1
|
Liao H, Zhao Y, Liang Y, Zou K. Flavonoids Derived from Opuntia ficus-indica Fruit Alleviate Renal Injury in Diabetic Nephropathy Mice by Altering Gut Microbiota and Promoting the Production of SCFAs. Nutrients 2025; 17:1800. [PMID: 40507069 PMCID: PMC12157904 DOI: 10.3390/nu17111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/21/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025] Open
Abstract
Diabetic nephropathy (DN) represents a severe microvascular complication of diabetes mellitus with limited therapeutic options, many of which are accompanied by considerable adverse effects. Opuntia ficus-indica (OFI) fruit, rich in vitamins, dietary fiber, and fatty acids, contains numerous bioactive compounds, including phytosterols, polysaccharides, and flavonoids that demonstrate significant potential in diabetes management. The flavonoid fraction derived from OFI fruit (OFI-F) has exhibited pronounced anti-inflammatory, antioxidant, and gut microbiota modulatory properties. However, the efficacy of OFI-F in ameliorating DN and its underlying mechanisms remain inadequately elucidated. This investigation examined the therapeutic potential of OFI-F in DN and explored its mechanistic pathways. Our findings demonstrate that OFI-F administration significantly attenuated renal injury and intestinal barrier dysfunction in the DN murine model. OFI-F intervention resulted in multiple beneficial outcomes in DN mice, including the mitigation of weight loss, reduction in hyperglycemia, decrease in renal coefficient index, and the attenuation of renal injury. An analysis of gut microbiota composition revealed that OFI-F administration favorably modulated the intestinal microbial community by enhancing the abundance of beneficial bacteria while concomitantly reducing populations of potentially pathogenic bacteria. Additionally, OFI-F treatment promoted the production of short-chain fatty acids (SCFAs), which contributed substantially to renoprotection and inflammatory resolution. Antibiotic intervention studies further confirmed the indispensable role of gut microbiota in mediating the renoprotective effects of OFI-F. In conclusion, this study provides compelling evidence supporting the therapeutic potential of OFI-F in DN management through the concurrent modulation of gut microbiota and renal function, offering a promising nutraceutical approach for alleviating renal injury in DN.
Collapse
Affiliation(s)
- Haiping Liao
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; (H.L.); (Y.L.)
| | - Yunyi Zhao
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; (H.L.); (Y.L.)
| | - Yongheng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; (H.L.); (Y.L.)
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Tang H, Li K, Shi Z, Wu J. G-Protein-Coupled Receptors in Chronic Kidney Disease Induced by Hypertension and Diabetes. Cells 2025; 14:729. [PMID: 40422232 DOI: 10.3390/cells14100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Hypertension and diabetes are two common causes of chronic kidney disease. Hypertension can induce renal vascular injury, glomerular damage, podocyte loss, and tubular injury, leading to tubulointerstitial fibrosis. A number of factors influence the regulation of hypertension, among which G-protein-coupled receptors (GPCRs) have been studied extensively because they are desirable targets for drug development. Compared to hypertension, the regulatory effects of GPCRs on hypertensive kidney disease (HKD) are less generalized. In this review, we discussed the GPCRs involved in hypertensive kidney disease, such as angiotensin II receptors (AT1R and AT2R), Mas receptor (MasR), Mas-related G-protein-coupled receptor member D (MrgD), relaxin family receptor 1 (RXFP1), adenosine receptors (A1, A2A, A2B, and A3), purinergic P2Y receptors, and endothelin receptors (ETA and ETB). The progression of HKD is rarely reversed but can be retarded by ameliorating the hypertensive microenvironment in the kidneys. However, simply reducing blood pressure cannot stop the progression of HKD. Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD), which is a major cause of morbidity and mortality in diabetes. Many GPCRs are involved in DN. Here, we select some well-studied GPCRs that are directly associated with the pathogenesis of DN to illustrate their mechanisms. The main purpose of this review is to provide an overview of the GPCRs involved in the occurrence and progression of HKD and DN and their probable pathophysiological mechanisms, which we hope will help in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Huidi Tang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Kang Li
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Zhan Shi
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Jichao Wu
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| |
Collapse
|
3
|
Sharma S, Tiwari N, Tanwar SS. The current findings on the gut-liver axis and the molecular basis of NAFLD/NASH associated with gut microbiome dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04069-z. [PMID: 40202676 DOI: 10.1007/s00210-025-04069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Recent research has highlighted the complex relationship between gut microbiota, metabolic pathways, and nonalcoholic fatty liver disease (NAFLD) progression. Gut dysbiosis, commonly observed in NAFLD patients, impairs intestinal permeability, leading to the translocation of bacterial products like lipopolysaccharides, short-chain fatty acids, and ethanol to the liver. These microbiome-associated mechanisms contribute to intestinal and hepatic inflammation, potentially advancing NAFLD to NASH. Dietary habits, particularly those rich in saturated fats and fructose, can modify the microbiome composition, leading to dysbiosis and fatty liver development. Metabolomic approaches have identified unique profiles in NASH patients, with specific metabolites like ethanol linked to disease progression. While bariatric surgery has shown promise in preventing NAFLD progression, the role of gut microbiome and metabolites in this improvement remains to be proven. Understanding these microbiome-related pathways may provide new diagnostic and therapeutic targets for NAFLD and NASH. A comprehensive review of current literature was conducted using multiple medical research databases, including PubMed, Scopus, Web of Science, Embase, Cochrane Library, ClinicalTrials.gov, ScienceDirect, Medline, ProQuest, and Google Scholar. The review focused on studies that examine the relationship between gut microbiota composition, metabolic pathways, and NAFLD progression. Key areas of interest included microbial dysbiosis, endotoxin production, and the influence of diet on gut microbiota. The analysis revealed that gut dysbiosis contributes to NAFLD through several mechanisms, diet significantly influences gut microbiota composition, which in turn affects liver function through the gut-liver axis. High-fat diets can lead to dysbiosis, altering microbial metabolic activities and promoting liver inflammation. Specifically, gut microbiota-mediated generation of saturated fatty acids, such as palmitic acid, can activate liver macrophages and increase TNF-α expression, contributing to NASH development. Different dietary components, including cholesterol, fiber, fat, and carbohydrates, can modulate the gut microbiome and influence NAFLD progression. This gut-liver axis plays a crucial role in maintaining immune homeostasis, with the liver responding to gut-derived bacteria by activating innate and adaptive immune responses. Microbial metabolites, such as bile acids, tryptophan catabolites, and branched-chain amino acids, regulate adipose tissue and intestinal homeostasis, contributing to NASH pathogenesis. Additionally, the microbiome of NASH patients shows an elevated capacity for alcohol production, suggesting similarities between alcoholic steatohepatitis and NASH. These findings indicate that targeting the gut microbiota may be a promising approach for NASH treatment and prevention. Recent research highlights the potential of targeting gut microbiota for managing nonalcoholic fatty liver disease (NAFLD). The gut-liver axis plays a crucial role in NAFLD pathophysiology, with dysbiosis contributing to disease progression. Various therapeutic approaches aimed at modulating gut microbiota have shown promise, including probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and dietary interventions. Probiotics have demonstrated efficacy in human randomized controlled trials, while other interventions require further investigation in clinical settings. These microbiota-targeted therapies may improve NAFLD outcomes through multiple mechanisms, such as reducing inflammation and enhancing metabolic function. Although lifestyle modifications remain the primary recommendation for NAFLD management, microbiota-focused interventions offer a promising alternative for patients struggling to achieve weight loss targets.
