1
|
Elalouf A, Elalouf H, Rosenfeld A, Maoz H. Artificial intelligence in drug resistance management. 3 Biotech 2025; 15:126. [PMID: 40235844 PMCID: PMC11996750 DOI: 10.1007/s13205-025-04282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/19/2025] [Indexed: 04/17/2025] Open
Abstract
This review highlights the application of artificial intelligence (AI), particularly deep learning and machine learning (ML), in managing antimicrobial resistance (AMR). Key findings demonstrate that AI models, such as Naïve Bayes, Decision Trees (DT), Random Forest (RF), Support Vector Machines (SVM), and Artificial Neural Networks (ANN), have significantly advanced the prediction of drug resistance patterns and the identification of novel antibiotics. These algorithms have effectively optimized antibiotic use, predicted resistance phenotypes, and identified new drug candidates. AI has also facilitated the detection of AMR-associated mutations, offering new insights into the spread of resistance and potential interventions. Despite data privacy and algorithm transparency challenges, AI presents a promising tool in combating AMR, with implications for improving patient outcomes, enhancing disease management, and addressing global public health concerns. However, realizing its full potential requires overcoming issues related to data scarcity, ethical considerations, and fostering interdisciplinary collaboration.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Hadas Elalouf
- Department of Management, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Ariel Rosenfeld
- Information Science Department, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Hanan Maoz
- Department of Management, Bar-Ilan University, 5290002 Ramat Gan, Israel
| |
Collapse
|
2
|
Young MJ, Huang YH, Hung JJ. The combination of USP24-i-101-Astemizole sensitizes the cytotoxicity of Taxol and Gefitinib in drug-resistant lung cancer. Biomed Pharmacother 2025; 186:118047. [PMID: 40233501 DOI: 10.1016/j.biopha.2025.118047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
In this study, we utilized the yeast two-hybrid system to screen for proteins interacting with USP24. Out of 250 such proteins, functional enrichment analysis using MetaCore™ indicated that 33 of them were involved in lung cancer progression. We then investigated gene expression and survival rates of these 33 proteins in lung cancer patients and cell lines through TCGA databases, Kaplan-Meier Plotter databases, and RNA-seq profile from A549/A549-T24 cells. By employing the patients' survival rate and gene expression profile of these 33 USP24-interacting proteins as gene signatures, we identified 10 potential drugs for inhibiting lung cancer progression or drug resistance via drug repurposing strategy using the Connectivity Map (CMap) database. Of these 10 drugs, six showed similar indicators in Clinical Trials, while the other four candidates (15-delta prostaglandin J2, Astemizole, Trifluoperazine, and 1,4-chrysenequinone) were chosen to evaluate their effect on re-sensitizing cytotoxicity of Taxol and Gefitinib in drug-resistant cancer cells. Experiments demonstrated that treatment with USP24-i-101 and Astemizole alone significantly inhibited drug resistance and re-sensitized the cytotoxicity of Taxol and Gefitinib in drug-resistant lung cancer cells. Notably, combination therapy with USP24-i-101and Astemizole re-sensitized the cytotoxicity of Taxol and Gefitinib in drug-resistant lung cancer, which could benefit in inhibiting drug resistance during cancer therapy.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Han Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; Research Center for Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Akgul Obeidin SV, Senol MS, Dogru Koseoglu Z, Bayramoglu F, Disli S, Yigitbasi T, Emekli N. Antibiotic-derived approaches in cancer therapy: effectiveness of ikarugamycin in hexokinase-2 inhibition, tissue factor modulation, and metabolic regulation in breast cancer. Anticancer Drugs 2025; 36:328-337. [PMID: 39879102 DOI: 10.1097/cad.0000000000001689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
We aimed to explore the role of ikarugamycin (IKA) in breast cancer, its connection with hexokinase-2 (HK-2) repression, and tissue factor (TF). This study sought to extend the role of HK-2 as a TF activator in a comprehensive analysis of these interactions from the enzyme, gene, and protein levels. The investigation was performed with MDA-MB-231 and MCF-7 breast cancer lines. The oxidative stress index (OSI), lactate production, and HK activity were assessed using colorimetric assays. Western blot and quantitative PCR analyses were performed to determine HK-2 and TF expressions. Prothrombin time Tests additionally assessed the effect of IKA therapy on TF activation. Three over four significantly downregulated genes were identified after a specific analysis of the IKA's effect on HK-2 and TF in breast cancer cell lines. In the IKA treatment group, lactate production was markedly reduced ( P < 0.05) and hexokinase activity was found to be reduced in all groups ( P < 0.05, <0.01). Paclitaxel cytotoxicity independently causes lower OSI in all IKA-treated groups as compared to controls even though OSI is elevated in IKA groups compared to control. Molecular analysis results demonstrated significantly downregulated HK-2 and TF expressions at the protein level ( P < 0.05, P < 0.01). Partial thromboplastin time results also showed that IKA-treated cells had longer TF activation duration. A potential indirect association of HK-2 inhibition and TF regulation in breast cancer cells is put forward in this study by presenting IKA's bioactivation of breast cancer in all gene, protein, and enzyme levels.
