1
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2025; 100:508-529. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
2
|
Han R, Qian Y, Zheng C. A novel small RNA regulates Locus of Enterocyte Effacement and site-specific colonization of enterohemorrhagic Escherichia coli O157:H7 in gut. Front Cell Infect Microbiol 2025; 14:1517328. [PMID: 39882344 PMCID: PMC11774850 DOI: 10.3389/fcimb.2024.1517328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a contagious foodborne pathogen that specifically colonizes the human large intestine, which is regulated by different environmental stimuli within the gut. Transcriptional regulation of EHEC virulence and infection has been extensively studied, while the posttranscriptional regulation of these processes by small RNAs (sRNAs) remains not fully understood. Here we present a virulence-regulating pathway in EHEC O157:H7, in which the sRNA EvrS binds to and destabilizes the mRNA of Z2269, a novel transcriptional regulator. In turn, Z2269 indirectly activates the expression of LEE (locus of enterocyte effacement) pathogenicity island through the master regulator Ler. Importantly, the expression of EvrS is modulated by environmental oxygen levels. EvrS also exhibits lower expression in the colon compared to the ileum, influencing the site-specific colonization of EHEC O157:H7 in mice. These results indicate that the oxygen status within the intestine may regulate the expression of EvrS, thereby modulating virulence factors of EHEC and contributing to successful infection in vivo. This study has broader implications for understanding sRNA functions in spatiotemporal virulence control of EHEC and may provide novel strategies to prevent EHEC infections.
Collapse
Affiliation(s)
- Runhua Han
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Ye Qian
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Chenguang Zheng
- College of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
3
|
Saha P, Mukherjee SK, Hossain ST. Regulation of TCA cycle genes by srbA sRNA: Impacts on Pseudomonas aeruginosa virulence and survival. Biochem Biophys Res Commun 2024; 737:150520. [PMID: 39128223 DOI: 10.1016/j.bbrc.2024.150520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Pseudomonas aeruginosa, an opportunistic bacterial pathogen of public health concern, is known for its metabolic versatility, adaptability in harsh environment, and pathogenic aggressiveness. P. aeruginosa relies on various regulatory networks modulated by small non-coding RNAs, which in turn influence different physiological traits such as metabolism, stress response, and pathogenesis. In this study, srbA sRNA has been shown to play a diverse role in regulating cellular metabolism and the production of different virulence factors in P. aeruginosa. srbA was found to control the TCA cycle, a key regulatory pathway for cellular metabolism and energy production, by regulating three main enzymes: citrate synthase (gltA), isocitrate dehydrogenase (icd), and α-ketoglutarate dehydrogenase E1 subunit (sucA) at both the transcriptional and translational levels. By modulating the TCA cycle, srbA could help the bacteria to adapt nutritional stress by lowering energy consumption. Additionally, srbA has been found to differentially regulate production of various virulence factors such as rhamnolipid, elastase, LasA protease, and pyocyanin under both nutrient-rich and nutrient-limiting conditions. It could also influence motilities in P. aeruginosa, linked to biofilm formation and pathogenicity. Thus, srbA might hold a promise in the research area for identifying virulence pathways and developing novel therapeutic targets to combat the global pathogenic threat of P. aeruginosa.
Collapse
Affiliation(s)
- Piyali Saha
- Department of Microbiology, University of Kalyani, Kalyani, 741235, India
| | | | | |
Collapse
|
4
|
Margutti P, D’Ambrosio A, Zamboni S. Microbiota-Derived Extracellular Vesicle as Emerging Actors in Host Interactions. Int J Mol Sci 2024; 25:8722. [PMID: 39201409 PMCID: PMC11354844 DOI: 10.3390/ijms25168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The human microbiota is an intricate micro-ecosystem comprising a diverse range of dynamic microbial populations mainly consisting of bacteria, whose interactions with hosts strongly affect several physiological and pathological processes. The gut microbiota is being increasingly recognized as a critical player in maintaining homeostasis, contributing to the main functions of the intestine and distal organs such as the brain. However, gut dysbiosis, characterized by composition and function alterations of microbiota with intestinal barrier dysfunction has been linked to the development and progression of several pathologies, including intestinal inflammatory diseases, systemic autoimmune diseases, such as rheumatic arthritis, and neurodegenerative diseases, such as Alzheimer's disease. Moreover, oral microbiota research has gained significant interest in recent years due to its potential impact on overall health. Emerging evidence on the role of microbiota-host interactions in health and disease has triggered a marked interest on the functional role of bacterial extracellular vesicles (BEVs) as mediators of inter-kingdom communication. Accumulating evidence reveals that BEVs mediate host interactions by transporting and delivering into host cells effector molecules that modulate host signaling pathways and cell processes, influencing health and disease. This review discusses the critical role of BEVs from the gut, lung, skin and oral cavity in the epithelium, immune system, and CNS interactions.
