1
|
Al-Shammari SMH, Al-Khafaji ASK, Hassan HA, Salman MI, Al-Shammari AM. Oncolytic Newcastle Disease Virus and Photodynamic Therapy as Dual Approach for Breast Cancer Treatment. Asian Pac J Cancer Prev 2024; 25:3111-3118. [PMID: 39342590 DOI: 10.31557/apjcp.2024.25.9.3111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE We hypothesized that attacking cancer cells by combining various modes of action can hinder them from taking the chance to evolve resistance to treatment. Incorporation of photodynamic therapy (PDT) with oncolytic virotherapy might be a promising dual approach to cancer treatment. METHODS NDV AMHA1 strain as virotherapy in integration with aminolaevulinic acid (ALA) using low power He-Ne laser as PDT in the existing work was examined against breast cancer cells derived from Iraqi cancer patients named (AMJ13). This combination was evaluated using Chou-Talalay analysis. RESULTS The results showed an increased killing rate when using both 0.01 and 0.1 Multiplicity of infection (MOI) of the virus when combined with a dose of 6172.8 photons/gm (ph/gm) of PDT focused on cancer cells. CONCLUSION integration of the attenuated NDV-AMHA1 strain with photodynamic therapy has a synergistic killing effect on breast cancer cells in vitro, suggesting that this strategy could have clinical application to overcome breast cancer.
Collapse
Affiliation(s)
| | | | - Haider A Hassan
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Marwa Ibrahim Salman
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ahmed Majeed Al-Shammari
- Department of Experimental Therapy, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
2
|
Al-Shammari AM, Salman MI. Antimetastatic and antitumor activities of oncolytic NDV AMHA1 in a 3D culture model of breast cancer. Front Mol Biosci 2024; 11:1331369. [PMID: 39281317 PMCID: PMC11392722 DOI: 10.3389/fmolb.2024.1331369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Newcastle disease virus (NDV) AMHA1 is capable of killing cancer cells by direct replication or induction of apoptosis alongside other pathways. In this study, we report the potent antimetastatic and anticancer activities of NDV AMHA1 in a 3D spheroid model of breast cancer metastasis. Methods we used two breast cancer cell lines AMJ13 and MCF7 in our metastasis model system. Results First, we showed that NDV AMHA1 can infect and kill breast cancer cells in proliferating adherent cells and tumor spheroids using different virus doses and studying virus replication kinetics. We showed that NDV can infect and spread within the spheroids that represent metastasis before and after reattachment. Furthermore, we evaluated the ability of NDV to induce apoptosis in cancer spheroids and by virus tracking showed that NDV infection is essential for the elimination of these metastasis spheroids. Discussion The mechanism by which NDV induces cell killing in the metastasis model is the induction of caspase-3 and P21 and inhibition of Ki67 in cancer cells, but not in normal cells. In conclusion, these results indicate that NDV AMHA1 has the ability to kill breast cancer metastases in suspension or attached, and this is a novel finding of NDV AMHA1 being a possibly efficient therapy against human metastatic breast cancer.
Collapse
Affiliation(s)
- Ahmed Majeed Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Marwa Ibrahim Salman
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Xiong D, Wang Q, Wang WM, Sun ZJ. Tuning cellular metabolism for cancer virotherapy. Cancer Lett 2024; 592:216924. [PMID: 38718886 DOI: 10.1016/j.canlet.2024.216924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Oncolytic viruses (OVs) represent an emerging immunotherapeutic strategy owing to their capacity for direct tumor lysis and induction of antitumor immunity. However, hurdles like transient persistence and moderate efficacy necessitate innovative approaches. Metabolic remodeling has recently gained prominence as a strategic intervention, wherein OVs or combination regimens could reprogram tumor and immune cell metabolism to enhance viral replication and oncolysis. In this review, we summarize recent advances in strategic reprogramming of tumor and immune cell metabolism to enhance OV-based immunotherapies. Specific tactics include engineering viruses to target glycolytic, glutaminolytic, and nucleotide synthesis pathways in cancer cells, boosting viral replication and tumor cell death. Additionally, rewiring T cell and NK cell metabolism of lipids, amino acids, and carbohydrates shows promise to enhance antitumor effects. Further insights are discussed to pave the way for the clinical implementation of metabolically enhanced oncolytic platforms, including balancing metabolic modulation to limit antiviral responses while promoting viral persistence and tumor clearance.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan, 430079, PR China
| | - Qing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan, 430079, PR China
| | - Wei-Ming Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Institute of Oral Precancerous Lesions, Xiangya Hospital, Research Center of Oral and Maxillofacial Tumor, National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, 410008, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
4
|
Kadooh QA, Al-Ziaydi AG, Hamza AJ. Evaluation of the influence of trastuzumab therapy on serum levels of HER-2 protein and breast cancer cell lines. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2024; 23:57-63. [PMID: 39391525 PMCID: PMC11462143 DOI: 10.5114/pm.2024.139607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Breast cancer is a complex disease characterised by abnormal cell growth in breast tissue. Trastuzumab is a targeted therapy that inhibits the HER-2 receptor and suppresses tumour growth. We aimed to determine if the clinical course of the disease could be predicted by early changes in serum levels of human epidermal growth factor receptor 2 (HER-2/neu) following trastuzumab-based therapy. MATERIAL AND METHODS The study enrolled 120 women, divided into an experimental group (60 breast cancer patients receiving trastuzumab) and a control group (60 healthy women). Serum samples were collected before each weekly trastuzumab treatment. In addition, human breast cancer cell lines MCF-7 and AMJ13 were cultured in vitro and treated with trastuzumab. The study assessed cell viability using a cytotoxicity assay (methyl thiazolyl tetrazolium) and measured HER-2 protein levels. The half maximal inhibitory concentration (IC50) was determined to evaluate the effect of trastuzumab on breast cancer. RESULTS The results showed that breast cancer patients had significantly lower serum levels of HER-2 compared to the control group. The cytotoxicity assay demonstrated that increasing trastuzumab concentration enhanced growth inhibition and cytotoxicity in the cell lines. There was a significant difference in IC50 between the MCF-7 and AMJ13 cell lines. CONCLUSIONS The study provides valuable insights into the effects of trastuzumab on serum HER-2 levels and breast cancer cell lines. These findings have implications for resource allocation and treatment decisions in breast cancer management. By understanding the impact of trastuzumab on HER-2 levels and tumour cells, healthcare professionals can make more informed decisions regarding therapy options for patients.