Collapse
Affiliation(s)
| | - Masite Sehadet Senol
- Department of Biochemistry, Institute of Health Science
- Department of Biochemistry, Faculty of Medicine
| | - Zeynep Dogru Koseoglu
- Department of Biochemistry, Institute of Health Science
- Istanbul Medipol University Genetic Disorders Assessment Center (MEDIGEN), Istanbul Medipol University, Istanbul, Türkiye
| | - Feyza Bayramoglu
- Department of Biochemistry, Institute of Health Science
- Department of Biochemistry, Faculty of Medicine
| | - Sevgi Disli
- Department of Biochemistry, Institute of Health Science
- Department of Biochemistry, Faculty of Medicine
| | - Turkan Yigitbasi
- Department of Biochemistry, Institute of Health Science
- Department of Biochemistry, Faculty of Medicine
- Istanbul Medipol University Genetic Disorders Assessment Center (MEDIGEN), Istanbul Medipol University, Istanbul, Türkiye
| | - Neslin Emekli
- Department of Biochemistry, Institute of Health Science
- Department of Biochemistry, Faculty of Medicine
| |
Collapse
|
4
|
Kenneth MJ, Wu CC, Fang CY, Hsu TK, Lin IC, Huang SW, Chiu YC, Hsu BM. Exploring the Impact of Chemotherapy on the Emergence of Antibiotic Resistance in the Gut Microbiota of Colorectal Cancer Patients. Antibiotics (Basel) 2025; 14:264. [PMID: 40149075 PMCID: PMC11939702 DOI: 10.3390/antibiotics14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
With nearly half of colorectal cancer (CRC) patients diagnosed at advanced stages where surgery alone is insufficient, chemotherapy remains a cornerstone for this cancer treatment. To prevent infections and improve outcomes, antibiotics are often co-administered. However, chemotherapeutic interactions with the gut microbiota cause significant non-selective toxicity, affecting not only tumor and normal epithelial cells but also the gut microbiota. This toxicity triggers the bacterial SOS response and loss of microbial diversity, leading to bacterial mutations and dysbiosis. Consequently, pathogenic overgrowth and systemic infections increase, necessitating broad-spectrum antibiotics intervention. This review underscores how prolonged antibiotic use during chemotherapy, combined with chemotherapy-induced bacterial mutations, creates selective pressures that drive de novo antimicrobial resistance (AMR), allowing resistant bacteria to dominate the gut. This compromises the treatment efficacy and elevates the mortality risk. Restoring gut microbial diversity may mitigate chemotherapy-induced toxicity and improve therapeutic outcomes, and emerging strategies, such as fecal microbiota transplantation (FMT), probiotics, and prebiotics, show considerable promise. Given the global threat posed by antibiotic resistance to cancer treatment, prioritizing antimicrobial stewardship is essential for optimizing antibiotic use and preventing resistance in CRC patients undergoing chemotherapy. Future research should aim to minimize chemotherapy's impact on the gut microbiota and develop targeted interventions to restore microbial diversity affected during chemotherapy.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi 621, Taiwan
| | - Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
- College of Medicine, Tzu Chi University, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Tsui-Kang Hsu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - I-Ching Lin
- Department of Family Medicine, Asia University Hospital, Taichung 413, Taiwan
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Changhua 500, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|
5
|
Berg SZ, Berg J. Microbes, macrophages, and melanin: a unifying theory of disease as exemplified by cancer. Front Immunol 2025; 15:1493978. [PMID: 39981299 PMCID: PMC11840190 DOI: 10.3389/fimmu.2024.1493978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/03/2024] [Indexed: 02/22/2025] Open
Abstract
