1
|
Peng S, Wei Y, Huang H, Lan C, Zeng Z, Zhu G, Peng T. The mediating role of circulating inflammatory cytokines in causal associations between plasma metabolites and asymptomatic bile duct and cholecyst calculus: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41745. [PMID: 40068083 PMCID: PMC11902928 DOI: 10.1097/md.0000000000041745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/14/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Asymptomatic gallbladder and biliary tract calculus may make into symptomatic disease or bring anxiety for patients. The formation of gallstones was associated with genetic risk factors and metabolic abnormalities. Genome-wide association studies (GWAS) data of 1400 plasma metabolites (PMs) and 91 circulating inflammatory cytokines (CICs) were obtained from the GWAS catalog, while the GWAS data of calculus of gallbladder without cholecystitis and calculus of bile duct without cholangitis or cholecystitis were retrieved from the IEU OpenGWAS project. The causalities from PMs or CICs to asymptomatic bile duct or cholecyst calculus were explored by 2-sample Mendelian randomization (MR) analysis. Furthermore, the MR analyses were implemented from the identified PMs to CICs. Following the false discovery rate adjustment, the significant causalities, including 6 CICs and 5 PMs on asymptomatic biliary stone and 5 CICs and 48 PMs on asymptomatic gallstone, were identified. Fibroblast growth factor 19 (FGF-19) and aspartate/mannose ratio were the common protective factors of asymptomatic biliary tract calculus, while Monocyte chemoattractant protein 2 (CCL-2) may serve as a disease-promoting agent. Moreover, Bilirubin degradation product, C17H18N2O4 (1) levels, and Bilirubin (Z,Z)/etiocholanolone glucuronide ratio were associated with FGF-19 level, while aspartate/mannose ratio was related to TNF-related apoptosis-inducing ligand level. Based on MR analysis, we identified the multiple PMs and CICs, especially FGF-19, which may affect the formation of gallbladder and biliary tract calculus. Moreover, the partial CICs could be the downstream mediator of PMs related to asymptomatic gallbladder and biliary tract calculus. These results contributed to supporting previous studies and provided evidence for disease prevention or management.
Collapse
Affiliation(s)
- Shayong Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, P.R. China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, P.R. China
| | - Yongguang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, P.R. China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, P.R. China
| | - Huasheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, P.R. China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, P.R. China
| | - Chenlu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, P.R. China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, P.R. China
| | - Zhiming Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, P.R. China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, P.R. China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, P.R. China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, P.R. China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, P.R. China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, P.R. China
| |
Collapse
|
2
|
Protasiewicz-Timofticiuc DC, Bădescu D, Moța M, Ștefan AG, Mitrea A, Clenciu D, Efrem IC, Roșu MM, Vladu BE, Gheonea TC, Moța E, Vladu IM. Back to Roots: Dysbiosis, Obesity, Metabolic Syndrome, Type 2 Diabetes Mellitus, and Obstructive Sleep Apnea-Is There an Objective Connection? A Narrative Review. Nutrients 2024; 16:4057. [PMID: 39683451 DOI: 10.3390/nu16234057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
In recent decades, it has become clear that the gut is more than just a digestive organ; it also functions as an immune organ with regulatory capabilities and acts as a "second brain" that influences brain function due to the presence and regulatory roles of the gut microbiota (GM). The GM is a crucial component of its host and significantly impacts human health. Dysbiosis, or microbial imbalance, has been closely linked to various diseases, including gastrointestinal, neurological, psychiatric, and metabolic disorders. The aim of this narrative review is to highlight the roles of the GM in maintaining metabolic health. Sleep is a vital biological necessity, with living organisms having evolved an internal sleep-wake rhythm that aligns with a roughly 24 h light/dark cycle, and this is known as the circadian rhythm. This cycle is essential for tissue repair, restoration, and overall optimal body functioning. Sleep irregularities have become more prevalent in modern society, with fast-paced lifestyles often disrupting normal sleep patterns. Urban living factors, such as fast food consumption, shift work, exposure to artificial light and nighttime noise, medications, and social activities, can adversely affect circadian rhythms, with dysbiosis being one of the many factors incriminated in the etiology of sleep disorders.