Collapse
Affiliation(s)
- Qasim Ashour Kadooh
- Department of Medical Chemistry, College of Medicine, University of Al-Qadisiyah, Qadisiyah, Iraq
| | - Ahmed Ghdhban Al-Ziaydi
- Department of Medical Chemistry, College of Medicine, University of Al-Qadisiyah, Qadisiyah, Iraq
| | - Ali Jawad Hamza
- Department of Surgery, College of Medicine, University of Al-Qadisiyah, Qadisiyah, Iraq
| |
Collapse
|
5
|
Yang H, Tian J, Zhao J, Zhao Y, Zhang G. The Application of Newcastle Disease Virus (NDV): Vaccine Vectors and Tumor Therapy. Viruses 2024; 16:886. [PMID: 38932177 PMCID: PMC11209082 DOI: 10.3390/v16060886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome that belongs to the Paramyxoviridae family. While primarily pathogenic in birds, NDV presents no threat to human health, rendering it a safe candidate for various biomedical applications. Extensive research has highlighted the potential of NDV as a vector for vaccine development and gene therapy, owing to its transcriptional modularity, low recombination rate, and lack of a DNA phase during replication. Furthermore, NDV exhibits oncolytic capabilities, efficiently eliciting antitumor immune responses, thereby positioning it as a promising therapeutic agent for cancer treatment. This article comprehensively reviews the biological characteristics of NDV, elucidates the molecular mechanisms underlying its oncolytic properties, and discusses its applications in the fields of vaccine vector development and tumor therapy.
Collapse
Affiliation(s)
- Huiming Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Peng C, Xiao P, Li N. Does oncolytic viruses-mediated metabolic reprogramming benefit or harm the immune microenvironment? FASEB J 2024; 38:e23450. [PMID: 38294796 DOI: 10.1096/fj.202301947rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/11/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Oncolytic virus immunotherapy as a new tumor therapy has made remarkable achievements in clinical practice. And metabolic reprogramming mediated by oncolytic virus has a significant impact on the immune microenvironment. This review summarized the reprogramming of host cell glucose metabolism, lipid metabolism, oxidative phosphorylation, and glutamine metabolism by oncolytic virus and illustrated the effects of metabolic reprogramming on the immune microenvironment. It was found that oncolytic virus-induced reprogramming of glucose metabolism in tumor cells has both beneficial and detrimental effects on the immune microenvironment. In addition, oncolytic virus can promote fatty acid synthesis in tumor cells, inhibit oxidative phosphorylation, and promote glutamine catabolism, which facilitates the anti-tumor immune function of immune cells. Therefore, targeted metabolic reprogramming is a new direction to improve the efficacy of oncolytic virus immunotherapy.
Collapse
Affiliation(s)
- Chengcheng Peng
- Institute of Virology, Wenzhou University, Wenzhou, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou, China
| | - Pengpeng Xiao
- Institute of Virology, Wenzhou University, Wenzhou, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou, China
| | - Nan Li
- Institute of Virology, Wenzhou University, Wenzhou, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou, China
| |
Collapse
|
7
|
Goyal P, Rajala MS. Reprogramming of glucose metabolism in virus infected cells. Mol Cell Biochem 2023; 478:2409-2418. [PMID: 36709223 PMCID: PMC9884135 DOI: 10.1007/s11010-023-04669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023]
Abstract
Viral infection is a kind of cellular stress that leads to the changes in cellular metabolism. Many metabolic pathways in a host cell such as glycolysis, amino acid and nucleotide synthesis are altered following virus infection. Both oncogenic and non-oncogenic viruses depend on host cell glycolysis for their survival and pathogenesis. Recent studies have shown that the rate of glycolysis plays an important role in oncolysis as well by oncolytic therapeutic viruses. During infection, viral proteins interact with various cellular glycolytic enzymes, and this interaction enhances the catalytic framework of the enzymes subsequently the glycolytic rate of the cell. Increased activity of glycolytic enzymes following their interaction with viral proteins is vital for replication and to counteract the inhibition of glycolysis caused by immune response. In this review, the importance of host cell glycolysis and the modulation of glycolysis by various viruses such as oncogenic, non-oncogenic and oncolytic viruses are presented.
Collapse
Affiliation(s)
- Priya Goyal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maitreyi S Rajala
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct Target Ther 2023; 8:156. [PMID: 37041165 PMCID: PMC10090134 DOI: 10.1038/s41392-023-01407-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
Oncolytic viruses (OVs) have attracted growing awareness in the twenty-first century, as they are generally considered to have direct oncolysis and cancer immune effects. With the progress in genetic engineering technology, OVs have been adopted as versatile platforms for developing novel antitumor strategies, used alone or in combination with other therapies. Recent studies have yielded eye-catching results that delineate the promising clinical outcomes that OVs would bring about in the future. In this review, we summarized the basic principles of OVs in terms of their classifications, as well as the recent advances in OV-modification strategies based on their characteristics, biofunctions, and cancer hallmarks. Candidate OVs are expected to be designed as "qualified soldiers" first by improving target fidelity and safety, and then equipped with "cold weapons" for a proper cytocidal effect, "hot weapons" capable of activating cancer immunotherapy, or "auxiliary weapons" by harnessing tactics such as anti-angiogenesis, reversed metabolic reprogramming and decomposing extracellular matrix around tumors. Combinations with other cancer therapeutic agents have also been elaborated to show encouraging antitumor effects. Robust results from clinical trials using OV as a treatment congruously suggested its significance in future application directions and challenges in developing OVs as novel weapons for tactical decisions in cancer treatment.
Collapse
Affiliation(s)
- Danni Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Singh R, Gupta V, Kumar A, Singh K. 2-Deoxy-D-Glucose: A Novel Pharmacological Agent for Killing Hypoxic Tumor Cells, Oxygen Dependence-Lowering in Covid-19, and Other Pharmacological Activities. Adv Pharmacol Pharm Sci 2023; 2023:9993386. [PMID: 36911357 PMCID: PMC9998157 DOI: 10.1155/2023/9993386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/02/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG) has shown promising pharmacological activities, including inhibition of cancerous cell growth and N-glycosylation. It has been used as a glycolysis inhibitor and as a potential energy restriction mimetic agent, inhibiting pathogen-associated molecular patterns. Radioisotope derivatives of 2-DG have applications as tracers. Recently, 2-DG has been used as an anti-COVID-19 drug to lower the need for supplemental oxygen. In the present review, various pharmaceutical properties of 2-DG are discussed.