It is widely accepted that cancer mostly arises from random spontaneous mutations triggered by environmental factors. Our theory challenges the idea of the random somatic mutation theory (SMT). The SMT does not fit well with Charles Darwin's theory of evolution in that the same relatively few mutations would occur so frequently and that these mutations would lead to death rather than survival of the fittest. However, it would fit well under the theory of evolution, if we were to look at it from the vantage point of pathogens and their supporting microbial communities colonizing humans and mutating host cells for their own benefit, as it does give them an evolutionary advantage and they are capable of selecting genes to mutate and of inserting their own DNA or RNA into hosts. In this article, we provide evidence that tumors are actually complex microbial communities composed of various microorganisms living within biofilms encapsulated by a hard matrix; that these microorganisms are what cause the genetic mutations seen in cancer and control angiogenesis; that these pathogens spread by hiding in tumor cells and M2 or M2-like macrophages and other phagocytic immune cells and traveling inside them to distant sites camouflaged by platelets, which they also reprogram, and prepare the distant site for metastasis; that risk factors for cancer are sources of energy that pathogens are able to utilize; and that, in accordance with our previous unifying theory of disease, pathogens utilize melanin for energy for building and sustaining tumors and metastasis. We propose a paradigm shift in our understanding of what cancer is, and, thereby, a different trajectory for avenues of treatment and prevention.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
6
|
Šermukšnytė A, Stasevych M, Komarovska-Porokhnyavets O, Zvarych V, Jakubauskienė E, Kantminienė K, Tumosienė I. Novel Antimicrobial and Antitumor Agents Bearing Pyridine-1,2,4-triazole-3-thione-hydrazone Scaffold: Synthesis, Biological Evaluation, and Molecular Docking Investigation. Biomolecules 2024; 14:1529. [PMID: 39766236 PMCID: PMC11673677 DOI: 10.3390/biom14121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
A series of target 4-substituted-5-(2-(pyridine-2-ylamino)ethyl)-2,4-dihydro-3H-1,2,4-triazole-3-thiones and their chloro analogs 7-21 were synthesized in a reaction of the selected aldehydes with the corresponding 4-amino-1,2,4-triazole-3-thiones 5 and 6, which were obtained from 3-(pyridin-2-ylamino)propanoic acid (3) or 3-((5-chloropyridin-2-yl)amino)propanoic acid (4), respectively, with thioacetohydrazide. The antibacterial and antifungal activities of the synthesized hydrazones were screened against the bacteria Escherichia coli, Staphylococcus aureus, and Mycobacterium luteum and the fungi Candida tenuis and Aspergillus niger by agar diffusion and serial dilution methods. 4-Amino-5-(2-((5-chloropyridin-2-yl)amino)ethyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (6) and 4-(benzylideneamino)-5-(2-(pyridin-2-ylamino)ethyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (7) were identified as exceptionally active (MIC 0.9 µg/mL) against the fungus C. tenuis. 5-Chloropyridine derivatives bearing 4-benzylidene 8, 2-nitrobenzylidene 10, pyridinylmethylene 16, and 4-methylthiobenzylidene 21 moieties showed very high antibacterial activity (MIC 3.9 µg/mL) against the M. luteum strain. The cell viability screening of the synthesized compounds using triple-negative breast cancer MDA-MB-231 and glioblastoma U-87 cell lines by MTT assay identified three active hydrazones, of which 5-(2-(pyridin-2-ylamino)ethyl)-4-((pyridin-3-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione (15) had the highest effect on the viability of cells (IC50 value 39.2 ± 1.7 μM against MDA-MD-231). The in silico molecular modeling results suggested that these three most active hydrazones might have influenced the mitogen-activated protein kinase pathway through the inhibition of BRAF and MEK serine-threonine protein kinases. 5-(2-((5-Chloropyridin-2-yl)amino)ethyl)-4-((4-(methylthio)benzylidene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione (21) demonstrated the highest affinity among them.