Collapse
Affiliation(s)
- Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.); (S.Z.)
| | | | | |
Collapse
|
5
|
Kotsira V, Skoufos G, Alexiou A, Zioga M, Tastsoglou S, Kardaras FS, Perdikopanis N, Elissavet Z, Gouzouasis V, Charitou T, Hatzigeorgiou AG. Agnodice: indexing experimentally supported bacterial sRNA-RNA interactions. mBio 2024; 15:e0301023. [PMID: 38319109 PMCID: PMC10936433 DOI: 10.1128/mbio.03010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
In the last decade, the immense growth in the field of bacterial small RNAs (sRNAs), along with the biotechnological breakthroughs in Deep Sequencing permitted the deeper understanding of sRNA-RNA interactions. However, microbiology is currently lacking a thoroughly curated collection of this rapidly expanding universe. We present Agnodice (https://dianalab.e-ce.uth.gr/agnodice), our effort to systematically catalog and annotate experimentally supported bacterial sRNA-RNA interactions. Agnodice, for the first time, incorporates thousands of bacterial sRNA-RNA interactions derived from a diverse set of experimental methodologies including state-of-the-art Deep Sequencing interactome identification techniques. It comprises 39,600 entries which are annotated at strain-level resolution and pertain to 399 sRNAs and 12,137 target RNAs identified in 71 bacterial strains. The database content is exclusively experimentally supported, incorporating interactions derived via low yield as well as state-of-the-art high-throughput methods. The entire content of the database is freely accessible and can be directly downloaded for further analysis. Agnodice will serve as a valuable source, enabling microbiologists to form novel hypotheses, design/identify novel sRNA-based drug targets, and explore the therapeutic potential of microbiomes from the perspective of small regulatory RNAs.IMPORTANCEAgnodice (https://dianalab.e-ce.uth.gr/agnodice) is an effort to systematically catalog and annotate experimentally supported bacterial small RNA (sRNA)-RNA interactions. Agnodice, for the first time, incorporates thousands of bacterial sRNA-RNA interactions derived from a diverse set of experimental methodologies including state-of-the-art Next Generation Sequencing interactome identification techniques.
Collapse
Affiliation(s)
- Vasiliki Kotsira
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Giorgos Skoufos
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Athanasios Alexiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Maria Zioga
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Filippos S. Kardaras
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Nikos Perdikopanis
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
| | - Zacharopoulou Elissavet
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Vasileios Gouzouasis
- Hellenic Pasteur Institute, Athens, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodosia Charitou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
6
|
Aina O, Bakare OO, Fadaka AO, Keyster M, Klein A. Plant biomarkers as early detection tools in stress management in food crops: a review. PLANTA 2024; 259:60. [PMID: 38311674 PMCID: PMC10838863 DOI: 10.1007/s00425-024-04333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/07/2024] [Indexed: 02/06/2024]
Abstract
MAIN CONCLUSION Plant Biomarkers are objective indicators of a plant's cellular state in response to abiotic and biotic stress factors. They can be explored in crop breeding and engineering to produce stress-tolerant crop species. Global food production safely and sustainably remains a top priority to feed the ever-growing human population, expected to reach 10 billion by 2050. However, abiotic and biotic stress factors negatively impact food production systems, causing between 70 and 100% reduction in crop yield. Understanding the plant stress responses is critical for developing novel crops that can adapt better to various adverse environmental conditions. Using plant biomarkers as measurable indicators of a plant's cellular response to external stimuli could serve as early warning signals to detect stresses before severe damage occurs. Plant biomarkers have received considerable attention in the last decade as pre-stress indicators for various economically important food crops. This review discusses some biomarkers associated with abiotic and biotic stress conditions and highlights their importance in developing stress-resilient crops. In addition, we highlighted some factors influencing the expression of biomarkers in crop plants under stress. The information presented in this review would educate plant researchers, breeders, and agronomists on the significance of plant biomarkers in stress biology research, which is essential for improving plant growth and yield toward sustainable food production.
