1
|
von Knoblauch T, Jensen AB, Mülling CKW, Heusinger A, Aupperle-Lellbach H, Genersch E. Stonebrood Disease-Histomorphological Changes in Honey Bee Larvae ( Apis mellifera) Experimentally Infected with Aspergillus flavus. Vet Sci 2025; 12:124. [PMID: 40005884 PMCID: PMC11861757 DOI: 10.3390/vetsci12020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Stonebrood (Aspergillus sp.) is a rare, poorly described disease of the Western honey bee (Apis mellifera) that can affect adult bees and brood. This study describes the pathogenesis using artificially reared pathogen-free Apis mellifera larvae, experimentally infected (5 × 102 spores/larva) with Aspergillus flavus. Between days 1 and 5 p.i. (larval age 4 until 8 days), five uninfected control larvae, up to five infected living larvae, and up to five infected dead larvae were examined macroscopically. Subsequently, the larvae were photographed, fixed (4% formaldehyde), and processed for histological examination (hematoxylin-eosin stain, Grocott silvering). Sections were digitized, measured (area, thickness), and statistically analyzed. In total, 19 of the 43 collected infected larvae showed signs of infection (germinating spores/fungal mycelium): dead larvae (from day 2 p.i.) showed clear histological and macroscopic signs of infection, while larvae collected alive (from day 1 p.i.) were only locally affected. Infected larvae were significantly smaller (day 2 p.i.: p < 0.001, 4 p.i.: p < 0.01, 5 p.i.: p < 0.01) than uninfected larvae (control group). Our study shows that the pathogenesis of stonebrood is characterized by a short period between Aspergillus germination and the onset of disease (about one day), and a rapid larval death.
Collapse
Affiliation(s)
- Tammo von Knoblauch
- LABOKLIN GmbH & Co.KG, Labor für Klinische Diagnostik, Steubenstraße 4, 97688 Bad Kissingen, Germany; (T.v.K.); (A.H.)
| | - Annette B. Jensen
- Department of Plant and Environmental Sciences Section for Organismal Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| | - Christoph K. W. Mülling
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany;
| | - Anton Heusinger
- LABOKLIN GmbH & Co.KG, Labor für Klinische Diagnostik, Steubenstraße 4, 97688 Bad Kissingen, Germany; (T.v.K.); (A.H.)
| | - Heike Aupperle-Lellbach
- LABOKLIN GmbH & Co.KG, Labor für Klinische Diagnostik, Steubenstraße 4, 97688 Bad Kissingen, Germany; (T.v.K.); (A.H.)
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
- Institute of Microbiology and Epizootics, Faculty of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| |
Collapse
|
2
|
Kashchenko G, Taldaev A, Adonin L, Smutin D. Investigating Aerobic Hive Microflora: Role of Surface Microbiome of Apis Mellifera. BIOLOGY 2025; 14:88. [PMID: 39857318 PMCID: PMC11760457 DOI: 10.3390/biology14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
This study investigated the surface microbiome of the honeybee (Apis mellifera), focusing on the diversity and functional roles of its associated microbial communities. While the significance of the microbiome to insect health and behavior is increasingly recognized, research on invertebrate surface microbiota lags behind that of vertebrates. A combined metagenomic and cultivation-based approach was employed to characterize the bacterial communities inhabiting the honeybee exoskeleton. Our findings reveal a complex and diverse microbiota exhibiting significant spatial and environmental heterogeneity. The identification of antimicrobial compound producers, validated through both culture and metagenomic analyses, including potentially novel Actinobacteria species, underscores the potential impact of these microbial communities on honeybee health, behavior, and hive dynamics. This research contributes to a more profound ecological understanding of the honeybee microbiome, particularly in its winter configuration.