Collapse
Affiliation(s)
- Seema Sharma
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India
| | - Nishant Tiwari
- Acropolis Institute of Pharmaceutical Education and Research, Indore, M.P, India
| | - Sampat Singh Tanwar
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India.
| |
Collapse
|
4
|
Yao W, Huo J, Liu K, Tao P. Exploring the beneficial effect of gut microbiota metabolites on diabetic nephropathy via network pharmacology study. Sci Rep 2025; 15:11027. [PMID: 40164705 PMCID: PMC11958680 DOI: 10.1038/s41598-025-95824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Diabetic nephropathy (DN) is one of the severe complications of diabetes, current treatment against DN is still limited. It is suggested that gut microbiota metabolites will be a promising alternative therapy against DN. In this study, we explore the beneficial effect of gut microbiota metabolites on DN via employing network pharmacology study. The targets of metabolites were screen from Similarity Ensemble Approach (SEA) and Swiss Target Prediction (STP). The DN targets were acquired from disease database. The intersecting targets of metabolites and DN were considered crucial targets. The Protein-Protein Interaction (PPI) networks, GO function and KEGG analysis were conducted to identify core target and key signaling pathway. A "Microbiota-Substrate-Metabolites-Targets" network was built to screen the core metabolites. Molecular docking was employed to assess the binding affinity between metabolites and targets. GO functional results indicated that the metabolites were mainly enriched in oxidative stress and inflammation. PPARG, AKT1, IL6 and JUN were the top 4 targets of gut microbiota metabolites regulating DN. Butyrate, Acetate, Indole and 3-Indolepropionic acid were the core gut microbiota metabolites that had beneficial effects on attenuating DN. Molecular docking results indicated that 3-Indolepropionic acid displayed a good binding affinity toward targets of PPARG, AKT1, IL6 and JUN. Our study revealed that the gut microbiota metabolites might exert beneficial effect on attenuating DN by regulating multi-signaling pathway and multi-targets. This work offers us a novel insight into the mechanism of DN from the perspective of beneficial benefits of gut microbiota metabolites.
Collapse
Affiliation(s)
- Weiguo Yao
- Department of Nephrology, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jinlin Huo
- Clinical Medical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kun Liu
- Department of Nephrology, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Pengyu Tao
- Department of Nephrology, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
5
|
Xu G, Yuan H, Liu J, Wang X, Ma L, Wang Y, Dong G. Astragalus Mongholicus Polysaccharides Alleviate Kidney Injury in Rats with Type 2 Diabetes Through Modulation of Oxidation, Inflammation, and Gut Microbiota. Int J Mol Sci 2025; 26:1470. [PMID: 40003935 PMCID: PMC11855448 DOI: 10.3390/ijms26041470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
We aimed to uncover the underlying mechanisms contributing to the therapeutic efficacy of Astragalus mongholicus Polysaccharides (mAPS) in alleviating diabetic nephropathy (DN). The rat model of DN was subjected to a high-sugar and high-fat diet (HSHFD) coupled with streptozotocin (STZ) injection. Our findings revealed that mAPS administration decreased fasting blood glucose (FBG), BUN, SCR, UA, and MDA levels, while elevating serum GSH, GSH-PX, and SOD activities in DN rats (p < 0.05). Furthermore, there was a notable rise in the mRNA and protein expression of renal Nrf-2, GCLC, NQO1, and HO-1 post mAPS treatment (p < 0.05). Additionally, mAPS supplementation led to reduced protein expression of TLR4, NLRP3, p-NF-κB, TGF-β, and Smad4. Concurrently, mAPS exerted a modulatory effect on gut microbiota, as evidenced by the increased abundance of Muribaculaceae, Ruminococcus_1, Phascolarctobacterium, and Lachnoclostridium-related genera. Spearman correlation analysis illustrated a negative association between the abundance of microbiota (Muribaculaceae, Lachnospiraceae_NK4A136, Ruminococcus_1, Clostridiales) and the levels of serum parameters (BUN, CR, UA, TC, TG). In summary, our data robustly attests to the potential of mAPS in modulating oxidative stress, inflammation, and gut microbiota, ultimately resulting in improved renal function in DN rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuzhen Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.X.); (H.Y.); (J.L.); (X.W.); (L.M.)
| | - Guicheng Dong
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.X.); (H.Y.); (J.L.); (X.W.); (L.M.)