Collapse
Affiliation(s)
- Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Olalekan O Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu, 121001, Nigeria
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Adewale O Fadaka
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa.
| |
Collapse
|
7
|
Ferrara S, Bertoni G. Genome-Scale Analysis of the Structure and Function of RNA Pathways and Networks in Pseudomonas aeruginosa. Methods Mol Biol 2024; 2721:183-195. [PMID: 37819523 DOI: 10.1007/978-1-0716-3473-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In recent years, several genome-wide approaches based on RNA sequencing (RNA-seq) have been developed. These methods allow a comprehensive and dynamic view of the structure and function of the multi-layered RNA pathways and networks. Many of these approaches, including the promising one of single-cell transcriptome analysis, have been successfully applied to Pseudomonas aeruginosa. However, we are only at the beginning because only a few surrounding conditions have been considered. Here, we aim to illustrate the different types of approaches based on RNA-seq that will lead us in the future to a better understanding of the dynamics of RNA biology in P. aeruginosa.
Collapse
Affiliation(s)
- Silvia Ferrara
- Department of Biosciences, Università degli Studi di Milano, Milan, Milano, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Milano, Italy.
| |
Collapse
|
8
|
Multifaceted Interplay between Hfq and the Small RNA GssA in Pseudomonas aeruginosa. mBio 2023; 14:e0241822. [PMID: 36475775 PMCID: PMC9973299 DOI: 10.1128/mbio.02418-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Behind the pathogenic lifestyle of Pseudomonas aeruginosa exists a complex regulatory network of intertwined switches at both the transcriptional and posttranscriptional levels. Major players that mediate translation regulation of several genes involved in host-P. aeruginosa interaction are small RNAs (sRNAs) and the Hfq protein. The canonical role of Hfq in sRNA-driven regulation is to act as a matchmaker between sRNAs and target mRNAs. Besides, the sRNA CrcZ is known to sequester Hfq and abrogate its function of translation repression of target mRNAs. In this study, we describe the novel sRNA GssA in the strain PA14 and its multifaceted interplay with Hfq. We show that GssA is multiresponsive to environmental and physiological signals and acts as an apical repressor of key bacterial functions in the human host such as the production of pyocyanin, utilization of glucose, and secretion of exotoxin A. We suggest that the main role of Hfq is not to directly assist GssA in its regulatory role but to repress GssA expression. In the case of pyocyanin production, we suggest that Hfq interplays with GssA also by converging a positive effect on this pathway. Furthermore, our results indicate that both Hfq and GssA play a positive role in anaerobic growth, possibly by regulating the respiratory chain. On the other hand, we show that GssA can modulate not only Hfq expression at both transcriptional and posttranscriptional levels but also that of CrcZ, thus potentially influencing the pleiotropic role of Hfq. IMPORTANCE The pathogenic lifestyle of the bacterium Pseudomonas aeruginosa, a leading cause of life-threatening infections in the airways of cystic fibrosis patients, is based on the fine regulation of virulence-associated factors. Regulatory small RNAs (sRNAs) and the RNA-binding protein Hfq are recognized key components within the P. aeruginosa regulatory networks involved in host-pathogen interaction. In this study, we characterized in the highly virulent P. aeruginosa strain PA14 the novel sRNA GssA. We found that it can establish a many-sided reciprocal interplay with Hfq which goes beyond the canonical mechanism of direct physical interaction that had previously been characterized for other sRNAs. Given that the Hfq-driven regulatory network of virulence factors is very broad and important for the progression of infection, we consider GssA as a new RNA target that can potentially be used to develop new antibacterial drugs.
