L, Aspatwar A, Wang L, Gong W. Impact of diabetes mellitus on tuberculosis prevention, diagnosis, and treatment from an immunologic perspective. EXPLORATION (BEIJING, CHINA) 2024; 4:20230138. [PMID: 39439490 PMCID: PMC11491313 DOI: 10.1002/exp.20230138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
The coexistence of diabetes mellitus (DM) and tuberculosis (TB) presents a significant global burden, with DM being recognized as a major risk factor for TB. This review comprehensively analyzes the immunological aspects of DM-TB comorbidity, shedding light on the impact of DM on TB pathogenesis and immune responses. It reveals that high blood glucose levels in TB patients contribute to reduced innate immune cell count, compromised phagocytic function, and delayed antigen presentation. These factors ultimately impair the clearance of Mycobacterium tuberculosis (MTB) and delay adaptive immune responses. With the interaction between TB and DM, there is an increase in inflammation and elevated secretion of pro-inflammatory cytokines by immune cells. This exacerbates the inflammatory response and contributes to poor treatment outcomes in TB. Moreover, the review explores the effects of DM on TB prevention, diagnosis, and treatment. It highlights how poor glycemic control, insulin resistance (IR), DM complications, and genetic factors increase the risk of MTB infection in individuals with DM. Additionally, DM-related immune suppression adversely affects the sensitivity of traditional diagnostic tests for TB, potentially resulting in underdiagnosis and delayed intervention. To mitigate the burden of TB in DM patients, the review emphasizes the need for further research on the mechanisms underlying DM reactivation in latent TB infection (LTBI). It shows how important it is to find and treat LTBI in DM patients as soon as possible and suggests looking into biomarkers that are specific to DM to make diagnosis more accurate.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
- Hebei North UniversityZhangjiakouHebeiChina
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | | | - Ling Yang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Li Zhuang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Ashok Aspatwar
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Liang Wang
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
12
|
Nguyen TL, Kim H. Discovering peptides and computational investigations of a multiepitope vaccine target Mycobacterium tuberculosis. Synth Syst Biotechnol 2024; 9:391-405. [PMID: 38585591 PMCID: PMC10997871 DOI: 10.1016/j.synbio.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis (TB), a prevalent airborne infectious disease. Despite the availability of the Bacille Calmette-Guerin vaccine, its global efficacy remains modest, and tuberculosis persists as a significant global public health threat. Addressing this challenge and advancing towards the End MTB Strategy, we developed a multiepitope vaccine (MEV) based on immunoinformatics and computational approaches. Immunoinformatics screening of MBT protein identified immune-dominant epitopes based on Major Histocompatibility Complex (MHC) allele binding, immunogenicity, antigenicity, allergenicity, toxicity, and cytokine inducibility. Selected epitopes were integrated into an MEV construct with adjuvant and linkers, forming a fully immunogenic vaccine candidate. Comprehensive analyses encompassed the evaluation of immunological and physicochemical properties, determination of tertiary structure, molecular docking with Toll-Like Receptors (TLR), molecular dynamics (MD) simulations for all atoms, and immune simulations. Our MEV comprises 534 amino acids, featuring 6 cytotoxic T lymphocyte, 8 helper T lymphocyte, and 7 linear B lymphocyte epitopes, demonstrating high antigenicity and stability. Notably, molecular docking studies and triplicate MD simulations revealed enhanced interactions and stability of MEV with the TLR4 complex compared to TLR2. In addition, the immune simulation indicated the capacity to effectively induce elevated levels of antibodies and cytokines, emphasizing the vaccine's robust immunogenic response. This study presents a promising MEV against TB, exhibiting favorable immunological and physicochemical attributes. The findings provide theoretical support for TB vaccine development. Our study aligns with the global initiative of the End MTB Strategy, emphasizing its potential impact on addressing persistent challenges in TB control.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- eGnome, Inc., Seoul, 05836, Republic of Korea
| |
Collapse
|
13
|
Salamaikina S, Kulabukhova E, Korchagin V, Khokhlova O, Mironov K, Akimkin V. Toll-Like Receptor Genes and Risk of Latent Tuberculosis Infection in People Infected with HIV-1. Viruses 2024; 16:1371. [PMID: 39339847 PMCID: PMC11436194 DOI: 10.3390/v16091371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The purpose of this study was to determine the contribution of genetic factors, i.e., the level of expression and polymorphisms of Toll-like receptors (TLR), to the susceptibility of latent tuberculosis infection in a Russian cohort of individuals infected with HIV. The patients (n = 317) with confirmed HIV infection were divided into two groups according to the results of the STANDARD E TB-Feron test: 63 cases with a latent TB infection and 274 controls without LTBI. Total DNA and RNA were isolated from whole-blood samples. SNP genotyping and expression levels of five TLR genes (TLR1, TLR2, TLR4, TLR6, and TLR8) were determined by means of real-time PCR. There were no significant differences in the expression levels of the TLRs between the case and control groups. In addition, we did not observe any significant association between the analyzed SNPs and the susceptibility of Latent tuberculosis infection (LTBI) in patients with HIV. However, patients from an entire cohort with the rs4986790-GG (TLR4) and rs5743708-GG (TLR2) genotypes were characterized by lower CD4 T-cell counts compared to carriers of alternative alleles. Moreover, we found a significant risk of a hazardous drop in the CD4 T-cell count below 350 cells/mm3 associated with the rs4986790-G (TLR4) allele. Latent tuberculosis infection in individuals infected with HIV does not significantly modify the level of TLR gene expression.