| |
Collapse
|
6
|
Xiong Y, Zhu X, Xu H, Zheng Z, Luo Q. Associations Between Gut Microbiota and Diabetic Nephropathy: A Mendelian Randomization Study. Aging Med (Milton) 2025; 8:e70009. [PMID: 39968006 PMCID: PMC11833227 DOI: 10.1002/agm2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/09/2024] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
Objectives Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, and its pathogenesis remains incompletely understood. Emerging evidence suggests a potential link between gut microbiota and DN. This study aimed to explore the causal relationship between gut microbiota and DN using a two-sample Mendelian randomization (MR) approach. Methods Gut microbiota data were obtained from the MiBioGen consortium, which provides the most comprehensive genome-wide association studies (GWAS) on gut microbiota. Summary-level genetic data for DN were sourced from publicly available GWAS data provided by the FinnGen consortium. The primary analysis was conducted using the inverse variance-weighted (IVW) method, complemented by sensitivity analyses to evaluate pleiotropy and heterogeneity. Results Fourteen gut microbiota species demonstrated significant genetic associations with DN in the MR analysis, including five negatively and nine positively associated species, as determined by the IVW method. No evidence of pleiotropy or heterogeneity was observed, ensuring the robustness of the findings. Conclusions This study provides novel insight into the causal role of gut microbiota in DN pathogenesis, uncovering specific microbial species that may contribute to disease progression. These findings offer a promising avenue for future research and therapeutic development targeting gut microbiota.
Collapse
Affiliation(s)
- Yujun Xiong
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Xingyun Zhu
- Department of EndocrinologyBeijing Jishuitan HospitalBeijingPeople's Republic of China
| | - Huazhao Xu
- Hospital Administration Office, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Zitian Zheng
- Department of OrthopedicsBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingPRChina
- Peking University Fifth School of Clinical MedicineBeijingPRChina
| | - Qingfeng Luo
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
7
|
Xue M, Tian Y, Zhang H, Dai S, Wu Y, Jin J, Chen J. Curcumin nanocrystals ameliorate ferroptosis of diabetic nephropathy through glutathione peroxidase 4. Front Pharmacol 2025; 15:1508312. [PMID: 39834811 PMCID: PMC11743454 DOI: 10.3389/fphar.2024.1508312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Objective The aim of this study was to investigate the effect of curcumin nanocrystals (Cur-NCs) on ferroptosis in high-glucose (HG)-induced HK-2 cells and streptozotocin (STZ)-induced diabetic nephropathy model (DN) rats. The purpose is to determine whether Cur NCs can become a promising treatment option for diabetes nephropathy by reducing ferroptosis. Methods Cur-NCs were prepared using microfluidic technology and studied using dynamic light scattering and transmission electron microscopy. HK-2 cells were treated with 30 mM HG to create a renal tubule damage cell model. Then, cell viability was evaluated in HK-2 cells treated with varying concentrations of Cur-NCs (0.23, 0.47, 0.94, 1.87, 3.75, 7.5, 15, and 30 μg/mL) using Cell Counting Kit-8 (CCK-8). Furthermore, in vivo experiments were carried out to investigate the roles of Cur-NCs in STZ-induced DN rats. Results The results showed that HG treatment greatly enhanced the levels of LDH, MDA, Iron, lipid ROS, apoptosis, NCOA4, TFR-1, while decreasing the expression of GSH, GPX4, SLC7A11, and FTH-1. These effects induced by HG could be attenuated by Cur-NCs. Cur-NCs also reduced the HG-induced decrease in cell viability, as well as the increase in lipid ROS and cell apoptosis, however erastin could inhibit their effects. Furthermore, the in vivo results showed that Cur-NCs reduced ferroptosis and inhibited renal damage in DN rats. Conclusion This study demonstrates that Cur-NCs can significantly attenuate ferroptosis in a STZ-induced renal damage model by recovering GPX4, implying that Cur-NCs may be a promising therapy option for DN.
Collapse
Affiliation(s)
- Mengjiao Xue
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yiwei Tian
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Hua Zhang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shijie Dai
- College of Life Science, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangsheng Wu
- College of Life Science, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juan Jin
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jian Chen
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
8
|
Liu B, Li L, Cui H, Zhao Q, Chen S. Analysis of the global burden of CKD-T2DM in young and middle-aged adults in 204 countries and territories from 2000 to 2019: A systematic study of the global burden of disease in 2019. Diabetes Res Clin Pract 2024; 217:111884. [PMID: 39389473 DOI: 10.1016/j.diabres.2024.111884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Diabetes stands as a principal risk factor for severe complications including renal and cardiovascular diseases. The gradual rise in type 2 diabetes cases globally, coupled with a trend towards younger demographics, has led to an escalating prevalence of chronic kidney disease. However, its etiology is multifaceted, necessitating individualized treatment and refinement, particularly crucial in screening and managing the burden of CKD-T2DM. A comprehensive analysis of CKD-T2DM burden at global, regional, and national levels from 2000 to 2019, based on the latest data, can inform screening, early diagnostics, and treatment strategies, thereby optimizing healthcare resource allocation. METHODS Utilizing data sourced from the Global Burden of Disease (GBD) database, we delineated the incidence, mortality, and DALYs rates of CKD-T2DM from 2000 to 2019 across global, regional, and national scales. We summarized the age-standardized incidence rate (ASIR), age-standardized mortality rate (ASMR), and age-standardized death rate (ASDR) of CKD-T2DM globally, regionally, and nationally, presenting them visually. Moreover, we calculated and visually depicted the estimated annual percentage change (EAPC) of various CKD-T2DM indicators at these levels. Additionally, CKD-T2DM patients were stratified by age to compare the age distribution of patient deaths and the age burden between 2000 and 2019. FINDINGS The disease burden of CKD-T2DM among young and middle-aged individuals globally has shown a sustained increase from 2000 to 2019. Incidence, mortality, and DALYs rates have exhibited an overall upward trend, with males showing higher rates compared to females. Significant disparities exist among different countries and regions, with India, China, and Mexico emerging as the countries with the highest number of new cases. Nicaragua, Mexico, and the United Arab Emirates have the highest age-standardized incidence rates, whereas Uganda, Ethiopia, and Burundi have the lowest. At the age level, the burden of CKD-T2DM exhibits varying trends among different age groups but generally shows an upward trajectory, particularly in the 45-49 age bracket. High systolic blood pressure and high BMI stand as the primary contributing factors to mortality and DALYs, with variations in their influence observed across different regions and levels of development. INTERPRETATION ver the past 20 years, the burden of CKD-T2DM among young and middle-aged individuals globally has continued to increase, with disparities existing among different countries, regions, and age groups, but overall showing an upward trend. The reasons for this trend are multifaceted, including global lifestyle changes such as dietary shifts, sedentary lifestyles, obesity, as well as population aging and inadequate preventive measures in certain regions. Addressing these challenges necessitates optimizing screening methods, adjusting lifestyles, enhancing management strategies, improving medical care and awareness levels, particularly intensifying awareness and screening efforts among males, reinforcing prevention and control measures for the 45-49 age group, enhancing infrastructure and healthcare resources in developing countries, fostering international collaboration, and implementing context-specific measures.