Collapse
Affiliation(s)
- Grigory Kashchenko
- Faculty of Geology, Soil Science and Landscape Studies, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
- Dokuchaev Soil Institute, 119017 Moscow, Russia
| | - Amir Taldaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Leonid Adonin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Federal State Budget-Financed Educational Institution of Higher Education, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 193232 St. Petersburg, Russia
| | - Daniil Smutin
- Federal State Budget-Financed Educational Institution of Higher Education, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 193232 St. Petersburg, Russia
- Faculty of Information Technology and Programming, ITMO University, 197101 St. Petersburg, Russia
| |
Collapse
|
3
|
Riedling OL, David KT, Rokas A. Global patterns of species diversity and distribution in the biomedically and biotechnologically important fungal genus Aspergillus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626055. [PMID: 39677661 PMCID: PMC11642779 DOI: 10.1101/2024.11.29.626055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Aspergillus fungi are key producers of pharmaceuticals, enzymes, and food products and exhibit diverse lifestyles, ranging from saprophytes to opportunistic pathogens. To improve understanding of Aspergillus species diversity, identify key environmental factors influencing their geographic distributions, and estimate the impact of future climate change, we trained a random forest machine learning classifier on 30,542 terrestrial occurrence records for 176 species (~40% of known species in the genus) and 96 environmental variables. We found that regions with high species diversity are concentrated in temperate forests, which suggests that areas with mild seasonal variation may serve as diversity hotspots. Species range estimates revealed extensive variability, both within and across taxonomic sections; while some species are cosmopolitan, others have more restricted ranges. Furthermore, range overlap between species is generally low. The top predictors of mean species richness were the index of cumulative human impact and five bioclimatic factors, such as temperature and temperate vs non-temperate ecoregions. Our future climate analyses revealed considerable variation in species range estimates in response to changing climates; some species ranges are predicted to expand (e.g., the food spoilage and mycotoxin-producing Aspergillus versicolor), and others are predicted to contract or remain stable. Notably, the predicted range of the major pathogen Aspergillus fumigatus was predicted to decrease in response to climate change, whereas the range of the major pathogen Aspergillus flavus was predicted to increase and gradually decrease. Our findings reveal how both natural and human factors influence Aspergillus species ranges and highlight their ecological diversity, including the diversity of their responses to changing climates, which is of relevance to pathogen and mycotoxin risk assessment.
Collapse
Affiliation(s)
- Olivia L. Riedling
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Kyle T. David
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Dos Reis JBA, Bezerra JDP, do Vale HMM. Diversity of cultivable endophytic fungi in a decumbent subshrub endemic of the Brazilian tropical savanna. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01226-4. [PMID: 39560704 DOI: 10.1007/s12223-024-01226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The diversity of cultivable endophytic fungi in native subshrubs of the Brazilian Cerrado is largely unknown. This study investigated the cultivable endophytic mycobiome of stems, leaves, and flowers of Peltaea polymorpha (Malvaceae). In total, 208 endophytic fungi were isolated, 95 from stems, 65 from leaves, and 48 from flowers. The isolates were classified as ascomycetes belonging to three classes, eight orders, ten families, 12 genera, and 31 species. Diaporthe, Nigrospora, and Colletotrichum were the dominant genera in the three analyzed organs. The richness estimators suggested that the number of species might be slightly higher than observed. The highest values for the Shannon and Simpson diversity indices were observed in stems. Beta diversity showed overlapping of fungal communities in different organs, with a high rate of sharing of taxa. Furthermore, the dominant primary fungal lifestyles were plant pathogens and saprobes. Our findings show that the cultivable endophytic fungal community of P. polymorpha is species-rich and that communities in different organs share genera and species.
Collapse
Affiliation(s)
| | - Jadson Diogo Pereira Bezerra
- Universidade Federal de Goiás (UFG), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Laboratório de Micologia (LabMicol), Goiânia, GO, Brazil
| | - Helson Mario Martins do Vale
- University of Brasília (UnB), Institute of Biological Sciences, Department of Phytopathology, Brasília, DF, Brazil
| |
Collapse
|
5
|
Murcia-Morales M, Díaz-Galiano FJ, Valderrama-Conca C, Van der Steen JJM, Fernández-Alba AR. One sampler to see it all: The use of APIStrips for beehive characterization and pesticide residue evaluation based on mass spectrometry. CHEMOSPHERE 2024; 364:143151. [PMID: 39178964 DOI: 10.1016/j.chemosphere.2024.143151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Environmental monitoring is crucial for assessing the overall state of the ecosystems in terms of contaminant impact and chemical landscape. The use of honey bee (Apis mellifera) colonies considerably eases the sampling activities, as honey bees are exposed to a wide range of substances that are transported and accumulated within the beehives. In this work, combining low-resolution and high-resolution mass spectrometry, the APIStrip passive sampler has been employed to evaluate the presence of pesticide residues and the overall characterization of beehive environments. A total of 180 APIStrips have been deployed in 10 Danish apiaries, located in different landscapes, during a five-month sampling period. The targeted methodology for pesticide analysis was based on gas and liquid chromatography coupled with triple quadrupole mass spectrometry, covering 430 pesticide residues. A total of 29 pesticide residues were identified (fluopyram and azoxystrobin being the most frequently detected), with remarkable differences in the pesticide load between apiaries. For its part, the use of non-targeted approaches through liquid chromatography coupled with an Orbitrap mass spectrometer allowed the detection of unknown compounds that were specific of certain environments. Natural products such as eupatilin and gnaphaliin, which are derived from plant sources, were present exclusively in one of the apiaries. Additionally, the detection of drimane sesquiterpenoids, including compounds potentially originating from the Aspergillus genus, suggests the capability of APIStrips to early detect fungal contamination within beehives. This dual approach of low- and high-resolution mass spectrometry maximizes the analytical potential of APIStrips as a tool capable of detecting a wide range of substances with implications for both agricultural practices and ecological health.