Collapse
Affiliation(s)
- Aida Šermukšnytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania; (A.Š.); (I.T.)
| | - Maryna Stasevych
- Department of Technology of Biologically Active Substances, Pharmacy, and Biotechnology, Lviv Polytechnic National University, S. Bandera Str. 12, 79013 Lviv, Ukraine; (M.S.); (O.K.-P.)
| | - Olena Komarovska-Porokhnyavets
- Department of Technology of Biologically Active Substances, Pharmacy, and Biotechnology, Lviv Polytechnic National University, S. Bandera Str. 12, 79013 Lviv, Ukraine; (M.S.); (O.K.-P.)
| | - Viktor Zvarych
- Department of Automated Control Systems, Lviv Polytechnic National University, S. Bandera Str. 12, 79013 Lviv, Ukraine;
| | - Eglė Jakubauskienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, 10257 Vilnius, Lithuania;
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
| | - Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania; (A.Š.); (I.T.)
| |
Collapse
|
7
|
Lorente-Torres B, Llano-Verdeja J, Castañera P, Ferrero HÁ, Fernández-Martínez S, Javadimarand F, Mateos LM, Letek M, Mourenza Á. Innovative Strategies in Drug Repurposing to Tackle Intracellular Bacterial Pathogens. Antibiotics (Basel) 2024; 13:834. [PMID: 39335008 PMCID: PMC11428606 DOI: 10.3390/antibiotics13090834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Intracellular bacterial pathogens pose significant public health challenges due to their ability to evade immune defenses and conventional antibiotics. Drug repurposing has recently been explored as a strategy to discover new therapeutic uses for established drugs to combat these infections. Utilizing high-throughput screening, bioinformatics, and systems biology, several existing drugs have been identified with potential efficacy against intracellular bacteria. For instance, neuroleptic agents like thioridazine and antipsychotic drugs such as chlorpromazine have shown effectiveness against Staphylococcus aureus and Listeria monocytogenes. Furthermore, anticancer drugs including tamoxifen and imatinib have been repurposed to induce autophagy and inhibit bacterial growth within host cells. Statins and anti-inflammatory drugs have also demonstrated the ability to enhance host immune responses against Mycobacterium tuberculosis. The review highlights the complex mechanisms these pathogens use to resist conventional treatments, showcases successful examples of drug repurposing, and discusses the methodologies used to identify and validate these drugs. Overall, drug repurposing offers a promising approach for developing new treatments for bacterial infections, addressing the urgent need for effective antimicrobial therapies.
Collapse
Affiliation(s)
- Blanca Lorente-Torres
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Jesús Llano-Verdeja
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Pablo Castañera
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Helena Á Ferrero
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | | | - Farzaneh Javadimarand
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Luis M Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| | - Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| |
Collapse
|
8
|
Ungureanu D, Oniga O, Moldovan C, Ionuț I, Marc G, Stana A, Pele R, Duma M, Tiperciuc B. An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity. Antibiotics (Basel) 2024; 13:763. [PMID: 39200063 PMCID: PMC11350776 DOI: 10.3390/antibiotics13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health as the number of efficient antimicrobials decreases and the number of resistant pathogens rises. Our research group has been actively involved in the design of novel antimicrobial drugs. The blueprints of these compounds were azolic heterocycles, particularly thiazole. Starting with oxadiazolines, our research group explored, one by one, the other five-membered heterocycles, developing more or less potent compounds. An overview of this research activity conducted by our research group allowed us to observe an evolution in the methodology used (from inhibition zone diameters to minimal inhibitory concentrations and antibiofilm potential determination) correlated with the design of azole compounds based on results obtained from molecular modeling. The purpose of this review is to present the development of in-house azole compounds with antimicrobial activity, designed over the years by this research group from the departments of Pharmaceutical and Therapeutical Chemistry in Cluj-Napoca.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Clinical Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Anca Stana
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Raluca Pele
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Mihaela Duma
- State Veterinary Laboratory for Animal Health and Safety, 1 Piața Mărăști Street, 400609 Cluj-Napoca, Romania;
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| |
Collapse
|
9
|
He Q, Yuan H, Bu Y, Hu J, Olatunde OZ, Gong L, Wang P, Hu T, Li Y, Lu C. Mesoporous Oxidized Mn-Ca Nanoparticles as Potential Antimicrobial Agents for Wound Healing. Molecules 2024; 29:2960. [PMID: 38998912 PMCID: PMC11243354 DOI: 10.3390/molecules29132960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