Collapse
Affiliation(s)
- Beiyan Liu
- Department of Endocrinology,The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, 453100, China.
| | - Lin Li
- Department of Neurology,The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, 453100, China
| | - Huanxi Cui
- Department of Neurointerventional,The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, 453100, China
| | - Qingbin Zhao
- Department of Geratology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Sufang Chen
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| |
Collapse
|
9
|
Yu H, Tang H, Saxu R, Song Y, Cui X, Xu J, Li N, Cui S, Ge H, Tang W, Gu HF. Effects of Abelmoschus manihot (L.) and its combination with irbesartan in the treatment of diabetic nephropathy via the gut-kidney axis. Front Pharmacol 2024; 15:1424968. [PMID: 39529886 PMCID: PMC11550981 DOI: 10.3389/fphar.2024.1424968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background Clinical observations have recently shown that Abelmoschus manihot (L.) in the form of Huangkui capsule (HKC) and in combination with irbesartan (EB) is an effective therapy for diabetic nephropathy (DN) in patients with type 2 diabetes (T2D). The present study aims to explore the mechanisms underlying the therapeutic efficacies of HKC and its combination with EB in DN via the gut-kidney axis. Methods HKC, EB, and their combination or vehicle were administered in db/db mice, which is an animal model for the study of T2D and DN. Comparative analyses of the gut microbiota, serum metabolites, and kidney transcriptomics before and after drug administration were performed. Results After treatment with HKC, EB, and their combination for 4 weeks, the urinary albumin-to-creatinine ratios decreased significantly in the db/db mice with DN. In terms of the gut microbiota, the abundances of Faecalitalea, Blautia, and Streptococcus increased but those of Bacteroidetes, Firmicutes, Enterobacteriaceae, and Desulfovibrio decreased. Parallelly, serum metabolites, mainly including quercetin 3'-glucuronide and L-dopa, were elevated while cortisol and cytochalasin B were reduced. Furthermore, the S100a8, S100a9, Trem1, and Mmp7 genes in the kidneys were downregulated. These altered elements were associated with proteinuria/albuminuria reduction. However, EB had no effects on the changes in blood pressure and specific differentially expressed genes in the kidneys. Conclusion The present study provides experimental evidence that HKC regulates the gut microbiota, circulating metabolites, and renal gene activities, which are useful for better understanding of the action mechanisms of A. manihot in the treatment of DN through the gut-kidney axis.
Collapse
Affiliation(s)
- Hongmei Yu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Haitao Tang
- Suzhong Pharmaceutical Group Co. Ltd., Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, China
| | - Rengui Saxu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Yuhui Song
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Xu Cui
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jingjing Xu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Cui
- Department of Endocrinology, Wuxi Second People’s Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Haitao Ge
- Suzhong Pharmaceutical Group Co. Ltd., Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, China
| | - Wei Tang
- Islet Cell Senescence and Function Research Laboratory, Department of Endocrinology, Nanjing Medical University Affiliated Geriatric Hospital/Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu Province, China
| | - Harvest F. Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
10
|
Zhou P, Hao Z, Chen Y, Zhang Z, Xu W, Yu J. Association between gut microbiota and diabetic microvascular complications: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1364280. [PMID: 39157683 PMCID: PMC11327146 DOI: 10.3389/fendo.2024.1364280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/27/2024] [Indexed: 08/20/2024] Open
Abstract
Background Gut microbiota (GM) homeostasis in the human body is closely associated with health, which can be used as a regulator for preventing the onset and progression of disease. Diabetic microvascular complications bring about not only a huge economic burden to society, but also miserable mental and physical pain. Thus, alteration of the GM may be a method to delay diabetic microvascular complications. Objective A two-sample Mendelian randomization (MR) analysis was conducted to reveal the causal inference between GM and three core diabetic microvascular complications, namely, diabetic kidney disease (DKD), diabetic retinopathy (DR), and diabetic neuropathy (DNP). Methods First, genome-wide association study (GWAS) summary statistics for GM from the MiBioGen consortium and three main diabetic microvascular complications acquired from the FinnGen research project were assessed. Second, a forward MR analysis was conducted to assess the causality of GM on the risk of DKD, DR, and DNP. Third, a series of sensitivity studies, such as heterogeneity tests, pleiotropy evaluations, and leave-one-out analyses, were further conducted to assess the accuracy of MR analysis. Finally, Steiger tests and reverse MR analyses were performed to appraise the possibility of reverse causation. Results A total of 2,092 single-nucleotide polymorphisms related to 196 bacterial traits were selected as instrumental variables. This two-sample MR analysis provided strongly reasonable evidence that 28 genetically predicted abundance of specific GM that played non-negligible roles in the occurrence of DKD, DR, and DNP complications were causally associated with 23 GM, the odds ratio of which generally ranged from 0.9 to 1.1. Further sensitivity analysis indicated low heterogeneity, low pleiotropy, and high reliability of the causal estimates. Conclusion The study raised the possibility that GM may be a potential target to prevent and delay the progression of diabetic microvascular complications. Further experiments of GM therapy on diabetic microvascular complications are warranted to clarify their effects and specific mechanisms.