Collapse
|
9
|
Chen KP, Hsu CL, Oyang YJ, Huang HC, Juan HF. BIC: a database for the transcriptional landscape of bacteria in cancer. Nucleic Acids Res 2023; 51:D1205-D1211. [PMID: 36263784 PMCID: PMC9825443 DOI: 10.1093/nar/gkac891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 01/30/2023] Open
Abstract
Microbial communities are massively resident in the human body, yet dysbiosis has been reported to correlate with many diseases, including various cancers. Most studies focus on the gut microbiome, while the bacteria that participate in tumor microenvironments on site remain unclear. Previous studies have acquired the bacteria expression profiles from RNA-seq, whole genome sequencing, and whole exon sequencing in The Cancer Genome Atlas (TCGA). However, small-RNA sequencing data were rarely used. Using TCGA miRNA sequencing data, we evaluated bacterial abundance in 32 types of cancer. To uncover the bacteria involved in cancer, we applied an analytical process to align unmapped human reads to bacterial references and developed the BIC database for the transcriptional landscape of bacteria in cancer. BIC provides cancer-associated bacterial information, including the relative abundance of bacteria, bacterial diversity, associations with clinical relevance, the co-expression network of bacteria and human genes, and their associated biological functions. These results can complement previously published databases. Users can easily download the result plots and tables, or download the bacterial abundance matrix for further analyses. In summary, BIC can provide information on cancer microenvironments related to microbial communities. BIC is available at: http://bic.jhlab.tw/.
Collapse
Affiliation(s)
- Kai-Pu Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yen-Jen Oyang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsueh-Fen Juan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
10
|
Freire de Melo F, Marques HS, Fellipe Bueno Lemos F, Silva Luz M, Rocha Pinheiro SL, de Carvalho LS, Souza CL, Oliveira MV. Role of nickel-regulated small RNA in modulation of Helicobacter pylori virulence factors. World J Clin Cases 2022; 10:11283-11291. [PMID: 36387830 PMCID: PMC9649571 DOI: 10.12998/wjcc.v10.i31.11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that infects about half of the world's population. H. pylori infection prevails by several mechanisms of adaptation of the bacteria and by its virulence factors including the cytotoxin associated antigen A (CagA). CagA is an oncoprotein that is the protagonist of gastric carcinogenesis associated with prolonged H. pylori infection. In this sense, small regulatory RNAs (sRNAs) are important macromolecules capable of inhibiting and activating gene expression. This function allows sRNAs to act in adjusting to unstable environmental conditions and in responding to cellular stresses in bacterial infections. Recent discoveries have shown that nickel-regulated small RNA (NikS) is a post-transcriptional regulator of virulence properties of H. pylori, including the oncoprotein CagA. Notably, high concentrations of nickel cause the reduction of NikS expression and consequently this increases the levels of CagA. In addition, NikS expression appears to be lower in clinical isolates from patients with gastric cancer when compared to patients without. With that in mind, this minireview approaches, in an accessible way, the most important and current aspects about the role of NikS in the control of virulence factors of H. pylori and the potential clinical repercussions of this modulation.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Brazil
| | - Fabian Fellipe Bueno Lemos
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Lorena Sousa de Carvalho
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Cláudio Lima Souza
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Márcio Vasconcelos Oliveira
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| |
Collapse
|
11
|
Regmi R, Penton CR, Anderson J, Gupta VVSR. Do small RNAs unlock the below ground microbiome-plant interaction mystery? Front Mol Biosci 2022; 9:1017392. [PMID: 36406267 PMCID: PMC9670543 DOI: 10.3389/fmolb.2022.1017392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2023] Open
Abstract
Over the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have received increasing attention in the context of host-microbe interactions due to their diverse roles in controlling various biological processes in eukaryotes. In addition, studies have identified an increasing number of sRNAs with novel functions across a wide range of bacteria. What is not well understood is why cells regulate gene expression through post-transcriptional mechanisms rather than at the initiation of transcription. The finding of a multitude of sRNAs and their identified associated targets has allowed further investigation into the role of sRNAs in mediating gene regulation. These foundational data allow for further development of hypotheses concerning how a precise control of gene activity is accomplished through the combination of transcriptional and post-transcriptional regulation. Recently, sRNAs have been reported to participate in interkingdom communication and signalling where sRNAs originating from one kingdom are able to target or control gene expression in another kingdom. For example, small RNAs of fungal pathogens that silence plant genes and vice-versa plant sRNAs that mediate bacterial gene expression. However, there is currently a lack of evidence regarding sRNA-based inter-kingdom signalling across more than two interacting organisms. A habitat that provides an excellent opportunity to investigate interconnectivity is the plant rhizosphere, a multifaceted ecosystem where plants and associated soil microbes are known to interact. In this paper, we discuss how the interconnectivity of bacteria, fungi, and plants within the rhizosphere may be mediated by bacterial sRNAs with a particular focus on disease suppressive and non-suppressive soils. We discuss the potential roles sRNAs may play in the below-ground world and identify potential areas of future research, particularly in reference to the regulation of plant immunity genes by bacterial and fungal communities in disease-suppressive and non-disease-suppressive soils.