Managing chronic non-healing wounds presents a significant clinical challenge due to their frequent bacterial infections. Mesoporous silica-based materials possess robust wound-healing capabilities attributed to their renowned antimicrobial properties. The current study details the advancement of mesoporous silicon-loaded MnO and CaO molecules (HMn-Ca) against bacterial infections and chronic non-healing wounds. HMn-Ca was synthesized by reducing manganese chloride and calcium chloride by urotropine solution with mesoporous silicon as the template, thereby transforming the manganese and calcium ions on the framework of mesoporous silicon. The developed HMn-Ca was investigated using scanning electron microscopy (SEM), transmission electron microscope (TEM), ultraviolet-visible (UV-visible), and visible spectrophotometry, followed by the determination of Zeta potential. The production of reactive oxygen species (ROS) was determined by using the 3,3,5,5-tetramethylbenzidine (TMB) oxidation reaction. The wound healing effectiveness of the synthesized HMn-Ca is evaluated in a bacterial-infected mouse model. The loading of MnO and CaO inside mesoporous silicon enhanced the generation of ROS and the capacity of bacterial capture, subsequently decomposing the bacterial membrane, leading to the puncturing of the bacterial membrane, followed by cellular demise. As a result, treatment with HMn-Ca could improve the healing of the bacterial-infected wound, illustrating a straightforward yet potent method for engineering nanozymes tailored for antibacterial therapy.
Collapse
Affiliation(s)
- Qianfeng He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hui Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Youshen Bu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jiangshan Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Olagoke Zacchaeus Olatunde
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lijie Gong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Peiyuan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ting Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuhang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Canzhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
10
|
Kim SH, Ki MR, Han Y, Pack SP. Biomineral-Based Composite Materials in Regenerative Medicine. Int J Mol Sci 2024; 25:6147. [PMID: 38892335 PMCID: PMC11173312 DOI: 10.3390/ijms25116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Regenerative medicine aims to address substantial defects by amplifying the body's natural regenerative abilities and preserving the health of tissues and organs. To achieve these goals, materials that can provide the spatial and biological support for cell proliferation and differentiation, as well as the micro-environment essential for the intended tissue, are needed. Scaffolds such as polymers and metallic materials provide three-dimensional structures for cells to attach to and grow in defects. These materials have limitations in terms of mechanical properties or biocompatibility. In contrast, biominerals are formed by living organisms through biomineralization, which also includes minerals created by replicating this process. Incorporating biominerals into conventional materials allows for enhanced strength, durability, and biocompatibility. Specifically, biominerals can improve the bond between the implant and tissue by mimicking the micro-environment. This enhances cell differentiation and tissue regeneration. Furthermore, biomineral composites have wound healing and antimicrobial properties, which can aid in wound repair. Additionally, biominerals can be engineered as drug carriers, which can efficiently deliver drugs to their intended targets, minimizing side effects and increasing therapeutic efficacy. This article examines the role of biominerals and their composite materials in regenerative medicine applications and discusses their properties, synthesis methods, and potential uses.
Collapse
Affiliation(s)
- Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| |
Collapse
|
11
|
Junk L, Schmiedel VM, Guha S, Fischel K, Greb P, Vill K, Krisilia V, van Geelen L, Rumpel K, Kaur P, Krishnamurthy RV, Narayanan S, Shandil RK, Singh M, Kofink C, Mantoulidis A, Biber P, Gmaschitz G, Kazmaier U, Meinhart A, Leodolter J, Hoi D, Junker S, Morreale FE, Clausen T, Kalscheuer R, Weinstabl H, Boehmelt G. Homo-BacPROTAC-induced degradation of ClpC1 as a strategy against drug-resistant mycobacteria. Nat Commun 2024; 15:2005. [PMID: 38443338 PMCID: PMC10914731 DOI: 10.1038/s41467-024-46218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Antimicrobial resistance is a global health threat that requires the development of new treatment concepts. These should not only overcome existing resistance but be designed to slow down the emergence of new resistance mechanisms. Targeted protein degradation, whereby a drug redirects cellular proteolytic machinery towards degrading a specific target, is an emerging concept in drug discovery. We are extending this concept by developing proteolysis targeting chimeras active in bacteria (BacPROTACs) that bind to ClpC1, a component of the mycobacterial protein degradation machinery. The anti-Mycobacterium tuberculosis (Mtb) BacPROTACs are derived from cyclomarins which, when dimerized, generate compounds that recruit and degrade ClpC1. The resulting Homo-BacPROTACs reduce levels of endogenous ClpC1 in Mycobacterium smegmatis and display minimum inhibitory concentrations in the low micro- to nanomolar range in mycobacterial strains, including multiple drug-resistant Mtb isolates. The compounds also kill Mtb residing in macrophages. Thus, Homo-BacPROTACs that degrade ClpC1 represent a different strategy for targeting Mtb and overcoming drug resistance.