Collapse
Affiliation(s)
- Peipei Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenning Hao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqi Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weilong Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Li L, Zou J, Zhou M, Li H, Zhou T, Liu X, Huang Q, Yang S, Xiang Q, Yu R. Phenylsulfate-induced oxidative stress and mitochondrial dysfunction in podocytes are ameliorated by Astragaloside IV activation of the SIRT1/PGC1α /Nrf1 signaling pathway. Biomed Pharmacother 2024; 177:117008. [PMID: 38901196 DOI: 10.1016/j.biopha.2024.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Astragaloside IV (AS-IV) exhibits diverse biological activities. Despite this, the detailed molecular mechanisms by which AS-IV ameliorates diabetic nephropathy (DN) and shields podocytes from oxidative stress (OS) and mitochondrial dysfunction remain poorly understood. In this study, we used biochemical assays, histopathological analysis, Doppler ultrasound, transmission electron microscopy,flow cytometry, fluorescence staining, and Western blotting and other methods. AS-IV was administered to db/db mice for in vivo experimentation. Our findings indicated that AS-IV treatment significantly reduced diabetes-associated markers, proteinuria, and kidney damage. It also diminished ROS levels in the kidney, enhanced the expression of endogenous antioxidant enzymes, and improved mitochondrial health. Phenyl sulfate (PS), a protein-bound uremic solute of enteric origin, has been closely linked with DN and represents a promising avenue for further research. In vitro, PS exposure induced OS and mitochondrial dysfunction in podocytes, increasing ROS levels while decreasing antioxidant enzyme activity (Catalase, Heme Oxygenase-1, Superoxide Dismutase, and Glutathione Peroxidase). ROS inhibitors (N-acetyl-L-cysteine, NAC) as the positive control group can significantly reduce the levels of ROS and restore antioxidant enzymes protein levels. Additionally, PS reduced markers associated with mitochondrial biosynthesis and function (SIRT1, PGC1α, Nrf1, and TFAM). These adverse effects were partially reversed by AS-IV treatment. However, co-treatment with AS-IV and the SIRT1 inhibitor EX527 failed to restore these indicators. Overall, our study demonstrates that AS-IV effectively attenuates DN and mitigates PS-induced OS and mitochondrial dysfunction in podocytes via the SIRT1/PGC1α/Nrf1 pathway.
Collapse
Affiliation(s)
- Liu Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Junju Zou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Min Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Hong Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Tongyi Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiu Liu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qiuqing Huang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Shiyao Yang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qin Xiang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
12
|
Li Q, Xie S, Liu Y, Yue W, Wang L, Liang Y, Chen Y, Yuan H, Yu J. Gut microbiota profiling reflects the renal dysfunction and psychological distress in patients with diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1410295. [PMID: 39076512 PMCID: PMC11284015 DOI: 10.3389/fendo.2024.1410295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Background The gut microbiota plays a pivotal role in the development of diabetes and kidney disease. However, it is not clear how the intestinal microecological imbalance is involved in the context of diabetic kidney disease (DKD), the leading cause of renal failure. Objectives To elucidate the gut microbial signatures associated with DKD progression towards end-stage renal disease (ESRD) and explore whether they could reflect renal dysfunction and psychological distress. Methods A cross-sectional study was conducted to explore the gut microbial signatures of 29 DKD non-ESRD patients and 19 DKD ESRD patients compared to 20 healthy controls. Differential analysis was performed to detect distinct gut microbial alterations in diversities and taxon abundance of DKD with and without ESRD. Renal dysfunction was estimated by urea, creatinine, and estimated glomerular filtration rate. Psychological distress was assessed using the Self-Rating Anxiety Scale, Self-Rating Depression Scale, Hamilton Anxiety Rating Scale, and Hamilton Depression Rating Scale. Results Alpha diversity indexes were reduced in DKD patients, particularly those with ESRD. Beta diversity analysis revealed that the gut microbial compositions of DKD patients were different with healthy individuals whereas similar compositions were observed in DKD patients. Taxon differential analysis showed that when compared with the controls, DKD patients exhibit distinct microbial profiles including reduced abundances of butyrate-produced, anti-inflammatory bacteria Faecalibacterium, Lachnospira, Roseburia Lachnoclostridium, and increased abundances of pro-inflammatory bacteria Collinsella, Streptococcus etc. These distinctive genera presented consistent associations with renal dysfunction, as well as psychological distress, especially in DKD patients. Conclusions DKD patients, especially those who have progressed to ESRD, exhibit unique characteristics in their gut microbiota that are associated with both renal dysfunction and psychological distress. The gut microbiota may be a significant factor in the deterioration of DKD and its eventual progression to ESRD.
Collapse
Affiliation(s)
- Qi Li
- Heart Center of Henan Provincial People’s Hospital, Department of Cardiology of Central China Fuwai Hospital, Henan Key Laboratory for Coronary Heart Disease Prevention and Control, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine Huddinge, Karolinska Institute, Huddinge, Sweden
| | - Suyi Xie
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yali Liu
- Department of Nephrology, The 988th Hospital of Joint Logistics Support Forces, People’s Liberation Army, Zhengzhou, Henan, China
| | - Wei Yue
- Department of Nephrology, The 988th Hospital of Joint Logistics Support Forces, People’s Liberation Army, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Yi Liang
- Department of Nephrology, The 988th Hospital of Joint Logistics Support Forces, People’s Liberation Army, Zhengzhou, Henan, China
| | - Yan Chen
- Department of Nephrology, The 988th Hospital of Joint Logistics Support Forces, People’s Liberation Army, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology of Henan Provincial People’s Hospital, Henan Provincial Key Laboratory of Intestinal Microecology and Diabetes Control, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, China
| | - Jiawei Yu
- Department of Nephrology, The 988th Hospital of Joint Logistics Support Forces, People’s Liberation Army, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Zhou Z, Niu H, Bian M, Zhu C. Kidney tea [ Orthosiphon aristatus (Blume) Miq.] improves diabetic nephropathy via regulating gut microbiota and ferroptosis. Front Pharmacol 2024; 15:1392123. [PMID: 38962302 PMCID: PMC11220284 DOI: 10.3389/fphar.2024.1392123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Due to its complex pathogenesis, new therapeutic agents are urgently needed. Orthosiphon aristatus (Blume) Miq., commonly known as kidney tea, is widely used in DN treatment in China. However, the mechanisms have not been fully elucidated. Methods We used db/db mice as the DN model and evaluated the efficacy of kidney tea in DN treatment by measuring fasting blood glucose (FBG), serum inflammatory cytokines, renal injury indicators and histopathological changes. Furthermore, 16S rDNA gene sequencing, untargeted serum metabolomics, electron microscope, ELISA, qRT-PCR, and Western blotting were performed to explore the mechanisms by which kidney tea exerted therapeutic effects. Results Twelve polyphenols were identified from kidney tea, and its extract ameliorated FBG, inflammation and renal injury in DN mice. Moreover, kidney tea reshaped the gut microbiota, reduced the abundance of Muribaculaceae, Lachnoclostridium, Prevotellaceae_UCG-001, Corynebacterium and Akkermansia, and enriched the abundance of Alloprevotella, Blautia and Lachnospiraceae_NK4A136_group. Kidney tea altered the levels of serum metabolites in pathways such as ferroptosis, arginine biosynthesis and mTOR signaling pathway. Importantly, kidney tea improved mitochondrial damage, increased SOD activity, and decreased the levels of MDA and 4-HNE in the renal tissues of DN mice. Meanwhile, this functional tea upregulated GPX4 and FTH1 expression and downregulated ACSL4 and NCOA4 expression, indicating that it could inhibit ferroptosis in the kidneys. Conclusion Our findings imply that kidney tea can attenuate DN development by modulating gut microbiota and ferroptosis, which presents a novel scientific rationale for the clinical application of kidney tea.