Collapse
Affiliation(s)
- Raman Singh
- Division Chemistry & Toxicology, WTL-Clean and Renewable Energy Pvt. Ltd., New Delhi, India
| | - Vidushi Gupta
- Department of Chemistry, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Kuldeep Singh
- Department of Applied Chemistry, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| |
Collapse
|
10
|
Basim S, Kasim AA. Cytotoxic Activity of the Ethyl Acetate Extract of Iraqi Carica papaya Leaves in Breast and Lung Cancer Cell Lines. Asian Pac J Cancer Prev 2023; 24:581-586. [PMID: 36853308 PMCID: PMC10162622 DOI: 10.31557/apjcp.2023.24.2.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
The aim of this study was to evaluate the cytotoxic effect of the ethyl acetate fraction of Iraqi Carica papaya (C. papaya) in breast and lung cancer cell lines, MCF-7 and A549, respectively. METHODS The ethyl acetate extract of Iraqi C. papaya leaves was prepared and tested for its phytochemical constitution. The 3-(4,5-dimethylthiazoline-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed in breast (MCF-7) and lung (A549) cells lines that were treated with different concentrations of ethyl acetate extract (3.125,6.25,12.5, 25, 50, and 100μg/ml). After 72 hrs of treatment, cell viability was evaluated. RESULTS The ethyl acetate extract of C. papaya showed considerable cytotoxic activity in the MCF-7 and A549 cell lines. The activity was dose-dependent; The half-maximum inhibitory concentration (IC50) values were 22.74μg/ml and 8.674 μg/ml in the MCF-7 and A549 cell lines, respectively. CONCLUSION The ethyl acetate fraction of Iraqi C. papaya leaves has potential anticancer activity in lung and breast cancer.
Collapse
Affiliation(s)
- Sura Basim
- Department of Pharmacognosy, College of Pharmacy, University of Baghdad, Baghdad, Iraq.
| | - Ali A Kasim
- Department of Pharmacognosy and Medicinal Plants, Department of Pharmacognosy, College of Pharmacy, University of Baghdad, Iraq.
| |
Collapse
|
11
|
Vorobyev PO, Kochetkov DV, Chumakov PM, Zakirova NF, Zotova-Nefedorova SI, Vasilenko KV, Alekseeva ON, Kochetkov SN, Bartosch B, Lipatova AV, Ivanov AV. 2-Deoxyglucose, an Inhibitor of Glycolysis, Enhances the Oncolytic Effect of Coxsackievirus. Cancers (Basel) 2022; 14:5611. [PMID: 36428704 PMCID: PMC9688421 DOI: 10.3390/cancers14225611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common types of brain tumor. Despite intensive research, patients with GBM have a poor prognosis due to a very high rate of relapse and significant side effects of the treatment, with a median survival of 14.6 months. Oncolytic viruses are considered a promising strategy to eliminate GBM and other types of cancer, and several viruses have already been introduced into clinical practice. However, identification of the factors that underly the sensitivity of tumor species to oncolytic viruses or that modulate their clinical efficacy remains an important target. Here, we show that Coxsackievirus B5 (CVB5) demonstrates high oncolytic potential towards GBM primary cell species and cell lines. Moreover, 2-deoxyglucose (2DG), an inhibitor of glycolysis, potentiates the cytopathic effects of CVB5 in most of the cancer cell lines tested. The cells in which the inhibition of glycolysis enhanced oncolysis are characterized by high mitochondrial respiratory activity and glycolytic capacity, as determined by Seahorse analysis. Thus, 2-deoxyglucose and other analogs should be considered as adjuvants for oncolytic therapy of glioblastoma multiforme.
Collapse
Affiliation(s)
- Pavel O. Vorobyev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V. Kochetkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia F. Zakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sofia I. Zotova-Nefedorova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Konstantin V. Vasilenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of General Medicine, Pirogov Russian National Medical University, 117997 Moscow, Russia
| | - Olga N. Alekseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey N. Kochetkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69003 Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), 69001 Lyon, France
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
12
|
Salman MI, Al-Shammari AM, Emran MA. 3-Dimensional coculture of breast cancer cell lines with adipose tissue–Derived stem cells reveals the efficiency of oncolytic Newcastle disease virus infection via labeling technology. Front Mol Biosci 2022; 9:754100. [PMID: 36172043 PMCID: PMC9511405 DOI: 10.3389/fmolb.2022.754100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Oncolytic virotherapy is one of the emerging biological therapeutics that needs a more efficient in vitro tumor model to overcome the two-dimensional (2D) monolayer tumor cell culture model’s inability to maintain tissue-specific structure. This is to offer significant prognostic preclinical assessment findings. One of the best models that can mimic the in vivo model in vitro are the three-dimensional (3D) tumor–normal cell coculture systems, which can be employed in preclinical oncolytic virus therapeutics. Thus, we developed our 3D coculture system in vitro using two types of breast cancer cell lines showing different receptor statuses cocultured with adipose tissue–derived mesenchymal stem cells. The cells were cultured in a floater tissue culture plate to allow spheroids formation, and then the spheroids were collected and transferred to a scaffold spheroids dish. These 3D culture systems were used to evaluate oncolytic Newcastle disease virus AMHA1 strain infectivity and antitumor activity using a tracking system of the Newcastle disease virus (NDV) labeled with fluorescent PKH67 linker to follow the virus entry into target cells. This provides evidence that the NDV AMHA1 strain is an efficient oncolytic agent. The fluorescently detected virus particles showed high intensity in both coculture spheres. Strategies for chemically introducing fluorescent dyes into NDV particles extract quantitative information from the infected cancer models. In conclusion, the results indicate that the NDV AMHA1 strain efficiently replicates and induces an antitumor effect in cancer–normal 3D coculture systems, indicating efficient clinical outcomes.
Collapse
Affiliation(s)
- Marwa Ibrahim Salman
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ahmed Majeed Al-Shammari
- Department of Experimental Therapy, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
- *Correspondence: Ahmed Majeed Al-Shammari,
| | - Mahfodha Abbas Emran
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
13
|
Obaid QA, Al-Shammari AM, Khudair KK. Glucose Deprivation Induced by Acarbose and Oncolytic Newcastle Disease Virus Promote Metabolic Oxidative Stress and Cell Death in a Breast Cancer Model. Front Mol Biosci 2022; 9:816510. [PMID: 35936786 PMCID: PMC9354800 DOI: 10.3389/fmolb.2022.816510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer cells are distinguished by enhanced glucose uptake and an aerobic glycolysis pathway in which its products support metabolic demands for cancer cell growth and proliferation. Inhibition of aerobic glycolysis is a smart therapeutic approach to target the progression of the cancer cell. We employed acarbose (ACA), a particular alpha-glucosidase inhibitor, to induce glucose deprivation combined with oncolytic Newcastle disease virus (NDV) to enhance antitumor activity. In this work, we used a mouse model of breast cancer with mammary adenocarcinoma tumor cells (AN3) that were treated with ACA, NDV, and a combination of both. The study included antitumor efficacy, relative body weight, glucose level, hexokinase (HK-1) level by ELISA, glycolysis product (pyruvate), total ATP, oxidative stress (ROS and reduced glutathione), and apoptosis by immunohistochemistry. The results showed significant antitumor efficacy against breast cancer after treatment with combination therapy. Antitumor efficacy was accompanied by a reduction in body weight and glucose level, HK-1 downregulation, inhibition of glycolysis products (pyruvate), total ATP, induction of oxidative stress (increase ROS and decrease reduced glutathione), and apoptotic cell death. The findings propose a novel anti–breast cancer combination involving the suppression of glycolysis, glucose deprivation, oxidative stress, and apoptosis, which can be translated clinically.