Collapse
Affiliation(s)
- María Murcia-Morales
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Francisco José Díaz-Galiano
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain.
| | - Cristian Valderrama-Conca
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | | | - Amadeo R Fernández-Alba
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| |
Collapse
|
6
|
Dos Santos Moreira LM, Marinho LS, Neves RCS, Harakava R, Bessa LA, Vitorino LC. Assessment of the Entomopathogenic Potential of Fungal and Bacterial Isolates from Fall Armyworm Cadavers Against Spodoptera frugiperda Caterpillars and the Adult Boll Weevil, Anthonomus grandis. NEOTROPICAL ENTOMOLOGY 2024; 53:889-906. [PMID: 38714593 PMCID: PMC11255027 DOI: 10.1007/s13744-024-01159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/13/2024] [Indexed: 05/10/2024]
Abstract
Increased attention is being focused on the biological control of agricultural pests using microorganisms, owing to their potential as a viable substitute for chemical control methods. Insect cadavers constitute a potential source of entomopathogenic microorganisms. We tested whether bacteria and fungi isolated from Spodoptera frugiperda (JE Smith) cadavers could affect its survival, development, egg-laying pattern, and hatchability, as well as induce mortality in Anthonomus grandis Boheman adults. We isolated the bacteria Enterobacter hormaechei and Serratia marcescens and the fungi Scopulariopsis sp. and Aspergillus nomiae from fall armyworm cadavers and the pest insects were subjected to an artificial diet enriched with bacteria cells or fungal spores to be tested, in the case of S. frugiperda, and only fungal spores in the case of A. grandis. Enterobacter hormaechei and A. nomiae were pathogenic to S. frugiperda, affecting the survival of adults and pupae. The fungus Scopulariopsis sp. does not affect the survival of S. frugiperda caterpillars and pupae; however, due to late action, moths and eggs may be affected. Aspergillus nomiae also increased mortality of A. grandis adults, as well as the development of S. frugiperda in the early stages of exposure to the diet, as indicated by the vertical spore transfer to offspring and low hatchability. Enterobacter hormaechei and A. nomiae are potential biocontrol agents for these pests, and warrant further investigation from a toxicological point of view and subsequently in field tests involving formulations that could improve agricultural sustainability practices.
Collapse
Affiliation(s)
- Lidiane Maria Dos Santos Moreira
- Instituto Goiano de Agricultura (IGA), Montividiu, GO, Brazil
- Lab of Agricultural Microbiology, Instituto Federal Goiano, Rio Verde Campus, Rio Verde, GO, Brazil
| | | | | | | | - Layara Alexandre Bessa
- Lab of Biodiversity Metabolism and Genetics, Instituto Federal Goiano, Rio Verde Campus, Rio Verde, GO, Brazil
- Simple Agro Corporation, Rio Verde, GO, Brazil
| | - Luciana Cristina Vitorino
- Simple Agro Corporation, Rio Verde, GO, Brazil.
- Lab of Agricultural Microbiology, Instituto Federal Goiano, Rio Verde Campus, Rio Verde, GO, Brazil.