Collapse
Affiliation(s)
| | - Diana Bădescu
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Maria Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ion Cristian Efrem
- Department of Medical Semiology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Maria Magdalena Roșu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Midwives and Nursing, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Beatrice Elena Vladu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Theodora Claudia Gheonea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eugen Moța
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
3
|
Shu Z, Zhang J, Zhou Q, Peng Y, Huang Y, Zhou Y, Zheng J, Zhao M, Hu C, Lan S. Effects of inactivated Lactobacillus rhamnosus on growth performance, serum indicators, and colonic microbiota and metabolism of weaned piglets. BMC Vet Res 2024; 20:422. [PMID: 39304851 DOI: 10.1186/s12917-024-04133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND To assess the effects of inactivated Lactobacillus rhamnosus (ILR) on growth performance, serum biochemical indices, colonic microbiota, and metabolomics in weaned piglets, 120 piglets were randomly divided into five groups. Samples in the control group were fed a basal diet, while the experimental ILR1, ILR2, ILR3, and ILR4 groups were fed basal diets supplemented with 0.1%, 0.2%, 0.3%, and 0.4% ILR, respectively. The prefeeding period lasted for 5 days and was followed by a formal period of 28 days. RESULTS Compared to the control, the average daily gain increased by 4.38%, 7.98%, 19.32%, and 18.80% for ILR1, ILR2, ILR3, and ILR4, respectively, and the ratio of feed to gain decreased by 0.63%, 3.80%, 12.66%, and 10.76%, respectively. Serum IgA, IgG, IgM, total antioxidant capacity, and glutathione peroxidase levels increased significantly in weaned piglets in the treatment groups. Addition of 0.3% ILR significantly increased the Shannon and Simpson indices of the colonic microbiota in weaned piglets and altered the microbiota composition. Changes in metabolic profiles were observed and were primarily related to the urea cycle, amino acid metabolism, and lipid metabolism. CONCLUSION ILR improved growth performance and serum immunological and biochemical indices and optimized the colonic microbiota structure and metabolism of weaned piglets.
Collapse
Affiliation(s)
- Zhiheng Shu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Junhao Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qingwen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yingjie Peng
- Guangdong Chuangzhan Bona Agricultural Technology Co., Ltd, Guangning, 526339, China
| | - Yuanhao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jun Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Manya Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Shile Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Liu L, He G, Yu R, Lin B, Lin L, Wei R, Zhu Z, Xu Y. Causal relationships between gut microbiome and obstructive sleep apnea: a bi-directional Mendelian randomization. Front Microbiol 2024; 15:1410624. [PMID: 39309525 PMCID: PMC11414551 DOI: 10.3389/fmicb.2024.1410624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Background Previous studies have identified a clinical association between gut microbiota and Obstructive sleep apnea (OSA), but the potential causal relationship between the two has not been determined. Therefore, we aim to utilize Mendelian randomization (MR) to investigate the potential causal effects of gut microbiota on OSA and the impact of OSA on altering the composition of gut microbiota. Methods Bi-directional MR and replicated validation were utilized. Summary-level genetic data of gut microbiota were derived from the MiBioGen consortium and the Dutch Microbiome Project (DMP). Summary statistics of OSA were drawn from FinnGen Consortium and Million Veteran Program (MVP). Inverse-variance-weighted (IVW), weighted median, MR-Egger, Simple Mode, and Weighted Mode methods were used to evaluate the potential causal link between gut microbiota and OSA. Results We identified potential causal associations between 23 gut microbiota and OSA. Among them, genus Eubacterium xylanophilum group (OR = 0.86; p = 0.00013), Bifidobacterium longum (OR = 0.90; p = 0.0090), Parabacteroides merdae (OR = 0.85; p = 0.00016) retained a strong negative association with OSA after the Bonferroni correction. Reverse MR analyses indicated that OSA was associated with 20 gut microbiota, among them, a strong inverse association between OSA and genus Anaerostipes (beta = -0.35; p = 0.00032) was identified after Bonferroni correction. Conclusion Our study implicates the potential bi-directional causal effects of the gut microbiota on OSA, potentially providing new insights into the prevention and treatment of OSA through specific gut microbiota.