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjuan Niu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Wang J, Wang X, Ma T, Xie Y. Research progress on Alpinia oxyphylla in the treatment of diabetic nephropathy. Front Pharmacol 2024; 15:1390672. [PMID: 38948461 PMCID: PMC11211572 DOI: 10.3389/fphar.2024.1390672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic nephropathy (DN) constitutes a major microvascular complication of diabetes and is a primary cause of mortality in diabetic individuals. With the global rise in diabetes, DN has become an urgent health issue. Currently, there is no definitive cure for DN. Alpinia oxyphylla, a Chinese herbal medicine traditionally used, exhibits a wide range of pharmacological effects and is frequently used in the prevention and management of DN. This paper offers an extensive review of the biological mechanisms by which A. oxyphylla delivers therapeutic advantages in DN management. These mechanisms include activating podocyte autophagy, regulating non-coding RNA, modulating gut microbiota, alleviating lipotoxicity, counteracting oxidative stress, and diminishing inflammatory responses, underscoring the therapeutic potential of A. oxyphylla in DN treatment.
Collapse
Affiliation(s)
- Jing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianpeng Ma
- Hainan Medical University, Haikou, Hainan, China
| | - Yiqiang Xie
- Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
15
|
Wang M, Huang ZH, Zhu YH, Li S, Li X, Sun H, He P, Peng YL, Fan QL. Association of dietary live microbe intake with diabetic kidney disease in patients with type 2 diabetes mellitus in US adults: a cross-sectional study of NHANES 1999-2018. Acta Diabetol 2024; 61:705-714. [PMID: 38400938 PMCID: PMC11101549 DOI: 10.1007/s00592-023-02231-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/27/2023] [Indexed: 02/26/2024]
Abstract
AIMS Several studies have reported dietary microorganisms' beneficial effects on human health. We aimed to detect the potential association between dietary live microbe intake and diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM) through a cross-sectional analysis of the National Health and Nutrition Examination Survey from 1999 to 2018. METHODS According to the Sanders classification system of dietary live microbes, the study participants were divided into three groups: low, medium, and high live microbe groups. In patients with T2DM, DKD was assessed by glomerular filtration rate (< 60 mL/min/1.73 m2 using the Chronic Kidney Disease Epidemiology Collaboration algorithm), proteinuria (urinary albumin to creatinine ratio ≥ 30 mg/g), or both. Weighted univariate and multivariate logistic regression and subgroup analyses were conducted to investigate the independent association between dietary live microbe and DKD. RESULTS The study included 3836 participants, of whom 1467 (38.24%) had DKD for the diagnosis. Our study demonstrated that participants in the high dietary live microbe group were more likely to be older, female, non-Hispanic White, have higher education levels, have a lower prevalence of smoking, have a high poverty-income ratio, have higher energy intake, lower haemoglobin (HbA1c) and serum creatinine levels, and lower risk of progression. After adjustment for covariates, patients in the high dietary live microbe group had a low prevalence of DKD, whereas no significant association with DKD was found between the medium and low dietary live microbe groups. No statistically significant interaction was observed in all subgroup analyses except for HbA1c (p for interaction < 0.05). CONCLUSIONS Our results indicate that high dietary live microbe intake was associated with a low DKD prevalence.
Collapse
Affiliation(s)
- Min Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhao-Hui Huang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yong-Hong Zhu
- Department of Nephrology, The second affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuai Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Li
- Department of Nephrology, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ping He
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ya-Li Peng
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiu-Ling Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China.
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Shao F, Yao Y, Weng D, Wang R, Liu R, Zhang Y, Li E, Wang M, Tang Y, Ding Y, Xie Y. Causal association of plasma circulating metabolites with nephritis: a Mendelian randomization study. Front Nutr 2024; 11:1364841. [PMID: 38765814 PMCID: PMC11099270 DOI: 10.3389/fnut.2024.1364841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Background Nephritis is a pivotal catalyst in chronic kidney disease (CKD) progression. Although epidemiological studies have explored the impact of plasma circulating metabolites and drugs on nephritis, few have harnessed genetic methodologies to establish causal relationships. Methods Through Mendelian randomization (MR) in two substantial cohorts, spanning large sample sizes, we evaluated over 100 plasma circulating metabolites and 263 drugs to discern their causal effects on nephritis risk. The primary analytical tool was the inverse variance weighted (IVW) analysis. Our bioinformatic scrutiny of GSE115857 (IgA nephropathy, 86 samples) and GSE72326 (lupus nephritis, 238 samples) unveiled anomalies in lipid metabolism and immunological characteristics in nephritis. Thorough sensitivity analyses (MR-Egger, MR-PRESSO, leave-one-out analysis) were undertaken to verify the instrumental variables' (IVs) assumptions. Results Unique lipoprotein-related molecules established causal links with diverse nephritis subtypes. Notably, docosahexaenoic acid (DHA) emerged as a protective factor for acute tubulointerstitial nephritis (ATIN) (OR1 = 0.84, [95% CI 0.78-0.90], p1 = 0.013; OR2 = 0.89, [95% CI 0.82-0.97], p2 = 0.007). Conversely, multivitamin supplementation minus minerals notably increased the risk of ATIN (OR = 31.25, [95% CI 9.23-105.85], p = 0.004). Reduced α-linolenic acid (ALA) levels due to lipid-lowering drugs were linked to both ATIN (OR = 4.88, [95% CI 3.52-6.77], p < 0.001) and tubulointerstitial nephritis (TIN) (OR = 7.52, [95% CI 2.78-20.30], p = 0.042). While the non-renal drug indivina showed promise for TIN treatment, the use of digoxin, hydroxocobalamin, and liothyronine elevated the risk of chronic tubulointerstitial nephritis (CTIN). Transcriptome analysis affirmed that anomalous lipid metabolism and immune infiltration are characteristic of IgA nephropathy and lupus nephritis. The robustness of these causal links was reinforced by sensitivity analyses and leave-one-out tests, indicating no signs of pleiotropy. Conclusion Dyslipidemia significantly contributes to nephritis development. Strategies aimed at reducing plasma low-density lipoprotein levels or ALA supplementation may enhance the efficacy of existing lipid-lowering drug regimens for nephritis treatment. Renal functional status should also be judiciously considered with regard to the use of nonrenal medications.