| |
Collapse
|
7
|
Fernandes KE, Frost EA, Kratz M, Carter DA. Pollen products collected from honey bee hives experiencing minor stress have altered fungal communities and reduced antimicrobial properties. FEMS Microbiol Ecol 2024; 100:fiae091. [PMID: 38886123 PMCID: PMC11210501 DOI: 10.1093/femsec/fiae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Fungi are increasingly recognized to play diverse roles within honey bee hives, acting as pathogens, mutualists, and commensals. Pollen products, essential for hive nutrition, host significant fungal communities with potential protective and nutritional benefits. In this study, we profile the fungal communities and antifungal properties of three pollen products from healthy and stressed hives: fresh pollen collected by forager bees from local plants; stored pollen packed into the comb inside the hive; and bee bread, which is stored pollen following anaerobic fermentation used for bee and larval nutrition. Using amplicon sequencing, we found significant differences in fungal community composition, with hive health and sample type accounting for 8.8% and 19.3% of variation in beta diversity, respectively. Pollen and bee bread extracts had species-specific antimicrobial activity and inhibited the fungal hive pathogens Ascosphaera apis, Aspergillus flavus, and Aspergillus fumigatus, and the bacterial hive pathogen Paenibacillus larvae. Activity was positively correlated with phenolic and antioxidant content and was diminished in stressed hives. The plant source of pollen determined by amplicon sequencing differed in stressed hives, suggesting altered foraging behaviour. These findings illustrate the complex interplay between honey bees, fungal communities, and hive products, which should be considered in hive management and conservation.
Collapse
Affiliation(s)
- Kenya E Fernandes
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth A Frost
- ABGU, A Joint Venture of NSW Department of Primary Industries and University of New England, Armidale, NSW 2350, Australia
- NSW Department of Primary Industries, Paterson, NSW 2421, Australia
| | - Madlen Kratz
- NSW Department of Primary Industries, Paterson, NSW 2421, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Nguyen PN, Samad-Zada F, Chau KD, Rehan SM. Microbiome and floral associations of a wild bee using biodiversity survey collections. Environ Microbiol 2024; 26:e16657. [PMID: 38817079 DOI: 10.1111/1462-2920.16657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
The health of bees can be assessed through their microbiome, which serves as a biomarker indicating the presence of both beneficial and harmful microorganisms within a bee community. This study presents the characterisation of the bacterial, fungal, and plant composition on the cuticle of adult bicoloured sweat bees (Agapostemon virescens). These bees were collected using various methods such as pan traps, blue vane traps and sweep netting across the northern extent of their habitat range. Non-destructive methods were employed to extract DNA from the whole pinned specimens of these wild bees. Metabarcoding of the 16S rRNA, ITS and rbcL regions was then performed. The study found that the method of collection influenced the detection of certain microbial and plant taxa. Among the collection methods, sweep net samples showed the lowest fungal alpha diversity. However, minor differences in bacterial or fungal beta diversity suggest that no single method is significantly superior to others. Therefore, a combination of techniques can cater to a broader spectrum of microbial detection. The study also revealed regional variations in bacterial, fungal and plant diversity. The core microbiome of A. virescens comprises two bacteria, three fungi and a plant association, all of which are commonly detected in other wild bees. These core microbes remained consistent across different collection methods and locations. Further extensive studies of wild bee microbiomes across various species and landscapes will help uncover crucial relationships between pollinator health and their environment.
Collapse
Affiliation(s)
- Phuong N Nguyen
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Katherine D Chau
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Tejerina MR, Cabana MJ, Enríquez PA, Benítez-Ahrendts MR, Fonseca MI. Bacterial Strains Isolated from Stingless Bee Workers Inhibit the Growth of Apis mellifera Pathogens. Curr Microbiol 2024; 81:106. [PMID: 38418777 DOI: 10.1007/s00284-024-03618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Apis mellifera bees are an important resource for the local economy of various regions in Argentina and the maintenance of natural ecosystems. In recent years, different alternatives have been investigated to avoid the reduction or loss of colonies caused by pathogens and parasites such as Ascosphaera apis, Aspergillus flavus, and Paenibacillus larvae. We focused on bacterial strains isolated from the intestine of native stingless bees, to elucidate their antagonistic effect on diseases of A. mellifera colonies. For this purpose, worker bees of the species Tetragonisca fiebrigi, Plebeia spp., and Scaptotrigona jujuyensis were captured from the entrance to tree hives and transported to the laboratory, where their intestines were extracted. Twenty bacterial colonies were isolated from the intestines, and those capable of inhibiting enterobacteria in vitro and producing organic acids, proteases, and chitinases were selected. Four genera, Levilactobacillus, Acetobacter, Lactiplantibacillus, and Pantoea, were selected and identified by the molecular marker that codes for the 16S rRNA gene. For inhibition assays, cell suspensions and cell-free suspensions were performed. All treatments showed significant antibacterial effects, in comparison with the controls, against P. larvae and antifungal effects against A. apis and A. flavus. However, the mechanisms by which these bacteria inhibit the growth of these pathogens were not studied.
Collapse
Affiliation(s)
- Marcos Raúl Tejerina
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina.
- Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, San Salvador de Jujuy, Jujuy, Argentina.
| | - María José Cabana
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Pablo Adrián Enríquez
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Marcelo Rafael Benítez-Ahrendts
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
- Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, San Salvador de Jujuy, Jujuy, Argentina
| | - María Isabel Fonseca
- Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Biotecnología "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Universidad Nacional de Misiones, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
10
|
Bush DS, Calla B, Berenbaum MR. An Aspergillus flavus strain from bee bread of the Western honey bee ( Apis mellifera) displays adaptations to distinctive features of the hive environment. Ecol Evol 2024; 14:e10918. [PMID: 38389995 PMCID: PMC10883247 DOI: 10.1002/ece3.10918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Aspergillus fungi are ubiquitous inhabitants of colonies of the western honey bee (Apis mellifera), where they interact with bees in associations ranging from parasitism to possible mutualism. Aspergillus Flavi fungi are frequently found in bee bread (pollen processed for longterm storage) and are thought to contribute to food preparation, processing, preservation, and digestion. Conditions in the hive are challenging for fungi due, in part, to xeric and acidic properties of bee bread and the omnipresence of propolis, an antimicrobial product manufactured by bees from plant resins. We used quantitative and qualitative assays to determine whether A. flavus isolated from bee bread demonstrates tolerance for hive environmental conditions in terms of temperature, pH, osmotic pressure, and propolis exposure. Comparisons made use of three strains of A. flavus: a fungal biocontrol product not known from beehives (AF36), a strain isolated from bee bread (AFBB) in hives from central Illinois, and a pathogenic strain from a honey bee colony displaying symptoms of stonebrood (AFPA). Strain AFBB displayed higher tolerance of acidic conditions, low matric potential (simulating xeric substrate), and propolis exposure than did other strains. A genomic comparison between this new strain and the reference NRRL-3357 showed that AFBB, like AF36, might be blocked from carrying out aflatoxin biosynthesis. Sequence comparisons also revealed several missense variants in genes that encode proteins regulating osmotolerance and osmotic pressure in Aspergillus spp., including SakA, SskB, GfdA, and TcsB/Sln1. Collectively, results of our laboratory assays and genetic analyses are consistent with the suggestion that the strain isolated from bee bread is adapted to the bee bread environment and may have persisted due to a coevolutionary relationship between Aspergillus and A. mellifera. This finding bolsters recent concerns about the effects of fungicide use near bee colonies and broadens the ecological importance of highly adaptable fungal strains.
Collapse
Affiliation(s)
- Daniel S. Bush
- Deparment of EntomologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Bernarda Calla
- USDA‐ARS Pacific Shellfish Research UnitCorvallisOregonUSA
| | | |
Collapse
|
11
|
Roxo I, Amaral A, Portugal A, Trovão J. A preliminary metabarcoding analysis of Portuguese raw honeys. Arch Microbiol 2023; 205:386. [PMID: 37982894 DOI: 10.1007/s00203-023-03725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The microbial diversity in Portuguese raw honeys remains largely uncharacterized, constituting a serious knowledge gap in one of the country's most important resources. This work provides an initial investigation with amplicon metabarcoding analysis of two Lavandula spp. from different geographical regions of Portugal and one Eucalyptus spp. honey. The results obtained allowed to identify that each honey harbors diverse microbiomes with taxa that can potentially affect bee and human health, cause spoilage, and highlight bad bee-hive management practices. We verified that prokaryotes had a tendency towards a more marked core bacterial and a relative homogenous taxa distribution, and that the botanical origin of honey is likely to have a stronger impact on the fungal community. Thus, the results obtained in this work provide important information that can be helpful to improve this critical Portuguese product and industry.