Collapse
Affiliation(s)
- Lukas Junk
- Organic Chemistry I, Saarland University, Campus Building C4.2, 66123, Saarbrücken, Germany.
| | - Volker M Schmiedel
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Somraj Guha
- Organic Chemistry I, Saarland University, Campus Building C4.2, 66123, Saarbrücken, Germany
| | - Katharina Fischel
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Peter Greb
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Kristin Vill
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Violetta Krisilia
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Lasse van Geelen
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Ramya V Krishnamurthy
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Radha Krishan Shandil
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Mayas Singh
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Christiane Kofink
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Andreas Mantoulidis
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Philipp Biber
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Gerhard Gmaschitz
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Uli Kazmaier
- Organic Chemistry I, Saarland University, Campus Building C4.2, 66123, Saarbrücken, Germany
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Julia Leodolter
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - David Hoi
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Sabryna Junker
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | | | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Rainer Kalscheuer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Harald Weinstabl
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria.
| | - Guido Boehmelt
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria.
| |
Collapse
|
12
|
Islam S, Shahzad SA, Hassan Bin Asad MH, Mannan A. Novel amodiaquine analogues to treat cervical cancer and microbial infection in the future. Future Med Chem 2023; 15:2165-2179. [PMID: 37982232 DOI: 10.4155/fmc-2023-0245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/26/2023] [Indexed: 11/21/2023] Open
Abstract
Aim: To synthesize and explore the therapeutic potential of amodiaquine analogues. Methodology: New promising analogues were synthesized by nucleophilic substitution at the 4-amino position and were characterized using 1H NMR, 13C NMR and FT-IR spectroscopic techniques. Results: Antibacterial and cytotoxic screening revealed the high potency of these compounds; analogue AS1 had an 34.3 ± 0.18 mm zone of inhibition against Pseudomonas aeruginosa. Excellent activity against fungal strains, that is, Candida albicans (39.6 ± 0.23 mm) was shown by analogue AS2. Analogue AS1 had an IC50 = 4.2 μg/ml against the HeLa cell line (cervical cancer) and binding energy against 5GWK (-8.32688 kcal/mol), 1PFK (-6.4780 kcal/mol) and 1TUP (-6.5279 kcal/mol) in the docking study. Conclusion: The obtained results reveal that these analogues exhibit potent antimicrobial and cytotoxic potential.
Collapse
Affiliation(s)
- Shamsul Islam
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | | | - Abdul Mannan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
13
|
Rosário JDS, Moreira FH, Rosa LHF, Guerra W, Silva-Caldeira PP. Biological Activities of Bismuth Compounds: An Overview of the New Findings and the Old Challenges Not Yet Overcome. Molecules 2023; 28:5921. [PMID: 37570891 PMCID: PMC10421188 DOI: 10.3390/molecules28155921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Bismuth-based drugs have been used primarily to treat ulcers caused by Helicobacter pylori and other gastrointestinal ailments. Combined with antibiotics, these drugs also possess synergistic activity, making them ideal for multiple therapy regimens and overcoming bacterial resistance. Compounds based on bismuth have a low cost, are safe for human use, and some of them are also effective against tumoral cells, leishmaniasis, fungi, and viruses. However, these compounds have limited bioavailability in physiological environments. As a result, there is a growing interest in developing new bismuth compounds and approaches to overcome this challenge. Considering the beneficial properties of bismuth and the importance of discovering new drugs, this review focused on the last decade's updates involving bismuth compounds, especially those with potent activity and low toxicity, desirable characteristics for developing new drugs. In addition, bismuth-based compounds with dual activity were also highlighted, as well as their modes of action and structure-activity relationship, among other relevant discoveries. In this way, we hope this review provides a fertile ground for rationalizing new bismuth-based drugs.