Collapse
Affiliation(s)
- Liangfeng Liu
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Guanwen He
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Rong Yu
- Department of Pediatrics, Jiaocheng District Maternal and Child Health Hospital, Ningde, Fujian, China
| | - Bingbang Lin
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Liangqing Lin
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Rifu Wei
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Zhongshou Zhu
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Yangbin Xu
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
- Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Jiang Y, Pang S, Liu X, Wang L, Liu Y. The Gut Microbiome Affects Atherosclerosis by Regulating Reverse Cholesterol Transport. J Cardiovasc Transl Res 2024; 17:624-637. [PMID: 38231373 DOI: 10.1007/s12265-024-10480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
The human system's secret organ, the gut microbiome, has received considerable attention. Emerging research has yielded substantial scientific evidence indicating that changes in gut microbial composition and microbial metabolites may contribute to the development of atherosclerotic cardiovascular disease. The burden of cardiovascular disease on healthcare systems is exacerbated by atherosclerotic cardiovascular disease, which continues to be the leading cause of mortality globally. Reverse cholesterol transport is a powerful protective mechanism that effectively prevents excessive accumulation of cholesterol for atherosclerotic cardiovascular disease. It has been revealed how the gut microbiota modulates reverse cholesterol transport in patients with atherosclerotic risk. In this review, we highlight the complex interactions between microbes, their metabolites, and their potential impacts in reverse cholesterol transport. We also explore the feasibility of modulating gut microbes and metabolites to facilitate reverse cholesterol transport as a novel therapy for atherosclerosis.
Collapse
Affiliation(s)
- Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
6
|
Yang X, Xu H, Liang X, Yuan G, Gao Q, Tan X, Yang Y, Xiao Y, Huang Z, Dai W, Liu X. Exploring the casual association between gut microbiome, circulating inflammatory cytokines and chronic pancreatitis: A Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e37959. [PMID: 38701270 PMCID: PMC11062735 DOI: 10.1097/md.0000000000037959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
It has been established that gut dysbiosis contributed to the pathogenesis of digestive disorders. We aimed to explore the causal relationships between intestinal microbiota, circulating inflammatory cytokines and chronic pancreatitis (CP). Summary statistics of genome-wide association studies (GWAS) of intestinal microbiome was retrieved from the MiBioGen study and the GWAS data of 91 circulating inflammatory cytokines and CP were obtained from the GWAS catalog. The 2-sample bidirectional Mendelian randomization (MR) analysis was performed between gut microbiota, circulating inflammatory cytokines and CP, in which the inverse variance weighted (IVW) method was regarded as the primary analysis approach. To prove the reliability of the causal estimations, multiple sensitivity analyses were utilized. IVW results revealed that genetically predicted 2 genera, including Sellimonas and Eubacteriumventriosumgroup, and plasm C-C motif chemokine 23 (CCL23) level were positively associated with CP risk, while genus Escherichia Shigella, Eubacteriumruminantiumgroup and Prevotella9, and plasma Caspase 8, Adenosine Deaminase (ADA), and SIR2-like protein 2 (SIRT2) level, demonstrated an ameliorative effect on CP. Leave-one-out analysis confirmed the robustness of the aforementioned causal effects and no significant horizontal pleiotropy or heterogeneity of the instrumental variables was detected. However, no association was found from the identified genera to the CP-related circulating inflammatory cytokines. Besides, the reverse MR analysis demonstrated no causal relationship from CP to the identified genera and circulating inflammatory cytokines. Taken together, our comprehensive analyses offer evidence in favor of the estimated causal connections from the 5 genus-level microbial taxa and 4 circulating inflammatory cytokines to CP risk, which may help to reveal the underlying pathogenesis of CP.