Collapse
Affiliation(s)
- Svetlana Salamaikina
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 111123 Moscow, Russia
| | - Ekaterina Kulabukhova
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 111123 Moscow, Russia
- Medical Institute, The Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vitaly Korchagin
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 111123 Moscow, Russia
| | - Olga Khokhlova
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 111123 Moscow, Russia
| | - Konstantin Mironov
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 111123 Moscow, Russia
| | - Vasiliy Akimkin
- Central Research Institute of Epidemiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 111123 Moscow, Russia
| |
Collapse
|
14
|
Yuan L, Zhang S, Bi R, Liu X, Han Z, Li M, Liao X, Xie T, Bai S, Xie Q, Luo C, Jiang Y, Yuan J, Luo H, Yan H, Sun C, Shu Y. A broad-spectrum multiepitope vaccine against seasonal influenza A and B viruses in mice. EBioMedicine 2024; 106:105269. [PMID: 39111250 DOI: 10.1016/j.ebiom.2024.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/18/2024] Open
Abstract
BACKGROUND Influenza viruses pose a persistent threat to global public health, necessitating the development of innovative and broadly effective vaccines. METHODS This study focuses on a multiepitope vaccine (MEV) designed to provide broad-spectrum protection against different influenza viruses. The MEV, containing 19 B-cell linear epitopes, 7 CD4+ T cells, and 11 CD8+ T cells epitopes identified through enzyme-linked immunospot assay (ELISPOT) in influenza viruses infected mice, was administered through a regimen of two doses of DNA vaccine followed by one dose of a protein vaccine in C57BL/6 female mice. FINDINGS Upon lethal challenge with both seasonal circulating strains (H1N1, H3N2, BV, and BY) and historical strains (H1N1-PR8 and H3N2-X31), MEV demonstrated substantial protection against different influenza seasonal strains, with partial efficacy against historical strains. Notably, the increased germinal centre B cells and antibody-secreting cells, along with robust T cell immune responses, highlighted the comprehensive immune defence elicited by MEV. Elevated hemagglutinin inhibition antibody was also observed against seasonal circulating and historical strains. Additionally, mice vaccinated with MEV exhibited significantly lower counts of inflammatory cells in the lungs compared to negative control groups. INTERPRETATION Our results demonstrated the efficacy of a broad-spectrum MEV against influenza viruses in mice. Conducting long-term studies to evaluate the durability of MEV-induced immune responses and explore its potential application in diverse populations will offer valuable insights for the continued advancement of this promising vaccine. FUNDING Funding bodies are described in the Acknowledgments section.
Collapse
Affiliation(s)
- Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Rongjun Bi
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Xuejie Liu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Ting Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Shaohui Bai
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Ying Jiang
- Shenzhen Nanshan Centre for Disease Control and Prevention, Shenzhen, 518054, PR China.
| | - Jianhui Yuan
- Shenzhen Nanshan Centre for Disease Control and Prevention, Shenzhen, 518054, PR China.
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, PR China.
| | - Huacheng Yan
- Centre for Disease Control and Prevention of Southern Military Theatre, 510610, Guangzhou, PR China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, PR China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 102629, PR China.
| |
Collapse
|
15
|
Sethi G, Varghese RP, Lakra AK, Nayak SS, Krishna R, Hwang JH. Immunoinformatics and structural aided approach to develop multi-epitope based subunit vaccine against Mycobacterium tuberculosis. Sci Rep 2024; 14:15923. [PMID: 38987613 PMCID: PMC11237054 DOI: 10.1038/s41598-024-66858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis (Mtb), which is one of the prominent reasons for the death of millions worldwide. The bacterium has a substantially higher mortality rate than other bacterial diseases, and the rapid rise of drug-resistant strains only makes the situation more concerning. Currently, the only licensed vaccine BCG (Bacillus Calmette-Guérin) is ineffective in preventing adult pulmonary tuberculosis prophylaxis and latent tuberculosis re-activation. Therefore, there is a pressing need to find novel and safe vaccines that provide robust immune defense and have various applications. Vaccines that combine epitopes from multiple candidate proteins have been shown to boost immunity against Mtb infection. This study applies an immunoinformatic strategy to generate an adequate multi-epitope immunization against Mtb employing five antigenic proteins. Potential B-cell, cytotoxic T lymphocyte, and helper T lymphocyte epitopes were speculated from the intended proteins and coupled with 50 s ribosomal L7/L12 adjuvant, and the vaccine was constructed. The vaccine's physicochemical profile demonstrates antigenic, soluble, and non-allergic. In the meantime, docking, molecular dynamics simulations, and essential dynamics analysis revealed that the multi-epitope vaccine structure interacted strongly with Toll-like receptors (TLR2 and TLR3). MM-PBSA analysis was performed to ascertain the system's intermolecular binding free energies accurately. The immune simulation was applied to the vaccine to forecast its immunogenic profile. Finally, in silico cloning was used to validate the vaccine's efficacy. The immunoinformatics analysis suggests the multi-epitope vaccine could induce specific immune responses, making it a potential candidate against Mtb. However, validation through the in-vivo study of the developed vaccine is essential to assess its efficacy and immunogenicity profile, which will assure active protection against Mtb.
Collapse
Affiliation(s)
- Guneswar Sethi
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, Republic of Korea
- Animal Model Research Group, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | | | - Avinash Kant Lakra
- Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | | | - Ramadas Krishna
- Department of Bioinformatics, Pondicherry University, Puducherry, 605014, India.