Collapse
Affiliation(s)
- Jânia dos Santos Rosário
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte 30421-169, MG, Brazil
| | - Fábio Henrique Moreira
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte 30421-169, MG, Brazil
| | - Lara Hewilin Fernandes Rosa
- Institute of Chemistry, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia 38400-142, MG, Brazil
| | - Wendell Guerra
- Institute of Chemistry, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia 38400-142, MG, Brazil
| | | |
Collapse
|
14
|
Songca SP. Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections. Int J Mol Sci 2023; 24:10875. [PMID: 37446050 DOI: 10.3390/ijms241310875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid rise in research and development following the discovery of photodynamic therapy to establish novel photosensitizers and overcome the limitations of the technology soon after its clinical translation has given rise to a few significant milestones. These include several novel generations of photosensitizers, the widening of the scope of applications, leveraging of the offerings of nanotechnology for greater efficacy, selectivity for the disease over host tissue and cells, the advent of combination therapies with other similarly minimally invasive therapeutic technologies, the use of stimulus-responsive delivery and disease targeting, and greater penetration depth of the activation energy. Brought together, all these milestones have contributed to the significant enhancement of what is still arguably a novel technology. Yet the major applications of photodynamic therapy still remain firmly located in neoplasms, from where most of the new innovations appear to launch to other areas, such as microbial, fungal, viral, acne, wet age-related macular degeneration, atherosclerosis, psoriasis, environmental sanitization, pest control, and dermatology. Three main value propositions of combinations of photodynamic therapy include the synergistic and additive enhancement of efficacy, the relatively low emergence of resistance and its rapid development as a targeted and high-precision therapy. Combinations with established methods such as chemotherapy and radiotherapy and demonstrated applications in mop-up surgery promise to enhance these top three clinical tools. From published in vitro and preclinical studies, clinical trials and applications, and postclinical case studies, seven combinations with photodynamic therapy have become prominent research interests because they are potentially easily applied, showing enhanced efficacy, and are rapidly translating to the clinic. These include combinations with chemotherapy, photothermal therapy, magnetic hyperthermia, cold plasma therapy, sonodynamic therapy, immunotherapy, and radiotherapy. Photochemical internalization is a critical mechanism for some combinations.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| |
Collapse
|
15
|
Nurcahyanti ADR, Lady J, Wink M. Fucoxanthin Potentiates the Bactericidal Activity of Cefotaxime Against Staphylococcus aureus. Curr Microbiol 2023; 80:260. [PMID: 37365295 DOI: 10.1007/s00284-023-03381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
The increasing prevalence of antimicrobial resistance (AMR) in Staphylococcus aureus against commonly used antibiotics is a major global health issue. To prevent the emergence of AMR and maintain the desired therapeutic effect, the use of drug combinations in the therapeutic management of infections can be contemplated. This approach allows for the administration of lower antibiotic dosages without compromising the desired therapeutic outcome. Despite the documented antimicrobial activity of fucoxanthin, a widely recognized marine carotenoid, there are a lack of previous reports exploring its potential to enhance the therapeutic effect of antibiotics. The current study aimed to investigate whether fucoxanthin can inhibit S. aureus including the strains resistant to methicillin and to investigate whether fucoxanthin can enhance the therapeutic effect of cefotaxime, a widely prescribed 3rd-generation cephalosporin β-lactam antibiotic known to exhibit resistance in certain cases. Synergism or additive interactions were determined using checkerboard dilution and isobologram analysis, while bactericidal activity was carried out using the time-kill kinetic assay. It is important to highlight that a synergistic bactericidal effect was observed in all strains of S. aureus when fucoxanthin was combined with cefotaxime at a specific concentration ratio. These findings suggest that fucoxanthin holds promise in enhancing the therapeutic efficacy of cefotaxime.
Collapse
Affiliation(s)
- Agustina D R Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, Jakarta, 14440, Indonesia.