Collapse
Affiliation(s)
- Xiaoqiu Yang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xiaolu Liang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Guojia Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Qiaoping Gao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xiaoyu Tan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Yongguang Yang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Yi Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Zhanren Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Wei Dai
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xiaoguang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| |
Collapse
|
7
|
Qiu Y, Hou Y, Wei X, Wang M, Yin Z, Xie M, Duan A, Ma C, Si K, Wang Z. Causal association between gut microbiomes and different types of aneurysms: a Mendelian randomization study. Front Microbiol 2024; 15:1267888. [PMID: 38659992 PMCID: PMC11039950 DOI: 10.3389/fmicb.2024.1267888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Background Previous studies suggests that gut microbiomes are associated with the formation and progression of aneurysms. However, the causal association between them remains unclear. Methods A two-sample Mendelian randomization was conducted to investigate whether gut microbiomes have a causal effect on the risk of intracerebral aneurysm (IA), thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA), and aortic aneurysm (AA). Single nucleotide polymorphisms (SNPs) smaller than the locus-wide significance level (1 × 10-5) were selected as instrumental variables. We used inverse-variance weighted (IVW) test as the primary method for the evaluation of causal association. MR-Egger, weighted median, weighted mode, and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) methods were conducted for sensitive analysis. The p-value was adjusted by the false discovery rate (FDR) which adjust the results of multiple comparisons, a p < 0.05 and q < 0.1 was considered a significant causal association. Additionally, a p < 0.05 and q > 0.1 was considered a suggestive causal effect. Additionally, reverse MR was also performed to exclude the possibility of reverse causality. Results The phylum Firmicutes (OR = 0.62; 95% CI, 0.48-0.81), class Lentisphaeria (OR = 0.75; 95% CI, 0.62-0.89), and order Victivallales (OR = 0.75; 95% CI, 0.62-0.89) have a causal protective effect on the risk of AAA. Additionally, class Verrucomicrobia, class Deltaproteobacteria, order Verrucomicrobiale, family Verrucomicrobiacea, genus Eubacterium rectale group, genus Akkermansia, and genus Clostridium innocuum group were negatively associated with the risk of different types of aneurysms, whereas class Negativicutes, order Selenomonadales, and genus Roseburia had positive causal association with different types of aneurysms (p < 0.05; q > 0.1). Further sensitivity analysis validated the robustness of our MR results, and no reverse causality was found with these gut microbiomes (p > 0.05). Conclusion Our MR analysis confirmed the causal association of specific gut microbiomes with AAA, and these microbiomes were considered as protective factors. Our result may provide novel insights and theoretical basis for the prevention of aneurysms through regulation of gut microbiomes.
Collapse
Affiliation(s)
- Youjia Qiu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yucheng Hou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingzhou Wei
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Menghan Wang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Ziqian Yin
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minjia Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Li J, Barnes S, Lefkowitz E, Yarar-Fisher C. Unveiling the connection between gut microbiome and metabolic health in individuals with chronic spinal cord injury. Physiol Genomics 2024; 56:317-326. [PMID: 38344780 PMCID: PMC11283909 DOI: 10.1152/physiolgenomics.00107.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Accumulating evidence has revealed that alterations in the gut microbiome following spinal cord injury (SCI) exhibit similarities to those observed in metabolic syndrome. Considering the causal role of gut dysbiosis in metabolic syndrome development, SCI-induced gut dysbiosis may be a previously unidentified contributor to the increased risk of cardiometabolic diseases, which has garnered attention. With a cross-sectional design, we evaluated the correlation between gut microbiome composition and functional potential with indicators of metabolic health among 46 individuals with chronic SCI. Gut microbiome communities were profiled using next-generation sequencing techniques. Indices of metabolic health, including fasting lipid profile, glucose tolerance, insulin resistance, and inflammatory markers, were assessed through fasting blood tests and an oral glucose tolerance test. We used multivariate statistical techniques (i.e., regularized canonical correlation analysis) to identify correlations between gut bacterial communities, functional pathways, and metabolic health indicators. Our findings spotlight bacterial species and functional pathways associated with complex carbohydrate degradation and maintenance of gut barrier integrity as potential contributors to improved metabolic health. Conversely, those correlated with detrimental microbial metabolites and gut inflammatory pathways demonstrated associations with poorer metabolic health outcomes. This cross-sectional investigation represents a pivotal initial step toward comprehending the intricate interplay between the gut microbiome and metabolic health in SCI. Furthermore, our results identified potential targets for future research endeavors to elucidate the role of the gut microbiome in metabolic syndrome in this population.NEW & NOTEWORTHY Spinal cord injury (SCI) is accompanied by gut dysbiosis and the impact of this on the development of metabolic syndrome in this population remains to be investigated. Our study used next-generation sequencing and multivariate statistical analyses to explore the correlations between gut microbiome composition, function, and metabolic health indices in individuals with chronic SCI. Our results point to potential gut microbial species and functional pathways that may be implicated in the development of metabolic syndrome.