Collapse
Affiliation(s)
- Qayssar A. Obaid
- Department of Animal Production, College of Agriculture, University of Sumer, Dhi Qar, Iraq
| | - Ahmed Majeed Al-Shammari
- Department of Experimental Therapy, Iraqi Centre for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
- *Correspondence: Ahmed Majeed Al-Shammari,
| | - Khalisa K. Khudair
- Department of Physiology and Pharmacology, College of Veterinary Medicine/Baghdad University, Baghdad, Iraq
| |
Collapse
|
14
|
Huang F, Dai C, Zhang Y, Zhao Y, Wang Y, Ru G. Development of Molecular Mechanisms and Their Application on Oncolytic Newcastle Disease Virus in Cancer Therapy. Front Mol Biosci 2022; 9:889403. [PMID: 35860357 PMCID: PMC9289221 DOI: 10.3389/fmolb.2022.889403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is caused by the destruction or mutation of cellular genetic materials induced by environmental or genetic factors. It is defined by uncontrolled cell proliferation and abnormality of the apoptotic pathways. The majority of human malignancies are characterized by distant metastasis and dissemination. Currently, the most common means of cancer treatment include surgery, radiotherapy, and chemotherapy, which usually damage healthy cells and cause toxicity in patients. Targeted therapy is an effective tumor treatment method with few side effects. At present, some targeted therapeutic drugs have achieved encouraging results in clinical studies, but finding an effective solution to improve the targeting and delivery efficiency of these drugs remains a challenge. In recent years, oncolytic viruses (OVs) have been used to direct the tumor-targeted therapy or immunotherapy. Newcastle disease virus (NDV) is a solid oncolytic agent capable of directly killing tumor cells and increasing tumor antigen exposure. Simultaneously, NDV can trigger the proliferation of tumor-specific immune cells and thus improve the therapeutic efficacy of NDV in cancer. Based on NDV’s inherent oncolytic activity and the stimulation of antitumor immune responses, the combination of NDV and other tumor therapy approaches can improve the antitumor efficacy while reducing drug toxicity, indicating a broad application potential. We discussed the biological properties of NDV, the antitumor molecular mechanisms of oncolytic NDV, and its application in the field of tumor therapy in this review. Furthermore, we presented new insights into the challenges that NDV will confront and suggestions for increasing NDV’s therapeutic efficacy in cancer.
Collapse
Affiliation(s)
- Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chuanjing Dai
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Youni Zhang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
| | - Yuqi Zhao
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| |
Collapse
|
15
|
Wang S, Wei J. Distinguishing the Pros and Cons of Metabolic Reprogramming in Oncolytic Virus Immunotherapy. Int J Cancer 2022; 151:1654-1662. [PMID: 35633046 DOI: 10.1002/ijc.34139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022]
Abstract
Oncolytic viruses (OVs) represent a class of cancer immunotherapies that rely on hijacking the host cell factory for replicative oncolysis and eliciting immune responses for tumor clearance. An increasing evidence suggests that the metabolic state of tumor cells and immune cells is a putative determinant of the efficacy of cancer immunotherapy. However, how therapeutic intervention with OVs affects metabolic fluxes within the tumor microenvironment (TME) remains poorly understood. Herein, we review the complexities of metabolic reprogramming involving the effects of viruses and their consequences on tumor cells and immune cells. We highlight the inherent drawback of oncolytic virotherapy, namely that treatment with OVs inevitably further exacerbates the depletion of nutrients and the accumulation of metabolic wastes in the TME, leading to a metabolic barrier to antitumor immune responses. We also describe targeted metabolic strategies that can be used to unlock the therapeutic potential of OVs.
Collapse
Affiliation(s)
- Shiqun Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
16
|
Hellemann E, Walker JL, Lesko MA, Chandrashekarappa DG, Schmidt MC, O’Donnell AF, Durrant JD. Novel mutation in hexokinase 2 confers resistance to 2-deoxyglucose by altering protein dynamics. PLoS Comput Biol 2022; 18:e1009929. [PMID: 35235554 PMCID: PMC8920189 DOI: 10.1371/journal.pcbi.1009929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/14/2022] [Accepted: 02/16/2022] [Indexed: 01/16/2023] Open
Abstract
Glucose is central to many biological processes, serving as an energy source and a building block for biosynthesis. After glucose enters the cell, hexokinases convert it to glucose-6-phosphate (Glc-6P) for use in anaerobic fermentation, aerobic oxidative phosphorylation, and the pentose-phosphate pathway. We here describe a genetic screen in Saccharomyces cerevisiae that generated a novel spontaneous mutation in hexokinase-2, hxk2G238V, that confers resistance to the toxic glucose analog 2-deoxyglucose (2DG). Wild-type hexokinases convert 2DG to 2-deoxyglucose-6-phosphate (2DG-6P), but 2DG-6P cannot support downstream glycolysis, resulting in a cellular starvation-like response. Curiously, though the hxk2G238V mutation encodes a loss-of-function allele, the affected amino acid does not interact directly with bound glucose, 2DG, or ATP. Molecular dynamics simulations suggest that Hxk2G238V impedes sugar binding by altering the protein dynamics of the glucose-binding cleft, as well as the large-scale domain-closure motions required for catalysis. These findings shed new light on Hxk2 dynamics and highlight how allosteric changes can influence catalysis, providing new structural insights into this critical regulator of carbohydrate metabolism. Given that hexokinases are upregulated in some cancers and that 2DG and its derivatives have been studied in anti-cancer trials, the present work also provides insights that may apply to cancer biology and drug resistance. Glucose fuels many of the energy-production processes required for normal cell growth. Before glucose can participate in these processes, it must first be chemically modified by proteins called hexokinases. To better understand how hexokinases modify glucose—and how mutations in hexokinase genes might confer drug resistance—we evolved resistance in yeast to a toxic hexokinase-binding molecule called 2DG. We discovered a mutation in the hexokinase gene that confers 2DG resistance and reduces the protein’s ability to modify glucose. Biochemical analyses and computer simulations of the hexokinase protein suggest that the mutation diminishes glucose binding by altering enzyme flexibility. This work shows how cells can evolve resistance to toxins via only modest changes to protein structures. Furthermore, because cancer-cell hexokinases are particularly active, 2DG has been studied as cancer chemotherapy. Thus, the insights this work provides might also apply to cancer biology.