Collapse
Affiliation(s)
- Roshan Regmi
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| | - C. Ryan Penton
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jonathan Anderson
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Canberra, SA, Australia
| | - Vadakattu V. S. R. Gupta
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| |
Collapse
|
12
|
Zhu Y, Fan Y, Cao X, Lu R, Chu S, Ding A. Regulation of Carbapenemase Gene Conjugation in Escherichia coli Clinical Isolates. Microb Drug Resist 2022; 28:551-558. [PMID: 35319308 DOI: 10.1089/mdr.2021.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The purpose of this study is to raise awareness of the hazards of carbapenemase epidemics and provide theoretical support for preventing the spread of carbapenemase-producing organisms. Methods: A total of 893 non-duplicate E. coil strains were recruited from three major local hospitals. The carbapenemase genotype of each imipenem-resistant strain was analyzed. Molecular typing and homology analysis of the main carbapenemase-producing strains reveal the transmission mode of resistance genes. Through the conjugation experiment, the potential spreading risk of carbapenemase genes was analyzed. Extended-spectrum beta-lactamase genes and replicon detection of the conjugant carrying plasmid were performed. The unannotated Escherichia coli bacterial small non-coding RNAs (sRNAs) interacting with sdiA were predicted through a bioinformatics tool. The sRNAs overexpression and knockout strains were constructed, and the effect of sRNA on conjugation was analyzed. Results: A total of 8 carbapenemase-producing strains were detected (0.90%, 8/893). The main carbapenemase genotype was blaKPC -2 (7 strains). Multilocus sequence typing indicated that 7 E. coli isolates belonged to ST-10, ST-101, ST-131, ST-405, ST-410, and ST-1193, ST-2562, respectively. Homologous cluster analysis revealed that the sequence types among the 7 E. coli were high diversity. The blaKPC -2 genes were successfully transferred from these isolates to EC600 by conjugation. All transconjugant cells exhibited significantly reduced susceptibility to the imipenem. IncFII was the most common conjugative plasmid type (85.7%, 6/7). Bioinformatics predicted the interaction between RydB and sdiA. Further experiments found that the interaction between RydB and sdiA improved the bacterial conjugation rate between MG1655 and EC600. The regulation effect of RydB on E. coli conjugation was not affected by the replicon type and/or harboring resistance coding genotype in conjugative plasmids. Conclusion: Our findings emphasized the epidemiological characteristics of carbapenemase-resistant E. coli. A functional phenotype of the new sRNA RydB was identified, and the regulation effect of RydB on E. coli conjugation was improved.
Collapse
Affiliation(s)
- Yihua Zhu
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Yuping Fan
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Xinjian Cao
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Renfei Lu
- Clinical Laboratory, The Third Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Shaopeng Chu
- Clinical Laboratory, Nantong University Affiliated Hospital, Nantong, Jiangsu, P.R. China
| | - Aimin Ding
- Department of Nursing, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
13
|
Orendain-Jaime EN, Serafín-Higuera N, Leija-Montoya AG, Martínez-Coronilla G, Moreno-Trujillo M, Sánchez-Muñoz F, Ruiz-Hernández A, González-Ramírez J. MicroRNAs Encoded by Virus and Small RNAs Encoded by Bacteria Associated with Oncogenic Processes. Processes (Basel) 2021; 9:2234. [DOI: 10.3390/pr9122234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Cancer is a deadly disease and, globally, represents the second leading cause of death in the world. Although it is a disease where several factors can help its development, virus induced infections have been associated with different types of neoplasms. However, in bacterial infections, their participation is not known for certain. Among the proposed approaches to oncogenesis risks in different infections are microRNAs (miRNAs). These are small molecules composed of RNA with a length of 22 nucleotides capable of regulating gene expression by directing protein complexes that suppress the untranslated region of mRNA. These miRNAs and other recently described, such as small RNAs (sRNAs), are deregulated in the development of cancer, becoming promising biomarkers. Thus, resulting in a study possibility, searching for new tools with diagnostic and therapeutic approaches to multiple oncological diseases, as miRNAs and sRNAs are main players of gene expression and host–infectious agent interaction. Moreover, sRNAs with limited complementarity are similar to eukaryotic miRNAs in their ability to modulate the activity and stability of multiple mRNAs. Here, we will describe the regulatory RNAs from viruses that have been associated with cancer and how sRNAs in bacteria can be related to this disease.