Collapse
Affiliation(s)
- Jia Li
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, Ohio, United States
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Elliot Lefkowitz
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
9
|
Liu Y, Zhu Q, Guo G, Xie Z, Li S, Lai C, Wu Y, Wang L, Zhong S. Causal associations of genetically predicted gut microbiota and blood metabolites with inflammatory states and risk of infections: a Mendelian randomization analysis. Front Microbiol 2024; 15:1342653. [PMID: 38585702 PMCID: PMC10995310 DOI: 10.3389/fmicb.2024.1342653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Background Inflammation serves as a key pathologic mediator in the progression of infections and various diseases, involving significant alterations in the gut microbiome and metabolism. This study aims to probe into the potential causal relationships between gut microbial taxa and human blood metabolites with various serum inflammatory markers (CRP, SAA1, IL-6, TNF-α, WBC, and GlycA) and the risks of seven common infections (gastrointestinal infections, dysentery, pneumonia, bacterial pneumonia, bronchopneumonia and lung abscess, pneumococcal pneumonia, and urinary tract infections). Methods Two-sample Mendelian randomization (MR) analysis was performed using inverse variance weighted (IVW), maximum likelihood, MR-Egger, weighted median, and MR-PRESSO. Results After adding other MR models and sensitivity analyses, genus Roseburia was simultaneously associated adversely with CRP (Beta IVW = -0.040) and SAA1 (Beta IVW = -0.280), and family Bifidobacteriaceae was negatively associated with both CRP (Beta IVW = -0.034) and pneumonia risk (Beta IVW = -0.391). After correction by FDR, only glutaroyl carnitine remained significantly associated with elevated CRP levels (Beta IVW = 0.112). Additionally, threonine (Beta IVW = 0.200) and 1-heptadecanoylglycerophosphocholine (Beta IVW = -0.246) were found to be significantly associated with WBC levels. Three metabolites showed similar causal effects on different inflammatory markers or infectious phenotypes, stearidonate (18:4n3) was negatively related to SAA1 and urinary tract infections, and 5-oxoproline contributed to elevated IL-6 and SAA1 levels. In addition, 7-methylguanine showed a positive correlation with dysentery and bacterial pneumonia. Conclusion This study provides novel evidence confirming the causal effects of the gut microbiome and the plasma metabolite profile on inflammation and the risk of infection. These potential molecular alterations may aid in the development of new targets for the intervention and management of disorders associated with inflammation and infections.
