1
|
Tomizawa M, Hori S, Yoneda T, Maesaka F, Onishi S, Shimizu T, Onishi K, Morizawa Y, Gotoh D, Nakai Y, Miyake M, Torimoto K, Tanaka N, Fujimoto K. Immunosuppressant-Induced Alteration of Gut Microbiota Causes Loss of Skeletal Muscle Mass: Evidence from Animal Experiments Using Mice and Observational Study on Humans. J Clin Med 2025; 14:1628. [PMID: 40095615 PMCID: PMC11900293 DOI: 10.3390/jcm14051628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: The number of older adults requiring a kidney transplant (KT) is increasing; hence, postoperative sarcopenia prevention is necessary. KT recipients require permanent oral immunosuppressants (ISs), and the gut microbiota (GM) plays a role in various systemic diseases. However, few studies have evaluated post-kidney transplantation frailty and the associations among ISs, GM, and muscle mass alterations. Therefore, we investigated the effects of ISs on GM and skeletal muscle mass in mice and human KT recipients. Methods: Mice were treated with six different ISs, and their skeletal muscle mass, GM diversity, and colonic mucosal function were assessed. Human KT recipients and donors were monitored before and after surgery for 1 year, and GM diversity was evaluated before and 1 month after surgery. Results: The abundance of Akkermansia, crypt depth, and mucin 2 expression were lower in tacrolimus- and prednisolone-treated mice. The psoas muscle volume changes at 1 month and 1 year after surgery were lower in KT recipients than in donors. Furthermore, the beta diversity was significantly different between the operative groups (p = 0.001), and the KT group showed the lowest Shannon index. Conclusions: The findings of this study indicate potential links among ISs, GM, and muscle mass decline. Further investigation is required to improve therapeutic strategies and patient outcomes.
Collapse
Affiliation(s)
- Mitsuru Tomizawa
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Shunta Hori
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Tatsuo Yoneda
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Fumisato Maesaka
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Sayuri Onishi
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Takuto Shimizu
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Kenta Onishi
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Daisuke Gotoh
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Kazumasa Torimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
- Department of Prostate Brachytherapy, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan; (M.T.); (S.H.); (T.Y.); (F.M.); (S.O.); (T.S.); (K.O.); (Y.M.); (D.G.); (Y.N.); (M.M.); (K.T.); (N.T.)
| |
Collapse
|
2
|
Zhang J, Gan H, Duan X, Li G. Targeting the Intestinal Microbiota: A Novel Direction in the Treatment of Inflammatory Bowel Disease. Biomedicines 2024; 12:2340. [PMID: 39457652 PMCID: PMC11504502 DOI: 10.3390/biomedicines12102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past decade, there has been a rapid increase in the incidence of inflammatory bowel disease. It has been suggested that multifactorial interactions of environmental factors, genetic factors, immune response and intestinal microbiota are involved in the pathogenesis of inflammatory bowel disease. It is widely recognized that the intestinal microbiota are essential for human metabolism, the immune system and pathogen resistance, and are integral to human health. Therefore, the dysbiosis of the microbiota is a critical step leading to intestinal mucosal damage and a key factor in the pathogenesis of inflammatory bowel disease. Regulating the microbiota through interventions such as enteral nutrition, fecal microbiota transplantation, and probiotic supplementation has the potential to prevent or even reverse intestinal dysbiosis, opening up new perspectives for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | - Xiaoyan Duan
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Yangpu District, Shanghai 200092, China; (J.Z.); (H.G.)
| | - Guangming Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Yangpu District, Shanghai 200092, China; (J.Z.); (H.G.)