Collapse
Affiliation(s)
- Erich Hellemann
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer L. Walker
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mitchell A. Lesko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dakshayini G. Chandrashekarappa
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Martin C. Schmidt
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (AFO); (JDD)
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (AFO); (JDD)
| |
Collapse
|
17
|
Alrawi N. A review on breast cancer in Iraq and future therapies insights. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2022. [DOI: 10.47419/bjbabs.v3i01.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most common diseases around the world and the second leading cause of death after cardiovascular disease. Breast cancer is the most prevalent cancer type among Iraqi women, as it represents the highest percentage of malignant tumors in women until 2018. Therefore, women should be aware of the aggravation of this disease, the importance of the periodic examination for early detection for breast cancer, and following the most appropriate means for the treatment to get recovered and, thus, to reduce mortality. To fight cancer, there is an urgent need to search for new effective anticancer therapies that alter the molecular biology of tumor cells, stimulate the immune system, or specifically deliver chemotherapy factors directly to cancer cells without affecting normal cells and reducing the side effects of treatments. In this context, this paper aimed to highlight the therapeutic approaches used in the current researches of breast cancer treatment. Accumulated evidence showed that medicinal plant extracts, and can serve as anticancer agents. The proposed mechanisms were discussed and presented in this review.
Collapse
|
18
|
Glucose deprivation using 2-deoxyglucose and acarbose induce metabolic oxidative stress and apoptosis in female mice bearing breast cancer. Biochimie 2022; 195:59-66. [DOI: 10.1016/j.biochi.2022.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
|
19
|
Wang X, Wang Z, Huang R, Lu Z, Chen X, Huang D. UPP1 Promotes Lung Adenocarcinoma Progression through Epigenetic Regulation of Glycolysis. Aging Dis 2022; 13:1488-1503. [PMID: 36186123 PMCID: PMC9466982 DOI: 10.14336/ad.2022.0218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/18/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Xuan Wang
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
- Correspondence should be addressed to: Dr. Dayu Huang (), Dr. Xiaofeng Chen (); Dr. Xuan Wang ().Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhouyi Lu
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
| | - Xiaofeng Chen
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
- Correspondence should be addressed to: Dr. Dayu Huang (), Dr. Xiaofeng Chen (); Dr. Xuan Wang ().Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Dayu Huang
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
- Correspondence should be addressed to: Dr. Dayu Huang (), Dr. Xiaofeng Chen (); Dr. Xuan Wang ().Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
20
|
Al-Shammari AM, Al-Mudhafr MA, Chalap Al- Grawi ED, Al-Hili ZA, Yaseen N. Newcastle disease virus suppresses angiogenesis in mammary adenocarcinoma models. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2020-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cancer cells heavily utilise angiogenesis process to increase vascularisation for tumour mass growth and spread, so targeting this process is important to create an effective therapy. The AMHA1 strain of Newcastle disease virus (NDV) is an RNA virus with natural oncotropism. NDV induces direct tumour cytolysis, apoptosis, and immune stimulation. This work aimed to test NDV anti-angiogenic activity in a breast cancer model. To evaluate NDV’s antitumour effect in vivo, NDV was tested against mammary adenocarcinoma AN3 transplanted in syngeneic immunocompetent mice. In vivo antiangiogenic activity was evaluated by quantifying the blood vessels in treated and control tumour sections. In vitro experiments that exposed AMN3 mammary adenocarcinoma cells and Hep-2 laryngeal carcinoma cells to NDV at different time intervals were performed to identify the exact mechanism of anti-angiogenesis by using angiogenesis microarray slides. In vivo results showed significant tumour regression and significant decrease in blood vessel formation in treated tumour sections. The in vitro microarray analysis of 14 different angiogenesis factors revealed that NDV downregulated angiopoietin-1, angiopoietin-2, and epidermal growth factor in mammary adenocarcinoma cells. However, NDV elicited a different effect on Hep-2 as represented by the downregulation of inducible protein 10, intracellular adhesion molecule-1, and basic fibroblast growth factor beta in NDV-infected tumour cells. It was found out that microarray analysis results helped interpret the in vivo data. The results suggested that the NDV oncolytic strain reduced angiogenesis by interfering with angiogenesis factors that might reduce tumour cell proliferation, infiltration, and invasion.
Collapse
Affiliation(s)
- A. M. Al-Shammari
- University of Mustansiriyah, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| | - M. A. Al-Mudhafr
- University of Kufa, Faculty of Veterinary Medicine, Department of Microbiology
| | | | - Z. A. Al-Hili
- University of Mustansiriyah, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| | - N. Yaseen
- University of Mustansiriyah, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| |
Collapse
|
21
|
Obaid QA, Khudair KK, Al-Shammari AM. 2-Deoxyglucose Glycolysis Inhibitor Augment Oncolytic Virotherapy to Induce Oxidative Stress and Apoptosis in Breast Cancer (Part Ⅲ). THE IRAQI JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.30539/ijvm.v45i2.1257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
One of the "hallmarks of cancer" is altered energy metabolism, which is increased glycolysis in cancer cells, the primary source of energy that uses this metabolic pathway to generate ATP. Oncolytic virotherapy with aerobic glycolysis inhibitor smart therapeutic approach to induce apoptosis in cancer cells. The current study aimed to use the 2-Deoxyglucose (2DG), a specific glycolysis inhibitor, to enhance the Newcastle disease virus (NDV). In this study, a mouse model of breast cancer allograft with mammary adenocarcinoma tumor cells (AN3) was used and treated with 2DG, NDV, and a combination of both. Anti-tumor efficacy and glycolysis analysis (hexokinase -1 (HK-1), pyruvate, and ATP) were determined. The induction of oxidative stress was investigated by reactive oxygen species (ROS) and total glutathione assay examination. Apoptosis induction was investigated using immunohistochemistry (cleaved Caspase-3) and histopathology. The result showed that combination therapy enhances anti-tumor efficacy (decrease in relative tumor volume and increase in tumor growth inhibition) of NDV against breast cancer. This effect was accompanied by a reduction in HK-1 concentration, pyruvate, and ATP (glycolysis products). Moreover, NDV+2DG therapy induces oxidative stress (decreases total glutathione and increases ROS). Immunohistochemistry and histopathological examination showed the apoptotic area in tumor tissues in treated groups. In conclusion, the present study found that the combination therapy could be considered as an effective cancer therapy through induction of glycolysis inhibition, oxidative stress, and apoptosis selectively in cancer cells.