Collapse
Affiliation(s)
- Yingjian Liu
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Zhu
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, Guangdong, China
| | - Gongjie Guo
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhipeng Xie
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Senlin Li
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chengyang Lai
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yonglin Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Liansheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shilong Zhong
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Ahmed RO, Ali A, Leeds T, Salem M. Fecal Microbiome Analysis Distinguishes Bacterial Taxa Biomarkers Associated with Red Fillet Color in Rainbow Trout. Microorganisms 2023; 11:2704. [PMID: 38004716 PMCID: PMC10673235 DOI: 10.3390/microorganisms11112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The characteristic reddish-pink fillet color of rainbow trout is an important marketing trait. The gastrointestinal microbiome is vital for host health, immunity, and nutrient balance. Host genetics play a crucial role in determining the gut microbiome, and the host-microbiome interaction impacts the host's phenotypic expression. We hypothesized that fecal microbiota could be used to predict fillet color in rainbow trout. Fish were fed Astaxanthin-supplemented feed for six months, after which 16s rDNA sequencing was used to investigate the fecal microbiome composition in rainbow trout families with reddish-pink fillet coloration (red fillet group, average saturation index = 26.50 ± 2.86) compared to families with pale white fillet color (white fillet group, average saturation index = 21.21 ± 3.53). The linear discriminant analysis effect size (LEFse) tool was used to identify bacterial biomarkers associated with fillet color. The alpha diversity measure shows no difference in the red and white fillet groups. Beta diversity principal component analysis showed clustering of the samples along the white versus red fillet group. The red fillet group has enrichment (LDA score > 1.5) of taxa Leuconostoc lactis, Corynebacterium variabile, Jeotgalicoccus halotolerans, and Leucobacter chromiireducens. In contrast, the white fillet group has an enriched presence of mycoplasma, Lachnoclostridium, and Oceanobacillus indicireducens. The enriched bacterial taxa in the red fillet group have probiotic functions and can generate carotenoid pigments. Bacteria taxa enriched in the white fillet group are either commensal, parasitic, or capable of reducing indigo dye. The study identified specific bacterial biomarkers differentially abundant in fish families of divergent fillet color that could be used in genetic selection to improve feed carotenoid retention and reddish-pink fillet color. This work extends our understanding of carotenoid metabolism in rainbow trout through the interaction between gut microbiota and fillet color.
Collapse
Affiliation(s)
- Ridwan O. Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| | - Tim Leeds
- United States Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, Kearneysville, WV 25430, USA;
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (R.O.A.); (A.A.)
| |
Collapse
|
11
|
Kalnina I, Gudra D, Silamikelis I, Viksne K, Roga A, Skinderskis E, Fridmanis D, Klovins J. Variations in the Relative Abundance of Gut Bacteria Correlate with Lipid Profiles in Healthy Adults. Microorganisms 2023; 11:2656. [PMID: 38004667 PMCID: PMC10673050 DOI: 10.3390/microorganisms11112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiome is a versatile system regulating numerous aspects of host metabolism. Among other traits, variations in the composition of gut microbial communities are related to blood lipid patterns and hyperlipidaemia, yet inconsistent association patterns exist. This study aims to assess the relationships between the composition of the gut microbiome and variations in lipid profiles among healthy adults. This study used data and samples from 23 adult participants of a previously conducted dietary intervention study. Circulating lipid measurements and whole-metagenome sequences of the gut microbiome were derived from 180 blood and faecal samples collected from eight visits distributed across an 11-week study. Lipid-related variables explained approximately 4.5% of the variation in gut microbiome compositions, with higher effects observed for total cholesterol and high-density lipoproteins. Species from the genera Odoribacter, Anaerostipes, and Parabacteroides correlated with increased serum lipid levels, whereas probiotic species like Akkermansia muciniphila were more abundant among participants with healthier blood lipid profiles. An inverse correlation with serum cholesterol was also observed for Massilistercora timonensis, a player in regulating lipid turnover. The observed correlation patterns add to the growing evidence supporting the role of the gut microbiome as an essential regulator of host lipid metabolism.