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
16
|
Wang J, Jiang F, Cheng P, Ye Z, Li L, Yang L, Zhuang L, Gong W. Construction of novel multi-epitope-based diagnostic biomarker HP16118P and its application in the differential diagnosis of Mycobacterium tuberculosis latent infection. MOLECULAR BIOMEDICINE 2024; 5:15. [PMID: 38679629 PMCID: PMC11056354 DOI: 10.1186/s43556-024-00177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024] Open
Abstract
Tuberculosis (TB) is an infectious disease that significantly threatens human health. However, the differential diagnosis of latent tuberculosis infection (LTBI) and active tuberculosis (ATB) remains a challenge for clinicians in early detection and preventive intervention. In this study, we developed a novel biomarker named HP16118P, utilizing 16 helper T lymphocyte (HTL) epitopes, 11 cytotoxic T lymphocyte (CTL) epitopes, and 8 B cell epitopes identified from 15 antigens associated with LTBI-RD using the IEDB database. We analyzed the physicochemical properties, spatial structure, and immunological characteristics of HP16118P using various tools, which indicated that it is a hydrophilic and relatively stable alkaline protein. Furthermore, HP16118P exhibited good antigenicity and immunogenicity, while being non-toxic and non-allergenic, with the potential to induce immune responses. We observed that HP16118P can stimulate the production of high levels of IFN-γ+ T lymphocytes in individuals with ATB, LTBI, and health controls. IL-5 induced by HP16118P demonstrated potential in distinguishing LTBI individuals and ATB patients (p=0.0372, AUC=0.8214, 95% CI [0.5843 to 1.000]) with a sensitivity of 100% and specificity of 71.43%. Furthermore, we incorporated the GM-CSF, IL-23, IL-5, and MCP-3 induced by HP16118P into 15 machine learning algorithms to construct a model. It was found that the Quadratic discriminant analysis model exhibited the best diagnostic performance for discriminating between LTBI and ATB, with a sensitivity of 1.00, specificity of 0.86, and accuracy of 0.93. In summary, HP16118P has demonstrated strong antigenicity and immunogenicity, with the induction of GM-CSF, IL-23, IL-5, and MCP-3, suggesting their potential for the differential diagnosis of LTBI and ATB.
Collapse
Affiliation(s)
- Jie Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Department of Clinical Laboratory, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Fan Jiang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Section of Health, No. 94804 Unit of the Chinese People's Liberation Army, Shanghai, 200434, China
- Resident standardization training cadet corps, Air Force Hospital of Eastern Theater, Nanjing, 210002, China
| | - Peng Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Zhaoyang Ye
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Linsheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
17
|
Yuan L, Li X, Li M, Bi R, Li Y, Song J, Li W, Yan M, Luo H, Sun C, Shu Y. In silico design of a broad-spectrum multiepitope vaccine against influenza virus. Int J Biol Macromol 2024; 254:128071. [PMID: 37967595 DOI: 10.1016/j.ijbiomac.2023.128071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Influenza remains a global health concern due to its potential to cause pandemics as a result of rapidly mutating influenza virus strains. Existing vaccines often struggle to keep up with these rapidly mutating flu viruses. Therefore, the development of a broad-spectrum peptide vaccine that can stimulate an optimal antibody response has emerged as an innovative approach to addressing the influenza threat. In this study, an immunoinformatic approach was employed to rapidly predict immunodominant epitopes from different antigens, aiming to develop an effective multiepitope influenza vaccine (MEV). The immunodominant B-cell linear epitopes of seasonal influenza strains hemagglutinin (HA) and neuraminidase (NA) were predicted using an antibody-peptide microarray, involving a human cohort including vaccinees and infected patients. On the other hand, bioinformatics tools were used to predict immunodominant cytotoxic T-cell (CTL) and helper T-cell (HTL) epitopes. Subsequently, these epitopes were evaluated by various immunoinformatic tools. Epitopes with high antigenicity, high immunogenicity, non-allergenicity, non-toxicity, as well as exemplary conservation were then connected in series with appropriate linkers and adjuvants to construct a broad-spectrum MEV. Moreover, the structural analysis revealed that the MEV candidates exhibited good stability, and the docking results demonstrated their strong affinity to Toll-like receptors 4 (TLR4). In addition, molecular dynamics simulation confirmed the stable interaction between TLR4 and MEVs. Three injections with MEVs showed a high level of B-cell and T-cell immune responses according to the immunological simulations in silico. Furthermore, in-silico cloning was performed, and the results indicated that the MEVs could be produced in considerable quantities in Escherichia coli (E. coli). Based on these findings, it is reasonable to create a broad-spectrum MEV against different subtypes of influenza A and B viruses in silico.
Collapse
Affiliation(s)
- Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Xu Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Department of Pathogenic Biology and Immunology, School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, PR China.
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Rongjun Bi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yingrui Li
- Shenzhen Digital Life Institute, Shenzhen, Guangdong 518000, PR China.
| | - Jiaping Song
- Shenzhen Digital Life Institute, Shenzhen, Guangdong 518000, PR China.
| | - Wei Li
- Shenzhen Digital Life Institute, Shenzhen, Guangdong 518000, PR China.
| | - Mingchen Yan
- Shenzhen Digital Life Institute, Shenzhen, Guangdong 518000, PR China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, PR China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, PR China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, PR China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, PR China.