Collapse
Affiliation(s)
- Ivo Roxo
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
| | - António Amaral
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga/Guimarães, Portugal
- Instituto de Investigação Aplicada, Laboratório SiSus, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
| | - António Portugal
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
- Centre for Functional Ecology-Science for People & the Planet, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - João Trovão
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
- Centre for Functional Ecology-Science for People & the Planet, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
12
|
Nguyen PN, Rehan SM. Environmental Effects on Bee Microbiota. MICROBIAL ECOLOGY 2023; 86:1487-1498. [PMID: 37099156 DOI: 10.1007/s00248-023-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Anthropogenic activities and increased land use, which include industrialization, agriculture and urbanization, directly affect pollinators by changing habitats and floral availability, and indirectly by influencing their microbial composition and diversity. Bees form vital symbioses with their microbiota, relying on microorganisms to perform physiological functions and aid in immunity. As altered environments and climate threaten bees and their microbiota, characterizing the microbiome and its complex relationships with its host offers insights into understanding bee health. This review summarizes the role of sociality in microbiota establishment, as well as examines if such factors result in increased susceptibility to altered microbiota due to environmental changes. We characterize the role of geographic distribution, temperature, precipitation, floral resources, agriculture, and urbanization on bee microbiota. Bee microbiota are affected by altered surroundings regardless of sociality. Solitary bees that predominantly acquire their microbiota through the environment are particularly sensitive to such effects. However, the microbiota of obligately eusocial bees are also impacted by environmental changes despite typically well conserved and socially inherited microbiota. We provide an overview of the role of microbiota in plant-pollinator relationships and how bee microbiota play a larger role in urban ecology, offering microbial connections between animals, humans, and the environment. Understanding bee microbiota presents opportunities for sustainable land use restoration and aiding in wildlife conservation.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
13
|
Vocadlova K, Lüddecke T, Patras MA, Marner M, Hartwig C, Benes K, Matha V, Mraz P, Schäberle TF, Vilcinskas A. Extracts of Talaromyces purpureogenus Strains from Apis mellifera Bee Bread Inhibit the Growth of Paenibacillus spp. In Vitro. Microorganisms 2023; 11:2067. [PMID: 37630627 PMCID: PMC10459140 DOI: 10.3390/microorganisms11082067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Honey bees coexist with fungi that colonize hive surfaces and pollen. Some of these fungi are opportunistic pathogens, but many are beneficial species that produce antimicrobial compounds for pollen conservation and the regulation of pathogen populations. In this study, we tested the in vitro antimicrobial activity of Talaromyces purpureogenus strains isolated from bee bread against Paenibacillus alvei (associated with European foulbrood disease) and three Aspergillus species that cause stonebrood disease. We found that methanol extracts of T. purpureogenus strains B18 and B195 inhibited the growth of P. alvei at a concentration of 0.39 mg/mL. Bioactivity-guided dereplication revealed that the activity of the crude extracts correlated with the presence of diketopiperazines, a siderophore, and three unknown compounds. We propose that non-pathogenic fungi such as Talaromyces spp. and their metabolites in bee bread could be an important requirement to prevent disease. Agricultural practices involving the use of fungicides can disrupt the fungal community and thus negatively affect the health of bee colonies.
Collapse
Affiliation(s)
- Katerina Vocadlova
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
| | - Tim Lüddecke
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
| | - Maria A. Patras
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
| | - Christoph Hartwig
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
| | - Karel Benes
- OncoRa s.r.o., Nemanicka 2722, 37001 Ceske Budejovice, Czech Republic
| | - Vladimir Matha
- Retorta s.r.o., Tresnova 316, 37382 Borsov nad Vltavou, Czech Republic
| | - Petr Mraz
- Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Studentska 1668, 37005 Ceske Budejovice, Czech Republic
| | - Till F. Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (K.V.)
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| |
Collapse
|
14
|
Rutkowski D, Weston M, Vannette RL. Bees just wanna have fungi: a review of bee associations with nonpathogenic fungi. FEMS Microbiol Ecol 2023; 99:fiad077. [PMID: 37422442 PMCID: PMC10370288 DOI: 10.1093/femsec/fiad077] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Bee-fungus associations are common, and while most studies focus on entomopathogens, emerging evidence suggests that bees associate with a variety of symbiotic fungi that can influence bee behavior and health. Here, we review nonpathogenic fungal taxa associated with different bee species and bee-related habitats. We synthesize results of studies examining fungal effects on bee behavior, development, survival, and fitness. We find that fungal communities differ across habitats, with some groups restricted mostly to flowers (Metschnikowia), while others are present almost exclusively in stored provisions (Zygosaccharomyces). Starmerella yeasts are found in multiple habitats in association with many bee species. Bee species differ widely in the abundance and identity of fungi hosted. Functional studies suggest that yeasts affect bee foraging, development, and pathogen interactions, though few bee and fungal taxa have been examined in this context. Rarely, fungi are obligately beneficial symbionts of bees, whereas most are facultative bee associates with unknown or ecologically contextual effects. Fungicides can reduce fungal abundance and alter fungal communities associated with bees, potentially disrupting bee-fungi associations. We recommend that future study focus on fungi associated with non-honeybee species and examine multiple bee life stages to document fungal composition, abundance, and mechanistic effects on bees.
Collapse
Affiliation(s)
- Danielle Rutkowski
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Makena Weston
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Rachel L Vannette
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|