Collapse
Affiliation(s)
- Ineta Kalnina
- Latvian Biomedical Research and Study Centre 1, LV-1067 Riga, Latvia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim S, Jeon HK, Lee G, Kim Y, Yoo HY. Associations between the Genetic Heritability of Dyslipidemia and Dietary Patterns in Korean Adults Based on Sex Differences. Nutrients 2023; 15:4385. [PMID: 37892463 PMCID: PMC10609770 DOI: 10.3390/nu15204385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Dyslipidemia can be defined as an abnormality in serum lipid levels that is substantially linked to genetic variations and lifestyle factors, such as diet patterns, and has distinct sex-specific characteristics. We aimed to elucidate the genetic impact of dyslipidemia according to sex and explore the associations between genetic variants and dietary patterns in large-scale population-based cohorts. After performing genome-wide association studies (GWASs) in male, female, and entire cohorts, significant single nucleotide polymorphisms (SNPs) were identified in the three groups, and genetic risk scores (GRSs) were calculated by summing the risk alleles from the selected SNPs. After adjusting for confounding variables, the risk of dyslipidemia was 2.013-fold and 2.535-fold higher in the 3rd quartile GRS group in the male and female cohorts, respectively, than in the 1st quartile GRS group. While instant noodle and soft drink intake were significantly associated with GRS related to hyperlipidemia in male cohorts, coffee consumption was substantially related to GRS related to hyperlipidemia in female cohorts. Considering the influence of genetic factors and dietary patterns, the findings of this study suggest the potential for implementing sex-specific strategic interventions to avoid dyslipidemia.
Collapse
Affiliation(s)
- Sei Kim
- Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea; (S.K.); (G.L.); (Y.K.)
| | - Hye Kyung Jeon
- Department of Nursing, Ansan University, Ansan 15328, Republic of Korea;
| | - Gyeonghee Lee
- Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea; (S.K.); (G.L.); (Y.K.)
| | - Youbin Kim
- Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea; (S.K.); (G.L.); (Y.K.)
| | - Hae Young Yoo
- Department of Nursing, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
13
|
Liu X, Qi X, Han R, Mao T, Tian Z. Gut microbiota causally affects cholelithiasis: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1253447. [PMID: 37876873 PMCID: PMC10591199 DOI: 10.3389/fcimb.2023.1253447] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Background The gut microbiota is closely linked to cholesterol metabolism-related diseases such as obesity and cardiovascular diseases. However, whether gut microbiota plays a causal role in cholelithiasis remains unclear. Aims This study explored the causal relationship between gut microbiota and cholelithiasis. We hypothesize that the gut microbiota influences cholelithiasis development. Methods A two-sample Mendelian randomization method was combined with STRING analysis to test this hypothesis. Summary data on gut microbiota and cholelithiasis were obtained from the MiBioGen (n=13,266) and FinnGen R8 consortia (n=334,367), respectively. Results Clostridium senegalense, Coprococcus3, and Lentisphaerae increased the risk of cholelithiasis and expressed more bile salt hydrolases. In contrast, Holdemania, Lachnospiraceae UCG010, and Ruminococcaceae NK4A214 weakly expressed bile salt hydrolases and were implied to have a protective effect against cholelithiasis by Mendelian randomization analysis. Conclusion Gut microbiota causally influences cholelithiasis and may be related to bile salt hydrolases. This work improves our understanding of cholelithiasis causality to facilitate the development of treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Chen X, Liu Y, Pu J, Gui S, Wang D, Zhong X, Tao W, Chen X, Chen W, Chen Y, Qiao R, Xie P. Multi-Omics Analysis Reveals Age-Related Microbial and Metabolite Alterations in Non-Human Primates. Microorganisms 2023; 11:2406. [PMID: 37894064 PMCID: PMC10609416 DOI: 10.3390/microorganisms11102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is a systemic physiological degenerative process, with alterations in gut microbiota and host metabolism. However, due to the interference of multiple confounding factors, aging-associated molecular characteristics have not been elucidated completely. Therefore, based on 16S ribosomal RNA (rRNA) gene sequencing and non-targeted metabolomic detection, our study systematically analyzed the composition and function of the gut microbiome, serum, and fecal metabolome of 36 male rhesus monkeys spanning from 3 to 26 years old, which completely covers juvenile, adult, and old stages. We observed significant correlations between 41 gut genera and age. Moreover, 86 fecal and 49 serum metabolites