| |
Collapse
|
18
|
Zhuang L, Zhao Y, Yang L, Li L, Ye Z, Ali A, An Y, Ni R, Ali SL, Gong W. Harnessing bioinformatics for the development of a promising multi-epitope vaccine against tuberculosis: The ZL9810L vaccine. DECODING INFECTION AND TRANSMISSION 2024; 2:100026. [DOI: https:/doi.org/10.1016/j.dcit.2024.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Cao X, Song Z, He W, Yang Z, Sun Q, Wang Y, He P, Zhao B, Zhang Z, Zhao Y. Tuberculosis screening characteristics amongst freshmen in Changping District, Beijing, China. BMC Infect Dis 2023; 23:869. [PMID: 38082230 PMCID: PMC10714516 DOI: 10.1186/s12879-023-08802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Screening for Tuberculosis (TB) is a critical tactic for minimizing the prevalence of illness within schools. Tuberculosis Preventive Therapy (TPT), in turn, effectively staves off the development of TB from latent tuberculosis infection (LTBI). Unfortunately, there is limited research on LTBI and TPT among students. This study aimed to assess LTBI among freshmen in Changping District and advocate for the implementation of TPT. METHODS The prospective study collected data from 12 educational institutions within the Changping District of Beijing. The Kolmogorov - Smirnov test and other statistical methods were used for statistical analysis, [Formula: see text] was obtained using the formula [Formula: see text] nΣA2/nRnC-1, df = (C-1) (R-1). We analyzed potential factors impacting the LTBI rate, and scrutinized the possible causes behind the low application of TPT and its efficacy for LTBI treatment, China. RESULTS Among 19,872 freshmen included in this study, 18 active TB cases (91 per 10,0000) and 2236 LTBI cases (11.6% of 19,223) were identified, respectively. Furthermore, of those with LTBI, 1045 (5.4% of 19,223) showed a strong positive for purified protein derivative (PPD), but only 312 opted for TB preventive treatment. There appeared to be no significant difference in the prevalence of LTBI and TPT rate between male and female students. Concurrently, 11 (71 per 100,000) and 7 (158 per 100,000) cases of active tuberculosis were identified in 6 universities and 6 higher vocational colleges, respectively. Interestingly, almost all freshmen who underwent TPT came from universities, suggesting a statistically significant disparity in TPT rate (χ2 = 139.829, P < 0.001) between these two types of educational institutions. Meanwhile, as for the age-wise distribution of latent infection among 17-20 years old freshmen, the LTBI rate exhibited 10.5%, 11.6%, 12.1% and 13.5%, respectively. Correlation between LTBI rate, the strong positive rate was statistically significant among different ages (χ2 = 34.559, P < 0.001). Over a follow-up period of 2 years, three students were diagnosed with active tuberculosis, one of which was resistant to rifampicin. All three students manifested a strong positive for PPD and declined preventive treatment during TB screening. CONCLUSIONS The data indicates a high rate of LTBI amongst students in areas with a heavy TB burden, potentially leading to cross-regional TB transmission due to the migration of students. Education level might contribute to the limited uptake of TPT. Therefore, improving the implementation of TB preventive treatments is crucial in controlling and preventing TB across schools.
Collapse
Affiliation(s)
- Xiaolong Cao
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
- Beijing Changping Institute for Tuberculosis Prevention and Treatment, No. 4 He Ping Street, Changping District, Beijing, 102200, People's Republic of China
| | - Zexuan Song
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Wencong He
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Zhen Yang
- Beijing Changping Institute for Tuberculosis Prevention and Treatment, No. 4 He Ping Street, Changping District, Beijing, 102200, People's Republic of China
| | - Qian Sun
- Beijing Changping Institute for Tuberculosis Prevention and Treatment, No. 4 He Ping Street, Changping District, Beijing, 102200, People's Republic of China
| | - Yiting Wang
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Ping He
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Bing Zhao
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Zhiguo Zhang
- Beijing Changping Institute for Tuberculosis Prevention and Treatment, No. 4 He Ping Street, Changping District, Beijing, 102200, People's Republic of China.
| | - Yanlin Zhao
- Chinese Center for Disease Control and Prevention, National Tuberculosis Reference Laboratory, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China.
| |
Collapse
|
20
|
Jiang M, Pang N, Wang J, Li Z, Xu D, Jing J, Chen D, Li F, Ding J, Li Q. Characteristics of Serum Autoantibody Repertoire and Immune Subgroup Variation of Tuberculosis-Associated Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:2867-2886. [PMID: 38075560 PMCID: PMC10710255 DOI: 10.2147/copd.s434601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Background Studying the potential etiology and pathogenesis of tuberculosis-associated chronic obstructive pulmonary disease (TOPD) from an autoimmunity perspective may provide insights into peripheral blood autoantibodies and immune cells, as well as their interactions. Methods This study examined the serum autoantibody repertoire in healthy individuals, patients with chronic obstructive pulmonary disease (COPD), patients with pulmonary tuberculosis (TB), and TOPD patients using the HuProtTM protein chip. Autoantigens in the peripheral blood of TOPD patients were verified using ELISA assay. Various epitopes and immune simulation were predicted using bioinformatic methods. Flow cytometry was employed to detect macrophages(Mφ), T cells, and innate lymphoid cells (ILCs) in the peripheral blood. Results COPD patients displayed distinct alterations in their IgG and IgM autoantibodies compared to the other groups. GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG)analyses revealed that these autoantibodies were associated with regulating macrophages, T cells, and B cells. ELISA results confirmed the upregulation of expression of proliferating cell nuclear antigen (PCNA), Mitogen-Activated Protein Kinase 3 antigen (MAPK3), and threonine protein kinase 1 antigen (AKT1) proteins in the peripheral blood of TOPD patients. Bioinformatic analysis predicted multiple potential epitopes in Th, CTL, and B cells. Immune simulation results demonstrated that PCNA, MAPK3, and AKT1 can activate innate and adaptive immune responses and induce the expression of different cytokines, such as IFN-g and IL-2. Furthermore, data obtained from flow cytometry assay revealed an upregulation in the face of Th1 cells in the peripheral blood of TOPD patients. Conclusion Tuberculosis infection can effectively induce autoimmune responses, contributing to increased expression of Th1 cells and associated cytokines, ultimately leading to immune dysregulation. Furthermore, the accumulation of pulmonary inflammatory response facilitates the progression of TOPD and is helpful for the clinical diagnosis and the development of targeted therapeutic drugs for this disease.