| |
Collapse
|
3
|
Aggarwal K, Singh B, Goel A, Agrawal DK, Bansal S, Kanagala SG, Anamika F, Gupta A, Jain R. Complex dichotomous links of nonalcoholic fatty liver disease and inflammatory bowel disease: exploring risks, mechanisms, and management modalities. Intest Res 2024; 22:414-427. [PMID: 38835139 PMCID: PMC11534450 DOI: 10.5217/ir.2024.00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been shown to be linked to inflammatory bowel disease (IBD) due to established risk factors such as obesity, age, and type 2 diabetes in numerous studies. However, alternative research suggests that factors related to IBD, such as disease activity, duration, and drug-induced toxicity, can contribute to NAFLD. Recent research findings suggest IBD relapses are correlated with dysbiosis, mucosal damage, and an increase in cytokines. In contrast, remission periods are characterized by reduced metabolic risk factors. There is a dichotomy evident in the associations between NAFLD and IBD during relapses and remissions. This warrants a nuanced understanding of the diverse influences on disease manifestation and progression. It is possible to provide a holistic approach to care for patients with IBD by emphasizing the interdependence between metabolic and inflammatory disorders.
Collapse
Affiliation(s)
- Kanishk Aggarwal
- Department of Medicine, Dayanand Medical College, Ludhiana, India
| | - Bhupinder Singh
- Department of Medicine, Government Medical College Amritsar, Amritsar, India
| | - Abhishek Goel
- Department of Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, USA
| | | | - Sourav Bansal
- Department of Medicine, Government Medical College Amritsar, Amritsar, India
| | | | - Fnu Anamika
- Department of Medicine, University College of Medical Sciences, New Delhi, India
| | | | - Rohit Jain
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
4
|
Di Rienzo A, Marinelli L, Dimmito MP, Toto EC, Di Stefano A, Cacciatore I. Advancements in Inflammatory Bowel Disease Management: From Traditional Treatments to Monoclonal Antibodies and Future Drug Delivery Systems. Pharmaceutics 2024; 16:1185. [PMID: 39339221 PMCID: PMC11435298 DOI: 10.3390/pharmaceutics16091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disorder with two main subtypes: ulcerative colitis (UC) and Crohn's disease (CD). The pathogenesis involves genetic predisposition, dysbiosis, and immune dysregulation. Complications include perianal lesions, strictures, fistulas, perforations, and an increased risk of colon cancer. Clinical classification ranges from mild to fulminant and recurrent disease, with common symptoms such as abdominal discomfort, rectal bleeding, diarrhea, and weight loss. Extraintestinal manifestations include arthritis, erythema nodosum, pyoderma gangrenosum, and uveitis. Conventional treatments using aminosalicylates, corticosteroids, and immunomodulators have limitations. Biologics, introduced in the 1990s, offer improved efficacy and specificity, targeting factors like TNF-α, integrins, and cytokines. Monoclonal antibodies play a crucial role in IBD management, aiming to reduce relapses, hospitalizations, and surgeries. In conclusion, this review is aimed at summarizing the latest knowledge, advantages, and drawbacks of IBD therapies, such as small molecules, biologics, and monoclonal antibodies, to provide a basis for further research in the IBD field.
Collapse
Affiliation(s)
| | - Lisa Marinelli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.R.); (M.P.D.); (E.C.T.); (A.D.S.); (I.C.)