exhibited significant age-related correlations, primarily categorized into lipids and lipid-like molecules, organic oxygen compounds, organic acids and derivatives, and organoheterocyclic compounds. Further results suggested that aging is associated with significant downregulation of various amino acids constituting proteins, elevation of lipids, particularly saturated fatty acids, and steroids. Additionally, age-dependent changes were observed in multiple immune-regulatory molecules, antioxidant stress metabolites, and neurotransmitters. Notably, multiple age-dependent genera showed strong correlations in these changes. Together, our results provided new evidence for changing characteristics of gut microbes and host metabolism during aging. However, more research is needed in the future to verify our findings.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiyun Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siwen Gui
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaopeng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiyi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Renjie Qiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
15
|
Kilburn-Kappeler LR, Doerksen T, Lu A, Palinski RM, Lu N, Aldrich CG. Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs. Vet Sci 2023; 10:553. [PMID: 37756074 PMCID: PMC10536651 DOI: 10.3390/vetsci10090553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Corn-fermented protein (CFP), a co-product from the ethanol industry, is produced using post-fermentation technology to split the protein and yeast from fiber prior to drying. The objective of this study was to determine the effect of CFP compared to traditional ingredients on the fecal microbiota of dogs. The four experimental diets included a control with no yeast and diets containing either 3.5% brewer's dried yeast, 2.5% brewer's dried yeast plus 17.5% distiller's dried grains with solubles, or 17.5% CFP. The experimental diets were fed to adult dogs (n = 12) in a 4 × 4 replicated Latin square design. Fresh fecal samples (n = 48) were analyzed by 16S metagenomic sequencing. Raw sequences were processed through mothur. Community diversity was evaluated in R. Relative abundance data were analyzed within the 50 most abundant operational taxonomic units using a mixed model of SAS. Alpha and beta diversity were similar for all treatments. Predominant phyla among all samples were Firmicutes (73%), Bacteroidetes (15%), Fusobacteria (8%), and Actinobacteria (4%). There were no quantifiable (p > 0.05) shifts in the predominant phyla among the treatments. However, nine genera resulted in differences in relative abundance among the treatments. These data indicate that compared to traditional ingredients, CFP did not alter the overall diversity of the fecal microbiota of healthy adult dogs over 14 days.
Collapse
Affiliation(s)
| | - Tyler Doerksen
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
| | - Andrea Lu
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
| | - Rachel M. Palinski
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA;
| | - Charles G. Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
16
|
Abstract
Cardiometabolic disease comprises cardiovascular and metabolic dysfunction and underlies the leading causes of morbidity and mortality, both within the United States and worldwide. Commensal microbiota are implicated in the development of cardiometabolic disease. Evidence suggests that the microbiome is relatively variable during infancy and early childhood, becoming more fixed in later childhood and adulthood. Effects of microbiota, both during early development, and in later life, may induce changes in host metabolism that modulate risk mechanisms and predispose toward the development of cardiometabolic disease. In this review, we summarize the factors that influence gut microbiome composition and function during early life and explore how changes in microbiota and microbial metabolism influence host metabolism and cardiometabolic risk throughout life. We highlight limitations in current methodology and approaches and outline state-of-the-art advances, which are improving research and building toward refined diagnosis and treatment options in microbiome-targeted therapies.
Collapse
Affiliation(s)
- Curtis L Gabriel
- Division of Gastroenterology, Hepatology and Nutrition (C.L.G.), Vanderbilt University Medical Center, Nashville
- Tennessee Center for AIDS Research (C.L.G.), Vanderbilt University Medical Center, Nashville
| | - Jane F Ferguson
- Division of Cardiovascular Medicine (J.F.F.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Microbiome Innovation Center (J.F.F.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Infection, Immunology, and Inflammation (J.F.F.), Vanderbilt University Medical Center, Nashville
| |
Collapse
|