Collapse
Affiliation(s)
- Fengling Shao
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yingling Yao
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Dunchu Weng
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Runzhi Wang
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ruiling Liu
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yongjia Zhang
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Erhan Li
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Mengdi Wang
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yuewu Tang
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yajun Xie
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Lu J, Gong X, Zhang C, Yang T, Pei D. A multi-omics approach to investigate characteristics of gut microbiota and metabolites in hypertension and diabetic nephropathy SPF rat models. Front Microbiol 2024; 15:1356176. [PMID: 38741742 PMCID: PMC11089221 DOI: 10.3389/fmicb.2024.1356176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Background Imbalance in intestinal microbiota caused by microbial species and proportions or metabolites derived from microbes are associated with hypertension, as well as diabetic nephropathy. However, the involvement of the intestinal microbiota and metabolites in hypertension and diabetic nephropathy comorbidities (HDN) remains to be elucidated. Methods We investigated the effects of intestinal microbiota on HDN in a rat model and determined the abundance of the intestinal microbiota using 16S rRNA sequencing. Changes in fecal and serum metabolites were analyzed using ultra-high-performance liquid chromatography-mass spectrometry. Results The results showed abundance of Proteobacteria and Verrucomicrobia was substantially higher, whereas that of Bacteroidetes was significant lower in the HDN group than in the sham group. Akkermansia, Bacteroides, Blautia, Turicibacter, Lactobacillus, Romboutsia, and Fusicatenibacter were the most abundant, and Prevotella, Lachnospiraceae_NK4A136_group, and Prevotella_9 were the least abundant in the HDN group. Further analysis with bile acid metabolites in serum showed that Blautia was negatively correlated with taurochenodeoxycholic acid, taurocholic acid, positively correlated with cholic acid and glycocholic acid in serum. Conclusions These findings suggest that the gut microbiota and metabolites in feces and serum substantially differed between the HDN and sham groups. The F/B ratio was higher in the HDN group than in the sham group. Blautia is potentially associated with HDN that correlated with differentially expressed bile acid metabolites, which might regulate the pathogenesis of HDN via the microorganism-gut-metabolite axis.
Collapse
Affiliation(s)
- Jinjing Lu
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoying Gong
- Department of Critical Care Unit, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chenlu Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tengfei Yang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dongmei Pei
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Jin Y, Han C, Yang D, Gao S. Association between gut microbiota and diabetic nephropathy: a mendelian randomization study. Front Microbiol 2024; 15:1309871. [PMID: 38601939 PMCID: PMC11004376 DOI: 10.3389/fmicb.2024.1309871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Background The correlation between diabetic nephropathy (DN) and gut microbiota (GM) has been suggested in numerous animal experiments and cross-sectional studies. However, a causal association between GM and DN has not been ascertained. Methods This research adopted MR analysis to evaluate the causal link between GM and DN derived from data acquired through publicly available genome-wide association studies (GWAS). The study utilized the inverse variance weighted (IVW) approach to assess causal association between GM and DN. Four additional methods including MR-Egger, weighted median, weighted mode, and simple mode were employed to ensure comprehensive analysis and robust results. The Cochran's Q test and the MR-Egger method were conducted to identify heterogeneity and horizontal pleiotropy, respectively. The leave-one-out approach was utilized to evaluate the stability of MR results. Finally, a reverse MR was performed to identify the reverse causal association between GM and DN. Results According to IVW analysis, Class Verrucomicrobiae (p = 0.003), Order Verrucomicrobiales (p = 0.003), Family Verrucomicrobiaceae (p = 0.003), Genus Akkermansia (p = 0.003), Genus Catenibacterium (p = 0.031), Genus Coprococcus 1 (p = 0.022), Genus Eubacterium hallii group (p = 0.018), and Genus Marvinbryantia (p = 0.023) were associated with a higher risk of DN. On the contrary, Class Actinobacteria (p = 0.037), Group Eubacterium ventriosum group (p = 0.030), Group Ruminococcus gauvreauii group (p = 0.048), Order Lactobacillales (p = 0.045), Phylum Proteobacteria (p = 0.017) were associated with a lower risk of DN. The sensitivity analysis did not identify any substantial pleiotropy or heterogeneity in the outcomes. We found causal effects of DN on 11 GM species in the reverse MR analysis. Notably, Phylum Proteobacteria and DN are mutually causalities. Conclusion This study identified the causal association between GM and DN with MR analysis, which may enhance the understanding of the intestinal-renal axis and provide novel potential targets for early non-invasive diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Yongxiu Jin
- Department of Nephrology, Tangshan Gongren Hosiptal, Tangshan, China
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Chenxi Han
- Tangshan Maternal and Child Health Hospital, Tangshan, China
| | | | - Shanlin Gao
- Department of Nephrology, Tangshan Gongren Hosiptal, Tangshan, China
- Graduate School, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Piko N, Bevc S, Hojs R, Ekart R. Finerenone: From the Mechanism of Action to Clinical Use in Kidney Disease. Pharmaceuticals (Basel) 2024; 17:418. [PMID: 38675379 PMCID: PMC11054947 DOI: 10.3390/ph17040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic kidney disease is a frequent microvascular complication of diabetes and is currently the leading cause of chronic kidney disease and end-stage kidney disease worldwide. Although the prevalence of other complications of diabetes is falling, the number of diabetic patients with end-stage kidney disease in need of kidney replacement therapy is rising. In addition, these patients have extremely high cardiovascular risk. It is more than evident that there is a high unmet treatment need in patients with diabetic kidney disease. Finerenone is a novel nonsteroidal mineralocorticoid receptor antagonist used for treating diabetic kidney disease. It has predominant anti-fibrotic and anti-inflammatory effects and exhibits several renal and cardiac protective effects. This review article summarizes the current knowledge and future prospects of finerenone in treating patients with kidney disease.