| | | | | | | | | |
Collapse
|
5
|
Mohamed ME, Saqr A, Staley C, Onyeaghala G, Teigen L, Dorr CR, Remmel RP, Guan W, Oetting WS, Matas AJ, Israni AK, Jacobson PA. Pharmacomicrobiomics: Immunosuppressive Drugs and Microbiome Interactions in Transplantation. Transplantation 2024; 108:1895-1910. [PMID: 38361239 PMCID: PMC11327386 DOI: 10.1097/tp.0000000000004926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The human microbiome is associated with human health and disease. Exogenous compounds, including pharmaceutical products, are also known to be affected by the microbiome, and this discovery has led to the field of pharmacomicobiomics. The microbiome can also alter drug pharmacokinetics and pharmacodynamics, possibly resulting in side effects, toxicities, and unanticipated disease response. Microbiome-mediated effects are referred to as drug-microbiome interactions (DMI). Rapid advances in the field of pharmacomicrobiomics have been driven by the availability of efficient bacterial genome sequencing methods and new computational and bioinformatics tools. The success of fecal microbiota transplantation for recurrent Clostridioides difficile has fueled enthusiasm and research in the field. This review focuses on the pharmacomicrobiome in transplantation. Alterations in the microbiome in transplant recipients are well documented, largely because of prophylactic antibiotic use, and the potential for DMI is high. There is evidence that the gut microbiome may alter the pharmacokinetic disposition of tacrolimus and result in microbiome-specific tacrolimus metabolites. The gut microbiome also impacts the enterohepatic recirculation of mycophenolate, resulting in substantial changes in pharmacokinetic disposition and systemic exposure. The mechanisms of these DMI and the specific bacteria or communities of bacteria are under investigation. There are little or no human DMI data for cyclosporine A, corticosteroids, and sirolimus. The available evidence in transplantation is limited and driven by small studies of heterogeneous designs. Larger clinical studies are needed, but the potential for future clinical application of the pharmacomicrobiome in avoiding poor outcomes is high.
Collapse
Affiliation(s)
- Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Abdelrahman Saqr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | | | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Levi Teigen
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN
| | - Casey R Dorr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Ajay K Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| |
Collapse
|
6
|
Fukuda T, Yamazaki H, Miyatani Y, Sawada T, Shibuya N, Fukuo Y, Kiyohara H, Morikubo H, Tominaga K, Kakimoto K, Imai T, Yaguchi K, Yamamoto S, Ando K, Nishimata N, Yoshihara T, Andoh A, Hibi T, Matsuoka K. Recent steroid use and the relapse risk in ulcerative colitis patients with endoscopic healing. Aliment Pharmacol Ther 2024; 60:43-51. [PMID: 38651779 DOI: 10.1111/apt.18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Endoscopic healing (EH) is a therapeutic target in ulcerative colitis (UC). However, even patients who have achieved EH relapse frequently. AIMS To investigate the association between recent steroid use and relapse risk in UC patients with EH. METHODS This multi-centre cohort study included 1212 UC patients with confirmed EH (Mayo endoscopic subscore ≤1). We excluded patients with current systemic steroid use or history of advanced therapy. We divided patients into a recent steroid group (last systemic steroid use within 1 year; n = 59) and a non-recent or steroid-naïve group (n = 1153). We followed the patients for 2 years to evaluate relapse, defined as induction of systemic steroids or advanced therapy. We used logistic regression to estimate the odds ratio (OR) of relapse. RESULTS Relapse occurred in 28.8% of the recent steroid group and 5.6% of the non-recent/steroid-naïve group (multi-variable-adjusted OR 5.53 [95% CI 2.85-10.7]). The risk of relapse decreased with time since the last steroid use: 28.8% for less than 1 year after steroid therapy, 22.9% for 1 year, 16.0% for 2 years and 7.9% beyond 3 years, approaching 4.0% in steroid-naïve patients. (ptrend <0.001). CONCLUSIONS Even for patients with UC who achieved EH, the risk of relapse remains high following recent steroid therapy. Physicians need to consider the duration since last steroid use to stratify the relapse risk in UC patients with EH.