Collapse
|
22
|
Oncolytic viruses: A novel treatment strategy for breast cancer. Genes Dis 2021; 10:430-446. [DOI: 10.1016/j.gendis.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
|
23
|
Coronel-Hernández J, Pérez-Yépez EA, Delgado-Waldo I, Contreras-Romero C, Jacobo-Herrera N, Cantú-De León D, Pérez-Plasencia C. Aberrant Metabolism as Inductor of Epigenetic Changes in Breast Cancer: Therapeutic Opportunities. Front Oncol 2021; 11:676562. [PMID: 34692471 PMCID: PMC8531643 DOI: 10.3389/fonc.2021.676562] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Aberrant metabolism is arising interest in the scientific community not only because of the role it plays in the development and establishment of the tumor mass but also the possibility of drug poisoning of key enzymes overexpressed in tumor cells. Moreover, tumor metabolism provides key molecules to maintain the epigenetic changes that are also an undisputed characteristic of each tumor type. This metabolic change includes the Warburg effect and alterations in key pathways involved in glutaminolysis, pentose phosphate, and unsaturated fatty acid biosynthesis. Modifications in all these pathways have consequences that impact genetics and epigenetics processes such as DNA methylation patterns, histone post-translational modifications, triggering oncogenes activation, and loss in tumor suppressor gene expression to lead the tumor establishment. In this review, we describe the metabolic rearrangement and its association with epigenetic regulation in breast cancer, as well as its implication in biological processes involved in cancer progression. A better understanding of these processes could help to find new targets for the diagnosis, prognosis, and treatment of this human health problem.
Collapse
Affiliation(s)
| | - Eloy Andrés Pérez-Yépez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico.,Cátedra-CONACYT, Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico
| | | | | | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - David Cantú-De León
- Unidad de Investigación en Cáncer, Instituto Nacional de Cancerología , Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico.,Laboratorio de Genómica Funcional, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
24
|
Geng HW, Yin FY, Zhang ZF, Gong X, Yang Y. Butyrate Suppresses Glucose Metabolism of Colorectal Cancer Cells via GPR109a-AKT Signaling Pathway and Enhances Chemotherapy. Front Mol Biosci 2021; 8:634874. [PMID: 33855046 PMCID: PMC8039130 DOI: 10.3389/fmolb.2021.634874] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
Glycolysis inhibitors are promising therapeutic drugs for tumor treatment, which target the uniquely elevated glucose metabolism of cancer cells. Butyrate is a critical product of beneficial microbes in the colon, which exerts extraordinary anti-cancer activities. In particular, butyrate shows biased inhibitory effects on the cell growth of cancerous colonocytes, whereas it is the major energy source for normal colonocytes. Besides its roles as the histone deacetylases (HDACs) inhibitor and the ligand for G-protein coupled receptor (GPR) 109a, the influence of butyrate on the glucose metabolism of cancerous colonocytes and the underlying molecular mechanism are not fully understood. Here, we show that butyrate markedly inhibited glucose transport and glycolysis of colorectal cancer cells, through reducing the abundance of membrane GLUT1 and cytoplasmic G6PD, which was regulated by the GPR109a-AKT signaling pathway. Moreover, butyrate significantly promoted the chemotherapeutical efficacy of 5-fluorouracil (5-FU) on cancerous colonocytes, with exacerbated impairment of DNA synthesis efficiency. Our findings provide useful information to better understand the molecular basis for the impact of butyrate on the glucose metabolism of colorectal cancer cells, which would promote the development of beneficial metabolites of gut microbiota as therapeutical or adjuvant anti-cancer drugs.
Collapse
Affiliation(s)
- Hong-Wei Geng
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Feng-Yi Yin
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhi-Fa Zhang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xu Gong
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yun Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
25
|
Martini V, D'Avanzo F, Maggiora PM, Varughese FM, Sica A, Gennari A. Oncolytic virotherapy: new weapon for breast cancer treatment. Ecancermedicalscience 2020; 14:1149. [PMID: 33574894 PMCID: PMC7864690 DOI: 10.3332/ecancer.2020.1149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The recent introduction of viruses as a weapon against cancer can be regarded as one of the most intriguing approaches in the context of precision medicine. The role of immune checkpoint inhibitors has been extensively studied in early and advanced cancer stages, with extraordinary results. Although there is a good tolerability profile, especially when compared with conventional chemotherapy, severe immune-related adverse events have emerged as a potential limitation. Moreover, there are still treatment-resistant cases and thus further treatment options need to be implemented. Several in vitro and in vivo studies have been conducted and are ongoing to develop oncolytic viruses (OVs) as a tool to modulate the immune system response. OVs are attenuated viruses that can kill cancer cells after having infected them, producing microenvironment remodelling and antitumour immune response. The potential of oncolytic virotherapy is to contrast the absence of T cell infiltrates, converting ‘cold’ tumours into ‘hot’ ones, thus improving the performance of the immune system. Breast cancer, the second most common cause of cancer-related deaths among women, is considered a ‘cold’ tumour. In this context, oncolytic virotherapy might well be considered as a promising strategy. This review summarises the current status, clinical applications and future development of OVs, focusing on breast cancer treatment.
Collapse
Affiliation(s)
- Veronica Martini
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara 13100, Italy.,Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara 28100, Italy.,https://orcid.org/0000-0002-0887-4082
| | - Francesca D'Avanzo
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara 13100, Italy
| | - Paola Maria Maggiora
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara 13100, Italy
| | - Feba Maria Varughese
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara 13100, Italy.,Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara 28100, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A Avogadro 28100, Italy.,Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano (MI) 20089, Italy.,https://orcid.org/0000-0002-8342-7442
| | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara 13100, Italy.,Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara 28100, Italy.,https://orcid.org/0000-0002-0928-2281
| |
Collapse
|
26
|
Dyer A, Frost S, Fisher KD, Seymour LW. The role of cancer metabolism in defining the success of oncolytic viro-immunotherapy. Cytokine Growth Factor Rev 2020; 56:115-123. [PMID: 32921554 DOI: 10.1016/j.cytogfr.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022]
Abstract
Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic virotherapy is an exciting interdisciplinary field that provides insights into virology, oncology, and immunotherapy. Recent years have seen greater focus on rational design of cancer-selective viruses together with strategies to exploit their immunostimulatory capabilities, ultimately to develop powerful oncolytic cancer vaccines. However, despite great interest in the field, many important experiments are still conducted under optimum conditions in vitro, with many nutrients present in excess and with cellular stress kept to a minimum. Whilst this provides a convenient platform for cell culture, it bears little relation to the typical conditions found within a tumour in vivo, where cells are often subject to a range of metabolic and environmental stresses. Viral infection and cancer will both lead to production of metabolites that are also not present in media in vitro. Understanding how oncolytic viruses interact with cells exposed to more representative metabolic conditions in vitro represents an under-explored area of study that could provide valuable insight into the intelligent design of superior oncolytic viruses and help bridge the gap between bench and bedside. This review summarises the major metabolic pathways altered in cancer cells, during viral infection and highlights possible targets for future studies.