Collapse
Affiliation(s)
- Min Jiang
- Xinjiang Key Laboratory of Respiratory Disease Research, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830011, Xinjiang, People’s Republic of China
| | - NanNan Pang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People’s Republic of China
| | - Jing Wang
- Xinjiang Key Laboratory of Respiratory Disease Research, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830011, Xinjiang, People’s Republic of China
| | - Zheng Li
- Xinjiang Key Laboratory of Respiratory Disease Research, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830011, Xinjiang, People’s Republic of China
| | - Dan Xu
- Xinjiang Key Laboratory of Respiratory Disease Research, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830011, Xinjiang, People’s Republic of China
| | - Jing Jing
- Xinjiang Key Laboratory of Respiratory Disease Research, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830011, Xinjiang, People’s Republic of China
| | - Dan Chen
- School of Public Health, Xinjiang Medical University, Urumqi, 830017, Xinjiang, People’s Republic of China
| | - Fengsen Li
- Xinjiang Key Laboratory of Respiratory Disease Research, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830011, Xinjiang, People’s Republic of China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People’s Republic of China
| | - Qifeng Li
- Xinjiang Institute of Pediatrics, Xinjiang Hospital of Beijing Children’s Hospital, Children’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830011, Xinjiang, People’s Republic of China
| |
Collapse
|
21
|
Moten D, Batsalova T, Apostolova D, Mladenova T, Dzhambazov B, Teneva I. In Silico Design of a New Epitope-Based Vaccine against Grass Group 1 Allergens. Adv Respir Med 2023; 91:486-503. [PMID: 37987298 PMCID: PMC10660545 DOI: 10.3390/arm91060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Allergic diseases are a global public health problem that affects up to 30% of the population in industrialized societies. More than 40% of allergic patients suffer from grass pollen allergy. Grass pollen allergens of group 1 and group 5 are the major allergens, since they induce allergic reactions in patients at high rates. In this study, we used immunoinformatic approaches to design an effective epitope-based vaccine against the grass group 1 allergens. After the alignment of all known pollen T-cell and B-cell epitopes from pollen allergens available in the public databases, the epitope GTKSEVEDVIPEGWKADTSY was identified as the most suitable for further analyses. The target sequence was subjected to immunoinformatics analyses to predict antigenic T-cell and B-cell epitopes. Population coverage analysis was performed for CD8+ and CD4+ T-cell epitopes. The selected T-cell epitopes (VEDVIPEGW and TKSEVEDVIPEGWKA) covered 78.87% and 98.20% of the global population and 84.57% and 99.86% of the population of Europe. Selected CD8+, CD4+ T-cell and B-cell epitopes have been validated by molecular docking analysis. CD8+ and CD4+ T-cell epitopes showed a very strong binding affinity to major histocompatibility complex (MHC) class I (MHC I) molecules and MHC class II (MHC II) molecules with global energy scores of -72.1 kcal/mol and -89.59 kcal/mol, respectively. The human IgE-Fc (PDB ID 4J4P) showed a lower affinity with B-cell epitope (ΔG = -34.4 kcal/mol), while the Phl p 2-specific human IgE Fab (PDB ID 2VXQ) had the lowest binding with the B-cell epitope (ΔG = -29.9 kcal/mol). Our immunoinformatics results demonstrated that the peptide GTKSEVEDVIPEGWKADTSY could stimulate the immune system and we performed ex vivo tests showed that the investigated epitope activates T cells isolated from patients with grass pollen allergy, but it is not recognized by IgE antibodies specific for grass pollen allergens. This confirms the importance of such studies to establish universal epitopes to serve as a basis for developing an effective vaccine against a particular group of allergens. Further in vivo studies are needed to validate the effectiveness of such a vaccine against grass pollen allergens.
Collapse
Affiliation(s)
- Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (D.M.); (T.B.); (D.A.); (B.D.)
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (D.M.); (T.B.); (D.A.); (B.D.)
| | - Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (D.M.); (T.B.); (D.A.); (B.D.)
| | - Tsvetelina Mladenova
- Department of Botany and Biological Education, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria;
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (D.M.); (T.B.); (D.A.); (B.D.)
| | - Ivanka Teneva
- Department of Botany and Biological Education, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
22
|
Jiang F, Han Y, Liu Y, Xue Y, Cheng P, Xiao L, Gong W. A comprehensive approach to developing a multi-epitope vaccine against Mycobacterium tuberculosis: from in silico design to in vitro immunization evaluation. Front Immunol 2023; 14:1280299. [PMID: 38022558 PMCID: PMC10652892 DOI: 10.3389/fimmu.2023.1280299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The Bacillus Calmette-Guérin (BCG) vaccine, currently used against tuberculosis (TB), exhibits inconsistent efficacy, highlighting the need for more potent TB vaccines. Materials and methods In this study, we employed reverse vaccinology techniques to develop a promising multi-epitope vaccine (MEV) candidate, called PP13138R, for TB prevention. PP13138R comprises 34 epitopes, including B-cell, cytotoxic T lymphocyte, and helper T lymphocyte epitopes. Using bioinformatics and immunoinformatics tools, we assessed the physicochemical properties, structural features, and immunological characteristics of PP13138R. Results The vaccine candidate demonstrated excellent antigenicity, immunogenicity, and solubility without any signs of toxicity or sensitization. In silico analyses revealed that PP13138R interacts strongly with Toll-like receptor 2 and 4, stimulating innate and adaptive immune cells to produce abundant antigen-specific antibodies and cytokines. In vitro experiments further supported the efficacy of PP13138R by significantly increasing the population of IFN-γ+ T lymphocytes and the production of IFN-γ, TNF-α, IL-6, and IL-10 cytokines in active tuberculosis patients, latent tuberculosis infection individuals, and healthy controls, revealing the immunological characteristics and compare the immune responses elicited by the PP13138R vaccine across different stages of Mycobacterium tuberculosis infection. Conclusion These findings highlight the potential of PP13138R as a promising MEV candidate, characterized by favorable antigenicity, immunogenicity, and solubility, without any toxicity or sensitization.