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, Jakarta, 14440, Indonesia
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Roman R, Pintilie L, Căproiu MT, Dumitrașcu F, Nuță DC, Zarafu I, Ioniță P, Chifiriuc MC, Chiriță C, Moroșan A, Popa M, Bleotu C, Limban C. New N-acyl Thiourea Derivatives: Synthesis, Standardized Quantification Method and In Vitro Evaluation of Potential Biological Activities. Antibiotics (Basel) 2023; 12:antibiotics12050807. [PMID: 37237710 DOI: 10.3390/antibiotics12050807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
New N-acyl thiourea derivatives with heterocyclic rings have been synthesized by first obtaining isothiocyanate, which further reacted with a heterocyclic amine, characterized by (FT-IR, NMR spectroscopy and FT-ICR) and tested for their in vitro antimicrobial, anti-biofilm and antioxidant activities to obtain a drug candidate in a lead-optimization process. From the tested compounds, those bearing benzothiazole (1b) and 6-methylpyridine (1d) moieties revealed anti-biofilm activity against E. coli ATCC 25922 at MBIC values of 625 µg/mL. Compound 1d exhibited the highest antioxidant capacity (~43%) in the in vitro assay using 1,1-diphenyl-2-picrylhydrazyl (DPPH). Considering the in vitro results, the highest anti-biofilm and antioxidant activities were obtained for compound 1d. Therefore, a reversed-phase high-performance liquid chromatography (RP-HPLC) method has been optimized and validated for the quantitative determination of compound 1d. The detection and quantitation limits were 0.0174 μg/mL and 0.0521 μg/mL, respectively. The R2 correlation coefficient of the LOQ and linearity curves were greater than 0.99, over the concentration range of 0.05 μg/mL-40 μg/mL. The precision and accuracy of the analytical method were within 98-102%, confirming that the method is suitable for the quantitative determination of compound 1d in routine quality control analyses. Evaluating the results, the promising potential of the new N-acyl thiourea derivatives bearing 6-methylpyridine moiety will be further investigated for developing agents with anti-biofilm and antioxidant activities.
Collapse
Affiliation(s)
- Roxana Roman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Lucia Pintilie
- National Institute for Chemical-Pharmaceutical Research & Development, 112 Vitan Av., 031299 Bucharest, Romania
| | - Miron Teodor Căproiu
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - Florea Dumitrașcu
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - Diana Camelia Nuță
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Irina Zarafu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta, 030018 Bucharest, Romania
| | - Petre Ioniță
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta, 030018 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology & Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060101 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| | - Cornel Chiriță
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Alina Moroșan
- Department of Organic Chemistry "Costin Nenitescu", Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 011061 Bucharest, Romania
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology & Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060101 Bucharest, Romania
| | - Coralia Bleotu
- Department of Microbiology, Faculty of Biology & Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060101 Bucharest, Romania
- Department of Celular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| |
Collapse
|
17
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, González-López J, González-Martínez A. Anticancer drugs in wastewater and natural environments: A review on their occurrence, environmental persistence, treatment, and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130818. [PMID: 36680899 DOI: 10.1016/j.jhazmat.2023.130818] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The consumption of anticancer drugs (also known as chemotherapy drugs or antineoplastic drugs) has augmented over the last decades due to increased cancer incidence. Although there is an increasing concern about the presence of pharmaceutical compounds in natural environments and urban/domestic wastewater, anticancer drugs used in chemotherapy and anticancer medication have received less attention. In this review, the occurrence, environmental persistence, and known and potential ecological impacts of anticancer drugs is discussed. This review shows that these compounds are being increasingly detected in effluents of hospitals, influents and effluents of wastewater treatment plants, river surface water and sediments, groundwater, and even drinking water. Anticancer drugs can impact aquatic organisms such as algae, crustaceans, rotifers, and fish and may promote changes in soil and water microbial communities that may alter ecosystem functioning. Our knowledge of technologies for the removal of anticancer drugs is still limited, and these drugs can be dispersed in nature in a diffuse way in an uncontrolled manner. For this reason, an improved understanding of the presence, persistence, and ecological impacts of anticancer drugs in wastewater and natural environments is needed to help design management strategies, protect aquatic microorganisms, and mitigate potential ecological impacts.
Collapse
Affiliation(s)
| | | | - Jesús González-López
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | | |
Collapse
|