Collapse
Affiliation(s)
- Arthur Dyer
- Department of Oncology, University of Oxford, Oxford, UK
| | - Sally Frost
- Department of Oncology, University of Oxford, Oxford, UK
| | - Kerry D Fisher
- Department of Oncology, University of Oxford, Oxford, UK
| | - Len W Seymour
- Department of Oncology, University of Oxford, Oxford, UK; Old Road Campus Research Building, Department of Oncology, University of Oxford, OX37DQ, UK.
| |
Collapse
|
27
|
Al-Ziaydi AG, Al-Shammari AM, Hamzah MI, kadhim HS, Jabir MS. Hexokinase inhibition using D-Mannoheptulose enhances oncolytic newcastle disease virus-mediated killing of breast cancer cells. Cancer Cell Int 2020; 20:420. [DOI: https:/doi.org/10.1186/s12935-020-01514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/24/2020] [Indexed: 01/17/2025] Open
Abstract
Abstract
Background
Most cancer cells exhibit increased glycolysis and use this metabolic pathway cell growth and proliferation. Targeting cancer cells’ metabolism is a promising strategy in inhibiting cancer cell progression. We used D-Mannoheptulose, a specific hexokinase inhibitor, to inhibit glycolysis to enhance the Newcastle disease virus anti-tumor effect.
Methods
Human breast cancer cells were treated by NDV and/or hexokinase inhibitor. The study included cell viability, apoptosis, and study levels of hexokinase enzyme, pyruvate, ATP, and acidity. The combination index was measured to determine the synergism of NDV and hexokinase inhibitor.
Results
The results showed synergistic cytotoxicity against breast cancer cells by combination therapy but no cytotoxic effect against normal cells. The effect was accompanied by apoptotic cell death and hexokinase downregulation and inhibition to glycolysis products, pyruvate, ATP, and acidity.
Conclusions
The combination treatment showed safe significant tumor cell proliferation inhibition compared to monotherapies suggesting a novel strategy for anti-breast cancer therapy through glycolysis inhibition by hexokinase downregulation.
Collapse
|
28
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
29
|
Al-Ziaydi AG, Al-Shammari AM, Hamzah MI, Kadhim HS, Jabir MS. Newcastle disease virus suppress glycolysis pathway and induce breast cancer cells death. Virusdisease 2020; 31:341-348. [PMID: 32904847 PMCID: PMC7458979 DOI: 10.1007/s13337-020-00612-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Newcastle disease virus (NDV) can modulate cancer cell signaling pathway and induce apoptosis in cancer cells. Cancer cells increase their glycolysis rates to meet the energy demands for their survival and generate ATP as the primary energy source for cell growth and proliferation. Interfering the glycolysis pathway may be a valuable antitumor strategy. This study aimed to assess the effect of NDV on the glycolysis pathway in infected breast cancer cells. Oncolytic NDV attenuated AMHA1 strain was used in this study. AMJ13 and MCF7 breast cancer cell lines and a normal embryonic REF cell line were infected with NDV with different multiplicity of infections (moi) to determine the IC50 of NDV through MTT assay. Crystal violet staining was done to study the morphological changes. NDV apoptosis induction was assessed using AO/PI assay. NDV interference with the glycolysis pathway was examined through measuring hexokinase (HK) activity, pyruvate, and ATP concentrations, and pH levels in NDV infected and non-infected breast cancer cells and in normal embryonic cells. The results showed that NDV replicates efficiently in cancer cells and spare normal cells and induce morphological changes and apoptosis in breast cancer cells but not in normal cells. NDV infected cancer cells showed decreased in the HK activity, pyruvate and ATP concentrations, and acidity, which reflect a significant decrease in the glycolysis activity of the NDV infected tumor cells. No effects on the normal cells were observed. In conclusion, oncolytic NDV ability to reduce glycolysis pathway activity in cancer cells can be an exciting module to improve antitumor therapeutics.
Collapse
Affiliation(s)
- Ahmed Ghdhban Al-Ziaydi
- Department of Medical Chemistry, College of Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Ahmed Majeed Al-Shammari
- Department of Experimental Therapy, Iraqi Center of Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad, Iraq
| | | | - Haider Sabah Kadhim
- Department of Microbiology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Majid Sakhi Jabir
- Department of Applied Sciences, Technology University, Baghdad, Iraq
| |
Collapse
|
30
|
Al-Ziaydi AG, Al-Shammari AM, Hamzah MI, kadhim HS, Jabir MS. Hexokinase inhibition using D-Mannoheptulose enhances oncolytic newcastle disease virus-mediated killing of breast cancer cells. Cancer Cell Int 2020; 20:420. [PMID: 32874134 PMCID: PMC7456035 DOI: 10.1186/s12935-020-01514-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Most cancer cells exhibit increased glycolysis and use this metabolic pathway cell growth and proliferation. Targeting cancer cells' metabolism is a promising strategy in inhibiting cancer cell progression. We used D-Mannoheptulose, a specific hexokinase inhibitor, to inhibit glycolysis to enhance the Newcastle disease virus anti-tumor effect. METHODS Human breast cancer cells were treated by NDV and/or hexokinase inhibitor. The study included cell viability, apoptosis, and study levels of hexokinase enzyme, pyruvate, ATP, and acidity. The combination index was measured to determine the synergism of NDV and hexokinase inhibitor. RESULTS The results showed synergistic cytotoxicity against breast cancer cells by combination therapy but no cytotoxic effect against normal cells. The effect was accompanied by apoptotic cell death and hexokinase downregulation and inhibition to glycolysis products, pyruvate, ATP, and acidity. CONCLUSIONS The combination treatment showed safe significant tumor cell proliferation inhibition compared to monotherapies suggesting a novel strategy for anti-breast cancer therapy through glycolysis inhibition by hexokinase downregulation.