Collapse
Affiliation(s)
- Fan Jiang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Section of Health, No. 94804 Unit of the Chinese People’s Liberation Army, Shanghai, China
- Resident standardization training cadet corps, Air Force Hospital of Eastern Theater, Nanjing, China
| | - Yong Han
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yinping Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Peng Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Li Xiao
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Wu A, Wang Y, Ali A, Xu Z, Zhang D, Zhumanov K, Sheng J, Yi J. Design of a multi-epitope vaccine against brucellosis fused to IgG-fc by an immunoinformatics approach. Front Vet Sci 2023; 10:1238634. [PMID: 37937155 PMCID: PMC10625910 DOI: 10.3389/fvets.2023.1238634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Brucella, a type of intracellular Gram-negative bacterium, has unique features and acts as a zoonotic pathogen. It can lead to abortion and infertility in animals. Eliminating brucellosis becomes very challenging once it spreads among both humans and animals, putting a heavy burden on livestock and people worldwide. Given the increasing spread of brucellosis, it is crucial to develop improved vaccines for susceptible animals to reduce the disease's impact. Methods In this study, we effectively used an immunoinformatics approach with advanced computer software to carefully identify and analyze important antigenic parts of Brucella abortus. Subsequently, we skillfully designed chimeric peptides to enhance the vaccine's strength and effectiveness. We used computer programs to find four important parts of the Brucella bacteria that our immune system recognizes. Then, we carefully looked for eight parts that are recognized by a type of white blood cell called cytotoxic T cells, six parts recognized by T helper cells, and four parts recognized by B cells. We connected these parts together using a special link, creating a strong new vaccine. To make the vaccine even better, we added some extra parts called molecular adjuvants. These included something called human β-defensins 3 (hBD-3) that we found in a database, and another part that helps the immune system called PADRE. We attached these extra parts to the beginning of the vaccine. In a new and clever way, we made the vaccine even stronger by attaching a part from a mouse's immune system to the end of it. This created a new kind of vaccine called MEV-Fc. We used advanced computer methods to study how well the MEV-Fc vaccine interacts with certain receptors in the body (TLR-2 and TLR-4). Results In the end, Immunosimulation predictions showed that the MEV-Fc vaccine can make the immune system respond strongly, both in terms of cells and antibodies. Discussion In summary, our results provide novel insights for the development of Brucella vaccines. Although further laboratory experiments are required to assess its protective effect.
Collapse
Affiliation(s)
- Aodi Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yueli Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Adnan Ali
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhenyu Xu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Dongsheng Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Kairat Zhumanov
- College of Veterinary Medicine, Kazakhstan Kazakh State Agricultural University, Almaty, Kazakhstan
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
24
|
Jiang F, Peng C, Cheng P, Wang J, Lian J, Gong W. PP19128R, a Multiepitope Vaccine Designed to Prevent Latent Tuberculosis Infection, Induced Immune Responses In Silico and In Vitro Assays. Vaccines (Basel) 2023; 11:vaccines11040856. [PMID: 37112768 PMCID: PMC10145841 DOI: 10.3390/vaccines11040856] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Background: Latent tuberculosis infection (LTBI) is the primary source of active tuberculosis (ATB), but a preventive vaccine against LTBI is lacking. Methods: In this study, dominant helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL), and B-cell epitopes were identified from nine antigens related to LTBI and regions of difference (RDs). These epitopes were used to construct a novel multiepitope vaccine (MEV) based on their antigenicity, immunogenicity, sensitization, and toxicity. The immunological characteristics of the MEV were analyzed with immunoinformatics technology and verified by enzyme-linked immunospot assay and Th1/Th2/Th17 cytokine assay in vitro. Results: A novel MEV, designated PP19128R, containing 19 HTL epitopes, 12 CTL epitopes, 8 B-cell epitopes, toll-like receptor (TLR) agonists, and helper peptides, was successfully constructed. Bioinformatics analysis showed that the antigenicity, immunogenicity, and solubility of PP19128R were 0.8067, 9.29811, and 0.900675, respectively. The global population coverage of PP19128R in HLA class I and II alleles reached 82.24% and 93.71%, respectively. The binding energies of the PP19128R-TLR2 and PP19128R-TLR4 complexes were -1324.77 kcal/mol and -1278 kcal/mol, respectively. In vitro experiments showed that the PP19128R vaccine significantly increased the number of interferon gamma-positive (IFN-γ+) T lymphocytes and the levels of cytokines, such as IFN-γ, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-10. Furthermore, positive correlations were observed between PP19128R-specific cytokines in ATB patients and individuals with LTBI. Conclusions: The PP19128R vaccine is a promising MEV with excellent antigenicity and immunogenicity and no toxicity or sensitization that can induce robust immune responses in silico and in vitro. This study provides a vaccine candidate for the prevention of LTBI in the future.