Collapse
Affiliation(s)
- Tomohiro Fukuda
- Department of Gastroenterology, Yokohama Municipal Citizen's Hospital, Kanagawa, Japan
| | - Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Miyatani
- Centre for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Hospital, Aichi, Japan
| | - Naoki Shibuya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Yuka Fukuo
- Department of Gastroenterology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiromu Morikubo
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Keiichi Tominaga
- Department of Gastroenterology, Dokkyo Medical University, Tochigi, Japan
| | - Kazuki Kakimoto
- 2nd Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takayuki Imai
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Katsuki Yaguchi
- Inflammatory Bowel Disease Centre, Yokohama City University Medical Centre, Kanagawa, Japan
| | - Shojiro Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki Hospital, Miyazaki, Japan
| | - Katsuyoshi Ando
- Gastroenterology and Endoscopy, Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuaki Nishimata
- Department of Gastroenterology, Sameshima Hospital, Kagoshima, Japan
| | - Takeo Yoshihara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Toshifumi Hibi
- Centre for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Katsuyoshi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| |
Collapse
|
7
|
Blondeaux A, Valibouze C, Speca S, Rousseaux C, Dubuquoy C, Blanquart H, Zerbib P, Desreumaux P, Foligné B, Titécat M. Changes in HLA-B27 Transgenic Rat Fecal Microbiota Following Tofacitinib Treatment and Ileocecal Resection Surgery: Implications for Crohn's Disease Management. Int J Mol Sci 2024; 25:2164. [PMID: 38396840 PMCID: PMC10889215 DOI: 10.3390/ijms25042164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The therapeutic management of Crohn's disease (CD), a chronic relapsing-remitting inflammatory bowel disease (IBD), is highly challenging. Surgical resection is sometimes a necessary procedure even though it is often associated with postoperative recurrences (PORs). Tofacitinib, an orally active small molecule Janus kinase inhibitor, is an anti-inflammatory drug meant to limit PORs in CD. Whereas bidirectional interactions between the gut microbiota and the relevant IBD drug are crucial, little is known about the impact of tofacitinib on the gut microbiota. The HLA-B27 transgenic rat is a good preclinical model used in IBD research, including for PORs after ileocecal resection (ICR). In the present study, we used shotgun metagenomics to first delineate the baseline composition and determinants of the fecal microbiome of HLA-B27 rats and then to evaluate the distinct impact of either tofacitinib treatment, ileocecal resection or the cumulative effect of both interventions on the gut microbiota in these HLA-B27 rats. The results confirmed that the microbiome of the HLA-B27 rats was fairly different from their wild-type littermates. We demonstrated here that oral treatment with tofacitinib does not affect the gut microbial composition of HLA-B27 rats. Of note, we showed that ICR induced an intense loss of bacterial diversity together with dramatic changes in taxa relative abundances. However, the oral treatment with tofacitinib neither modified the alpha-diversity nor exacerbated significant modifications in bacterial taxa induced by ICR. Collectively, these preclinical data are rather favorable for the use of tofacitinib in combination with ICR to address Crohn's disease management when considering microbiota.
Collapse
Affiliation(s)
- Aurélie Blondeaux
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037 Lille, France
| | - Caroline Valibouze
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037 Lille, France
| | - Silvia Speca
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
| | - Christel Rousseaux
- Intestinal Biotech Development, 1 Avenue Oscar Lambret, 59045 Lille, France; (C.R.); (C.D.)
| | - Caroline Dubuquoy
- Intestinal Biotech Development, 1 Avenue Oscar Lambret, 59045 Lille, France; (C.R.); (C.D.)
| | | | - Philippe Zerbib
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037 Lille, France
| | - Pierre Desreumaux
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037 Lille, France
| | - Benoît Foligné
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
| | - Marie Titécat
- U1286—INFINITE—Institute for Translational Research in Inflammation, CHU Lille, Inserm, Univ. Lille, F-59000 Lille, France; (A.B.); (C.V.); (S.S.); (P.Z.); (P.D.); (M.T.)