Collapse
Affiliation(s)
- Ahmed Ghdhban Al-Ziaydi
- Department of Medical Chemistry, College of Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Ahmed Majeed Al-Shammari
- Experimental Therapy, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad, Iraq
| | | | - Haider Sabah kadhim
- Department of Microbiology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Majid Sakhi Jabir
- Division of Biotechnology, Department of Applied Science, University of Technology, Baghdad, Iraq
| |
Collapse
|
31
|
Han X, Wei L, Wu B. PRMT5 Promotes Aerobic Glycolysis and Invasion of Breast Cancer Cells by Regulating the LXRα/NF-κBp65 Pathway. Onco Targets Ther 2020; 13:3347-3357. [PMID: 32368093 PMCID: PMC7183334 DOI: 10.2147/ott.s239730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Objective To explore the effects of protein arginine methyltransferase 5 (PRMT5) on the biological function of breast cancer cells (BCCs) by regulating the liver X receptor α (LXRα)/NF-κBp65 pathway. Methods A total of 80 patients with breast cancer (BC) admitted to our hospital were collected, and 80 breast cancer tissue specimens and 80 corresponding tumor-adjacent tissue specimens were sampled from them for analysis. The reverse transcription-polymerase chain reaction (RT-PCR) was employed to determine the expression of PRMT5 mRNA in the sampled tissues, and the Western blot to determine the expression of LXRα and NF-κBp65 proteins in the tissues and cells. The patients were followed up to analyze their 3-year survival rate. Stable and transient overexpression vectors and inhibition vectors were constructed and transfected into BCCs. The cell counting kit-8 (CCK8), transwell, and flow cytometry were adopted to analyze the proliferation, invasion, and apoptosis of transfected cells, on which the effects of PRMT5 on LXRα and NF-κBp65 proteins were analyzed. Results PRMT5 was highly expressed in BC patients, and LXRα was lowly expressed in them, which had a high diagnostic value. Patients with high expression of PRMT5 showed a poor prognosis, and the expression of PRMT5 was related to the tumor size, pathological stage, differentiation, and metastatic in BC patients. Overexpressed PRMT5 enhanced the cell proliferation, invasion, and glycolysis abilities, weakened apoptosis ability, further lowered expression of LXRα and increased expression of NF-κBp65, while inhibited PRMT5 caused opposite results in those aspects. Up-regulating the expression of LXRα suppressed the proliferation, invasion, and aerobic glycolysis of BCCs and promoted their apoptosis, while inhibiting it posed opposite effects. The rescue experiment revealed that down-regulating the expression of PRMT5 could counteract the promotion of down-regulation of LXRα on proliferation, invasion and glycolysis of BCCs, and the nude mouse tumorigenesis test revealed that PRMT5 induced tumor on nude mice by mediating LXRα/NF-κBp65. Conclusion Inhibition of the PRMT5 expression can accelerate apoptosis of BCCs and weaken their proliferation, invasion, and aerobic glycolysis through the LXRα/NF-κBp65 pathway.
Collapse
Affiliation(s)
- Xiao Han
- Oncology Ward 5, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, People's Republic of China
| | - Linlin Wei
- Medical Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, People's Republic of China
| | - Bin Wu
- Biobank, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, People's Republic of China
| |
Collapse
|
32
|
Al-Shammari AM, Hamad MA, Al-Mudhafar MA, Raad K, Ahmed A. Clinical, molecular and cytopathological characterization of a Newcastle disease virus from an outbreak in Baghdad, Iraq. Vet Med Sci 2020; 6:477-484. [PMID: 32233074 PMCID: PMC7397900 DOI: 10.1002/vms3.262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The frequent outbreaks of Newcastle disease virus (NDV) in Iraq pose a constant threat to commercial poultry, despite the introduction of routine vaccination programmes. Several factors, particularly stress factors and coinfections, might play a role in increasing NDV outbreaks in poultry species. OBJECTIVES The current study was aimed to characterize an NDV isolate from an outbreak in North Baghdad, Iraq. METHODS Clinical pathogenicity of the isolate was determined experimentally in chickens. In vitro studies included cytopathological examination, as well as molecular and phylogenetic analyses. RESULTS Based on the clinical studies and pathogenicity indices (mean death time and intracerebral and intravenous pathogenicity indices), the isolate was characterized as velogenic (highly virulent). Reverse transcriptase polymerase chain reaction targeting the partial fusion protein gene of the NDV genome confirmed the detection. Partial sequencing of the hypervariable region of the fusion gene identified the presence of an avirulent (lentogenic) fusion protein motif (GRQGRL). Phylogenetic analysis of the new isolate along with previously known regional isolates revealed that the new isolate was related to genotype II strains. Additionally, sequence analysis indicated a distinct genetic lineage of the new isolate, which was related to some of the lineages identified in previous outbreaks in the Middle East. CONCLUSION The current study offers essential information on the epidemiology, characteristics and diagnosis of NDV for disease control in Iraq. The isolate was found to belong to genotype II and possess an avirulent fusion protein motif.
Collapse
Affiliation(s)
- Ahmed M Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Mohammed A Hamad
- Biotechnology and Environmental Center, University of Fallujah, Al-Anbar, Iraq
| | - Murtadha A Al-Mudhafar
- Department of Microbiology, Faculty of Veterinary Medicine, University of Kufa, Najaf, Iraq
| | - Khansaa Raad
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Aeser Ahmed
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
33
|
Kennedy BE, Sadek M, Gujar SA. Targeted Metabolic Reprogramming to Improve the Efficacy of Oncolytic Virus Therapy. Mol Ther 2020; 28:1417-1421. [PMID: 32243836 DOI: 10.1016/j.ymthe.2020.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Oncolytic viruses (OVs) represent a promising new class of cancer therapeutics and cause antitumor effects by two major mechanisms: (1) directly killing cancer cells in a process known as oncolysis, or (2) initiating a powerful antitumor immune response. Interestingly, energy metabolism, within either cancer cells or immune cells, plays a pivotal role in defining the outcome of OV-mediated antitumor effects. Following therapeutic administration, OVs must hijack host cell metabolic pathways to acquire building blocks such as nucleotides, lipids, and amino acids for the process of replication that is necessary for oncolysis. Additionally, OV-stimulated antitumor immune responses are highly dependent on the metabolic state within the tumor microenvironment. Thus, metabolic reprogramming strategies bear the potential to enhance the efficacy of both OV-mediated oncolysis and antitumor immune responses.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Maryanne Sadek
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Shashi A Gujar
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Department of Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 1X5, Canada.
| |
Collapse
|
34
|
2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents. Int J Mol Sci 2019; 21:ijms21010234. [PMID: 31905745 PMCID: PMC6982256 DOI: 10.3390/ijms21010234] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/23/2022] Open
Abstract
The ability of 2-deoxy-d-glucose (2-DG) to interfere with d-glucose metabolism demonstrates that nutrient and energy deprivation is an efficient tool to suppress cancer cell growth and survival. Acting as a d-glucose mimic, 2-DG inhibits glycolysis due to formation and intracellular accumulation of 2-deoxy-d-glucose-6-phosphate (2-DG6P), inhibiting the function of hexokinase and glucose-6-phosphate isomerase, and inducing cell death. In addition to glycolysis inhibition, other molecular processes are also affected by 2-DG. Attempts to improve 2-DG’s drug-like properties, its role as a potential adjuvant for other chemotherapeutics, and novel 2-DG analogs as promising new anticancer agents are discussed in this review.
Collapse
|