Collapse
Affiliation(s)
- Fan Jiang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
- The Second Brigade of Cadet, Basic Medical Science Academy of Air Force Medical University, Xi'an 710032, China
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an 710032, China
| | - Cong Peng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an 710032, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
25
|
Immunoinformatic-Based Multi-Epitope Vaccine Design for Co-Infection of Mycobacterium tuberculosis and SARS-CoV-2. J Pers Med 2023; 13:jpm13010116. [PMID: 36675777 PMCID: PMC9863242 DOI: 10.3390/jpm13010116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: Many co-infections of Mycobacterium tuberculosis (MTB) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have emerged since the occurrence of the SARS-CoV-2 pandemic. This study aims to design an effective preventive multi-epitope vaccine against the co-infection of MTB and SARS-CoV-2. (2) Methods: The three selected proteins (spike protein, diacylglycerol acyltransferase, and low molecular weight T-cell antigen TB8.4) were predicted using bioinformatics, and 16 epitopes with the highest ranks (10 helper T lymphocyte epitopes, 2 CD8+ T lymphocytes epitopes, and 4 B-cell epitopes) were selected and assembled into the candidate vaccine referred to as S7D5L4. The toxicity, sensitization, stability, solubility, antigenicity, and immunogenicity of the S7D5L4 vaccine were evaluated using bioinformatics tools. Subsequently, toll-like receptor 4 docking simulation and discontinuous B-cell epitope prediction were performed. Immune simulation and codon optimization were carried out using immunoinformatics and molecular biology tools. (3) Results: The S7D5L4 vaccine showed good physical properties, such as solubility, stability, non-sensitization, and non-toxicity. This vaccine had excellent antigenicity and immunogenicity and could successfully simulate immune responses in silico. Furthermore, the normal mode analysis of the S7D5L4 vaccine and toll-like receptor 4 docking simulation demonstrated that the vaccine had docking potential and a stable reaction. (4) Conclusions: The S7D5L4 vaccine designed to fight against the co-infection of MTB and SARS-CoV-2 may be safe and effective. The protective efficacy of this promising vaccine should be further verified using in vitro and in vivo experiments.
Collapse
|
26
|
Cheng P, Jiang F, Wang G, Wang J, Xue Y, Wang L, Gong W. Bioinformatics analysis and consistency verification of a novel tuberculosis vaccine candidate HP13138PB. Front Immunol 2023; 14:1102578. [PMID: 36825009 PMCID: PMC9942524 DOI: 10.3389/fimmu.2023.1102578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Background With the increasing incidence of tuberculosis (TB) and the shortcomings of existing TB vaccines to prevent TB in adults, new TB vaccines need to be developed to address the complex TB epidemic. Method The dominant epitopes were screened from antigens to construct a novel epitope vaccine termed HP13138PB. The immune properties, structure, and function of HP13138PB were predicted and analyzed with bioinformatics and immunoinformatics. Then, the immune responses induced by the HP13138PB were confirmed by enzyme-linked immunospot assay (ELISPOT) and Th1/Th2/Th17 multi-cytokine detection kit. Result The HP13138PB vaccine consisted of 13 helper T lymphocytes (HTL) epitopes, 13 cytotoxic T lymphocytes (CTL) epitopes, and 8 B-cell epitopes. It was found that the antigenicity, immunogenicity, and solubility index of the HP13138PB vaccine were 0.87, 2.79, and 0.55, respectively. The secondary structure prediction indicated that the HP13138PB vaccine had 31% of α-helix, 11% of β-strand, and 56% of coil. The tertiary structure analysis suggested that the Z-score and the Favored region of the HP13138PB vaccine were -4.47 88.22%, respectively. Furthermore, the binding energies of the HP13138PB to toll-like receptor 2 (TLR2) was -1224.7 kcal/mol. The immunoinformatics and real-world experiments showed that the HP13138PB vaccine could induce an innate and adaptive immune response characterized by significantly higher levels of cytokines such as interferon-gamma (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and IL-10. Conclusion The HP13138PB is a potential vaccine candidate to prevent TB, and this study preliminarily evaluated the ability of the HP13138PB to generate an immune response, providing a precursor target for developing TB vaccines.
Collapse
Affiliation(s)
- Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China.,Department of Geriatrics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Fan Jiang
- The Second Brigade of Cadet, Basic Medical School, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Guiyuan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China.,Hebei North University, Zhangjiakou, Hebei, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Liang Wang
- Department of Geriatrics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Sun B, Zhang J, Li Z, Xie M, Luo C, Wang Y, Chen L, Wang Y, Jiang D, Yang K. Integration: Gospel for immune bioinformatician on epitope-based therapy. Front Immunol 2023; 14:1075419. [PMID: 36798136 PMCID: PMC9927647 DOI: 10.3389/fimmu.2023.1075419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Affiliation(s)
- Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Junqi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Zhikui Li
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Mingyang Xie
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Cheng Luo
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Yongkai Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Longyu Chen
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Yueyue Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,The Key Laboratory of Bio-hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,The Key Laboratory of Bio-hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China.,Department of Rheumatology, Tangdu Hospital, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, China
| |
Collapse
|
28
|
Guo X, Lu J, Li J, Du W, Shen X, Su C, Wu Y, Zhao A, Xu M. The Subunit AEC/BC02 Vaccine Combined with Antibiotics Provides Protection in Mycobacterium tuberculosis-Infected Guinea Pigs. Vaccines (Basel) 2022; 10:vaccines10122164. [PMID: 36560574 PMCID: PMC9781032 DOI: 10.3390/vaccines10122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
A latent tuberculosis infection (LTBI) is a major source of active tuberculosis, and addressing an LTBI is crucial for the elimination of tuberculosis. The treatment of tuberculosis often requires a 6-month course of multidrug therapy, and for drug-resistant tuberculosis, a longer course of multidrug therapy is needed, which has many drawbacks. At present, vaccines are proposed as an adjunct to chemotherapy to protect populations with an LTBI and delay its recurrence. In this study, we analyzed the protective effect of a novel subunit vaccine, AEC/BC02, in a guinea pig latent infection model. Through the optimization of different chemotherapy durations and immunization times, it was found that 4 weeks of administration of isoniazid-rifampin tablets combined with three or six injections of the vaccine could significantly reduce the gross pathological score and bacterial load in organs and improve the pathological lesions. This treatment regimen had a better protective effect than the other administration methods. Furthermore, no drug resistance of Mycobacterium tuberculosis was detected after 2 or 4 weeks of administration of the isoniazid-rifampin tablets, indicating a low risk of developing drug-resistant bacteria during short-term chemotherapy. The above results provided the foundation for an AEC/BC02 clinical protocol.