| |
Collapse
|
8
|
Speckmann B, Ehring E, Hu J, Rodriguez Mateos A. Exploring substrate-microbe interactions: a metabiotic approach toward developing targeted synbiotic compositions. Gut Microbes 2024; 16:2305716. [PMID: 38300741 PMCID: PMC10841028 DOI: 10.1080/19490976.2024.2305716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Gut microbiota is an important modulator of human health and contributes to high inter-individual variation in response to food and pharmaceutical ingredients. The clinical outcomes of interventions with prebiotics, probiotics, and synbiotics have been mixed and often unpredictable, arguing for novel approaches for developing microbiome-targeted therapeutics. Here, we review how the gut microbiota determines the fate of and individual responses to dietary and xenobiotic compounds via its immense metabolic potential. We highlight that microbial metabolites play a crucial role as targetable mediators in the microbiota-host health relationship. With this in mind, we expand the concept of synbiotics beyond prebiotics' role in facilitating growth and engraftment of probiotics, by focusing on microbial metabolism as a vital mode of action thereof. Consequently, we discuss synbiotic compositions that enable the guided metabolism of dietary or co-formulated ingredients by specific microbes leading to target molecules with beneficial functions. A workflow to develop novel synbiotics is presented, including the selection of promising target metabolites (e.g. equol, urolithin A, spermidine, indole-3 derivatives), identification of suitable substrates and producer strains applying bioinformatic tools, gut models, and eventually human trials.In conclusion, we propose that discovering and enabling specific substrate-microbe interactions is a valuable strategy to rationally design synbiotics that could establish a new category of hybrid nutra-/pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Ana Rodriguez Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
9
|
Sommersberger S, Gunawan S, Elger T, Fererberger T, Loibl J, Huss M, Kandulski A, Krautbauer S, Müller M, Liebisch G, Buechler C, Tews HC. Altered fecal bile acid composition in active ulcerative colitis. Lipids Health Dis 2023; 22:199. [PMID: 37980492 PMCID: PMC10656844 DOI: 10.1186/s12944-023-01971-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Disturbed bile acid homeostasis associated with a rise of primary and a decline of secondary bile acids is a consistent finding in inflammatory bowel diseases (IBDs). Whether fecal bile acids may emerge as biomarkers for IBD diagnosis and disease severity is less clear. Our study aimed to identify associations of 18 fecal bile acid species with IBD entity and disease activity. METHODS Stool samples of 62 IBD patients and 17 controls were collected. Eighteen fecal bile acid species were quantified by LC-MS/MS using stable isotope dilution. Lipid levels normalized to a dry weight of the fecal homogenates and ratios of single bile acid species to total bile acid levels were used for calculations. RESULTS IBD patients exhibited altered primary and secondary bile acid ratios in stool, with notable distinctions between ulcerative colitis (UC) compared to Crohn's disease (CD) and healthy controls. Fecal calprotectin was negatively correlated with glycolithocholic acid (GLCA) and hyodeoxycholic acid (HDCA) in UC. These bile acids were reduced in stool of UC patients with fecal calprotectin levels > 500 µg/g compared to UC patients with low calprotectin levels. Moreover, negative associations of six secondary bile acids with C-reactive protein (CRP) existed in UC. In CD patients, fecal bile acids did not correlate with CRP or fecal calprotectin. Diarrhoea is common in IBD, and UC patients with diarrhoea had reduced deoxycholic acid (DCA), glycine conjugated DCA (GDCA) and lithocholic acid in stool in contrast to patients with normal stool consistency. Fecal bile acid levels were not associated with diarrhoea in CD patients. UC patients treated with mesalazine had increased levels of fecal GDCA whereas no such changes were observed in CD patients. Bile acid levels of CD and UC patients treated with biologicals or corticosteroids did not change. Relative levels of GHDCA (specificity: 79%, sensitivity: 67%) and glycochenodeoxycholic acid (specificity: 74%, sensitivity: 63%) were the most specific to distinguish UC from CD. CONCLUSION Disrupted fecal bile acid homeostasis is associated with disease severity and disease symptoms in UC but not in CD, potentially aiding in distinguishing IBD subtypes and classifying the pathophysiology of diarrhoea in UC.