Collapse
Affiliation(s)
- Nejc Piko
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia;
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia; (S.B.); (R.H.)
- Medical Faculty, University of Maribor, 2000 Maribor, Slovenia
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia; (S.B.); (R.H.)
- Medical Faculty, University of Maribor, 2000 Maribor, Slovenia
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, 2000 Maribor, Slovenia;
- Medical Faculty, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
20
|
Fang Y, Zhang Y, Liu Q, Zheng Z, Ren C, Zhang X. Assessing the causal relationship between gut microbiota and diabetic nephropathy: insights from two-sample Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1329954. [PMID: 38562415 PMCID: PMC10982433 DOI: 10.3389/fendo.2024.1329954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background The causal association between gut microbiota (GM) and the development of diabetic nephropathy (DN) remains uncertain. We sought to explore this potential association using two-sample Mendelian randomization (MR) analysis. Methods Genome-wide association study (GWAS) data for GM were obtained from the MiBioGen consortium. GWAS data for DN and related phenotypes were collected from the FinngenR9 and CKDGen databases. The inverse variance weighted (IVW) model was used as the primary analysis model, supplemented by various sensitivity analyses. Heterogeneity was assessed using Cochran's Q test, while horizontal pleiotropy was evaluated through MR-Egger regression and the MR-PRESSO global test. Reverse MR analysis was conducted to identify any reverse causal effects. Results Our analysis identified twenty-five bacterial taxa that have a causal association with DN and its related phenotypes (p < 0.05). Among them, only the g_Eubacterium_coprostanoligenes_group showed a significant causal association with type 1 DN (p < Bonferroni-adjusted p-value). Our findings remained consistent regardless of the analytical approach used, with all methods indicating the same direction of effect. No evidence of heterogeneity or horizontal pleiotropy was observed. Reverse MR analysis did not reveal any causal associations. Conclusions This study established a causal association between specific GM and DN. Our findings contribute to current understanding of the role of GM in the development of DN, offering potential insights for the prevention and treatment strategies for this condition.
Collapse
Affiliation(s)
- Yipeng Fang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | | | - Qian Liu
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zenan Zheng
- Shantou University Medical College, Shantou, Guangdong, China
| | - Chunhong Ren
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xin Zhang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong, Shantou, Guangdong, China
| |
Collapse
|
21
|
Xiong Y, Zhu X, Luo Q. Causal relationship between gut microbiota and autoimmune thyroiditis: A mendelian study. Heliyon 2024; 10:e25652. [PMID: 38356548 PMCID: PMC10865322 DOI: 10.1016/j.heliyon.2024.e25652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Background Autoimmune thyroiditis (AIT), also known as Hashimoto's thyroiditis (HT) or chronic lymphocytic thyroiditis, is a prevalent autoimmune disorder. Despite its high prevalence, the pathogenesis of AIT remains unclear. Previous studies have suggested a potential association between gut microbiota and AIT. However, whether this relationship is causal or coincidental remains uncertain. To address this gap in knowledge, our study aimed to investigate the potential causal association between gut microbiota and AIT using the two-sample Mendelian randomization (MR) method. Methods Summary-level gut microbiota data comprising 211 taxa (131 genera, 35 families, 20 orders, 16 classes, and 9 phyla) were obtained from the comprehensive MiBioGen study. Genetic associations with 22 gastrointestinal diseases were extracted from the UK Biobank, FinnGen study, and various extensive GWAS studies. A meticulous MR analysis was conducted to evaluate the causal relationship between genetically predicted gut microbiota and these gastrointestinal diseases. Sensitivity analyses and tests for heterogeneity were systematically performed to validate the reliability of our findings. Results Six gut microbiota species showed significant associations with AIT according to the IVW method. Among them, the following exhibited negative associations with AIT: family Alcaligenaceae, family Pasteurellaceae (ID: 3689), family Peptococcaceae, genus Lachnospira, genus Victivallis, and order Pasteurellales (ID: 3688). No evidence of pleiotropy or heterogeneity was detected. Conclusion The MR analysis uncovered a causal relationship at the genetic prediction level between specific gut microbiota and AIT. These findings offer novel insights into the mechanisms governing the development of AIT mediated by gut microbiota. This knowledge could inform the design of future interventions, potentially involving microbiome-related strategies, to address the mechanisms associated with AIT development.
Collapse
Affiliation(s)
- Yujun Xiong
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China, 100370, Beijing, China
| | - Xingyun Zhu
- Department of Endocrinology, Beijing Jishuitan Hospital, No. 31, East Xinjiekou Street, Xicheng District, 100035, Beijing, China
| | - Qingfeng Luo
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China, 100370, Beijing, China
| |
Collapse
|
22
|
Flores SV, Olguin-Barraza M, Maureira-Carsalade N, Roco-Videla Á. Microbiome and type 2 diabetes mellitus: The need-to-know population variability in Latin American populations. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:118-119. [PMID: 38336427 DOI: 10.1016/j.eimce.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 02/12/2024]
Affiliation(s)
| | - Mariela Olguin-Barraza
- Facultad de Ciencias de Salud, Programa de Magister en Ciencias Químico-Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Nelson Maureira-Carsalade
- Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ángel Roco-Videla
- Facultad de Salud y Ciencias Sociales, Universidad de las Américas, Santiago, Chile
| |
Collapse
|