Collapse
Affiliation(s)
- Xiaonan Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jinbiao Lu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Junli Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Weixin Du
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xiaobing Shen
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Cheng Su
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yongge Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Correspondence: or (Y.W.); (A.Z.); (M.X.)
| | - Aihua Zhao
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
- Correspondence: or (Y.W.); (A.Z.); (M.X.)
| | - Miao Xu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China
- Correspondence: or (Y.W.); (A.Z.); (M.X.)
| |
Collapse
|
29
|
Cheng P, Xue Y, Wang J, Jia Z, Wang L, Gong W. Evaluation of the consistence between the results of immunoinformatics predictions and real-world animal experiments of a new tuberculosis vaccine MP3RT. Front Cell Infect Microbiol 2022; 12:1047306. [PMID: 36405961 PMCID: PMC9666678 DOI: 10.3389/fcimb.2022.1047306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Background Our previous study developed a novel peptide-based vaccine, MP3RT, to fight against tuberculosis (TB) infection in a mouse model. However, the consistency between the immunoinformatics predictions and the results of real-world animal experiments on the MP3RT vaccine remains unclear. Method In this study, we predicted the antigenicity, immunogenicity, physicochemical parameters, secondary structure, and tertiary structure of MP3RT using bioinformatics technologies. The immune response properties of the MP3RT vaccine were then predicted using the C-ImmSim server. Finally, humanized mice were used to verify the characteristics of the humoral and cellular immune responses induced by the MP3RT vaccine. Results MP3RT is a non-toxic and non-allergenic vaccine with an antigenicity index of 0.88 and an immunogenicity index of 0.61, respectively. Our results showed that the MP3RT vaccine contained 53.36% α-helix in the secondary structure, and the favored region accounted for 98.22% in the optimized tertiary structure. The binding affinities of the MP3RT vaccine to the human leukocyte antigen (HLA)-DRB1*01:01 allele, toll-like receptor-2 (TLR-2), and TLR-4 receptors were -1234.1 kcal/mol, -1066.4 kcal/mol, and -1250.4 kcal/mol, respectively. The results of the C-ImmSim server showed that the MP3RT vaccine could stimulate T and B cells to produce immune responses, such as high levels of IgM and IgG antibodies, IFN-γ, TNF-α, and IL-2 cytokines. Results from real-world animal experiments showed that the MP3RT vaccine could stimulate the humanized mice to produce high levels of IgG and IgG2a antibodies and IFN-γ+ T lymphocytes. Furthermore, the levels of IFN-γ, IL-2, and IL-6 cytokines in mice immunized with the MP3RT vaccine were significantly higher than those in the control group. Conclusion MP3RT is a highly antigenic and immunogenic potential vaccine that can effectively induce Th1-type immune responses in silico analysis and animal experiments. This study lays the foundation for evaluating the value of computational tools and immunoinformatic techniques in reverse vaccinology research.
Collapse
Affiliation(s)
- Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Zaixing Jia
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei, China
| | - Liang Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Zhou J, Chen J, Peng Y, Xie Y, Xiao Y. A Promising Tool in Serological Diagnosis: Current Research Progress of Antigenic Epitopes in Infectious Diseases. Pathogens 2022; 11:1095. [PMID: 36297152 PMCID: PMC9609281 DOI: 10.3390/pathogens11101095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases, caused by various pathogens in the clinic, threaten the safety of human life, are harmful to physical and mental health, and also increase economic burdens on society. Infections are a complex mechanism of interaction between pathogenic microorganisms and their host. Identification of the causative agent of the infection is vital for the diagnosis and treatment of diseases. Etiological laboratory diagnostic tests are therefore essential to identify pathogens. However, due to its rapidity and automation, the serological diagnostic test is among the methods of great significance for the diagnosis of infections with the basis of detecting antigens or antibodies in body fluids clinically. Epitopes, as a special chemical group that determines the specificity of antigens and the basic unit of inducing immune responses, play an important role in the study of immune responses. Identifying the epitopes of a pathogen may contribute to the development of a vaccine to prevent disease, the diagnosis of the corresponding disease, and the determination of different stages of the disease. Moreover, both the preparation of neutralizing antibodies based on useful epitopes and the assembly of several associated epitopes can be used in the treatment of disease. Epitopes can be divided into B cell epitopes and T cell epitopes; B cell epitopes stimulate the body to produce antibodies and are therefore commonly used as targets for the design of serological diagnostic experiments. Meanwhile, epitopes can fall into two possible categories: linear and conformational. This article reviews the role of B cell epitopes in the clinical diagnosis of infectious diseases.
Collapse
|