Collapse
Affiliation(s)
- Stefanie Sommersberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Stefan Gunawan
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Tanja Fererberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Johanna Loibl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Muriel Huss
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany.
| | - Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
10
|
Zhao Q, Chen Y, Huang W, Zhou H, Zhang W. Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduct Target Ther 2023; 8:386. [PMID: 37806986 PMCID: PMC10560686 DOI: 10.1038/s41392-023-01619-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Individual variability in drug response (IVDR) can be a major cause of adverse drug reactions (ADRs) and prolonged therapy, resulting in a substantial health and economic burden. Despite extensive research in pharmacogenomics regarding the impact of individual genetic background on pharmacokinetics (PK) and pharmacodynamics (PD), genetic diversity explains only a limited proportion of IVDR. The role of gut microbiota, also known as the second genome, and its metabolites in modulating therapeutic outcomes in human diseases have been highlighted by recent studies. Consequently, the burgeoning field of pharmacomicrobiomics aims to explore the correlation between microbiota variation and IVDR or ADRs. This review presents an up-to-date overview of the intricate interactions between gut microbiota and classical therapeutic agents for human systemic diseases, including cancer, cardiovascular diseases (CVDs), endocrine diseases, and others. We summarise how microbiota, directly and indirectly, modify the absorption, distribution, metabolism, and excretion (ADME) of drugs. Conversely, drugs can also modulate the composition and function of gut microbiota, leading to changes in microbial metabolism and immune response. We also discuss the practical challenges, strategies, and opportunities in this field, emphasizing the critical need to develop an innovative approach to multi-omics, integrate various data types, including human and microbiota genomic data, as well as translate lab data into clinical practice. To sum up, pharmacomicrobiomics represents a promising avenue to address IVDR and improve patient outcomes, and further research in this field is imperative to unlock its full potential for precision medicine.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China.
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, PR China.
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, PR China.
- Central Laboratory of Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Changsha, 410013, PR China.
| |
Collapse
|
11
|
Hajj Hussein I, Dosh L, Al Qassab M, Jurjus R, El Masri J, Abi Nader C, Rappa F, Leone A, Jurjus A. Highlights on two decades with microbiota and inflammatory bowel disease from etiology to therapy. Transpl Immunol 2023; 78:101835. [PMID: 37030558 DOI: 10.1016/j.trim.2023.101835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Inflammatory Bowel diseases (IBDs) constitute a complex panel of disorders characterized with chronic inflammation affecting the alimentary canal along with extra intestinal manifestations. Its exact etiology is still unknown; however, it seems to be the result of uncharacterized environmental insults in the intestine and their immunological consequences along with dysbiosis, in genetically predisposed individuals. It was the main target of our team since 2002 to explore the etiology of IBD and the related role of bacteria. For almost two decades, our laboratory, among others, has been involved in the reciprocal interaction between the host gastrointestinal lining and the homing microbiota. In the first decade, the attention of scientists focused on the possible role of enteropathogenic E. coli and its relationship to the mechanistic pathways involved in IBD induced in both rats and mice by chemicals like Iodoacetamide, Dextran Sodium Sulfate, Trinitrobenzene, thus linking microbial alteration to IBD pathology. A thorough characterization of the various models was the focus of research in addition to exploring how to establish an active homeostatic composition of the commensal microbiota, including its wide diversity by restoration of gut microbiota by probiotics and moving from dysbiosis to eubiosis. In the last six years and in order to effectively translate such findings into clinical practice, it was critical to explore their relationship to colorectal cancer CRC both in solid tumors and chemically induced CRC. It was also critical to explore the degree of intestinal dysbiosis and linking to IBD, CRC and diabetes. Remarkably, the active mechanistic pathways were proposed as well as the role of microbiota or bacterial metabolites involved. This review covers two decades of investigations in our laboratory and sheds light on the different aspects of the relationship between microbiota and IBD with an emphasis on dysbiosis, probiotics and the multiple mechanistic pathways involved.
Collapse
Affiliation(s)
- Inaya Hajj Hussein
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Laura Dosh
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Mohamad Al Qassab
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jad El Masri
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Celine Abi Nader
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|