Collapse
Affiliation(s)
- Erika Nallely Orendain-Jaime
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico
| | - Nicolás Serafín-Higuera
- Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico
| | - Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico
| | - Gustavo Martínez-Coronilla
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico
| | - Misael Moreno-Trujillo
- Departamento de Cuidados Intensivos, Hospital de Gineco-Pediatría #31, Instituto Mexicano del Seguro Social, Av. Sebastián Lerdo de Tejada S/N, Col. Nueva, Mexicali 21100, BC, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología, Juan Badiano No. 1, Col. Sección XVI, Tlalpan 140080, DF, Mexico
| | - Armando Ruiz-Hernández
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico
| | - Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico
| |
Collapse
|
14
|
Xu Q, Chen H, Sun W, Zhang Y, Zhu D, Rai KR, Chen JL, Chen Y. sRNA23, a novel small RNA, regulates to the pathogenesis of Streptococcus suis serotype 2. Virulence 2021; 12:3045-3061. [PMID: 34882070 PMCID: PMC8667912 DOI: 10.1080/21505594.2021.2008177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
ABBREVIATION sRNA: small noncoding RNA; FBA: fructose diphosphate aldolase; rplB: 50S ribosomal protein L2; RACE: rapid amplification of cDNA ends; EMSA: electrophoretic mobility shift assay; THB: Todd-Hewitt broth; FBS: fetal bovine serum; BIP: 2,2'-Bipyridine.
Collapse
Affiliation(s)
- Quanming Xu
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Chen
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen Sun
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongyi Zhang
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dewen Zhu
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Chen
- Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Fujian- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Patel N, Nair M. The small RNA RsaF regulates the expression of secreted virulence factors in Staphylococcus aureus Newman. J Microbiol 2021; 59:920-930. [PMID: 34554453 DOI: 10.1007/s12275-021-1205-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022]
Abstract
The pathogenesis of Staphylococcus aureus, from local infections to systemic dissemination, is mediated by a battery of virulence factors that are regulated by intricate mechanisms, which include regulatory proteins and small RNAs (sRNAs) as key regulatory molecules. We have investigated the involvement of sRNA RsaF, in the regulation of pathogenicity genes hyaluronate lyase (hysA) and serine proteaselike protein D (splD), by employing S. aureus strains with disruption and overexpression of rsaF. Staphylococcus aureus strain with disruption of rsaF exhibited marked down-regulation of hysA transcripts by 0.2 to 0.0002 fold, and hyaluronate lyase activity by 0.2-0.1 fold, as well as increased biofilm formation, during growth from log phase to stationery phase. These mutants also displayed down-regulation of splD transcripts by 0.8 to 0.005 fold, and reduced activity of multiple proteases by zymography. Conversely, overexpression of rsaF resulted in a 2- to 4- fold increase in hysA mRNA levels and hyaluronidase activity. Both hysA and splD mRNAs demonstrated an increased stability in RsaF+ strains. In silico RNA-RNA interaction indicated a direct base pairing of RsaF with hysA and splD mRNAs, which was established in electrophoretic mobility shift assays. The findings demonstrate a positive regulatory role for small RNA RsaF in the expression of the virulence factors, HysA and SplD.
Collapse
Affiliation(s)
- Niralee Patel
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Mrinalini Nair
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
16
|
Pusic P, Sonnleitner E, Bläsi U. Specific and Global RNA Regulators in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:8632. [PMID: 34445336 PMCID: PMC8395346 DOI: 10.3390/ijms22168632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (Pae) is an opportunistic pathogen showing a high intrinsic resistance to a wide variety of antibiotics. It causes nosocomial infections that are particularly detrimental to immunocompromised individuals and to patients suffering from cystic fibrosis. We provide a snapshot on regulatory RNAs of Pae that impact on metabolism, pathogenicity and antibiotic susceptibility. Different experimental approaches such as in silico predictions, co-purification with the RNA chaperone Hfq as well as high-throughput RNA sequencing identified several hundreds of regulatory RNA candidates in Pae. Notwithstanding, using in vitro and in vivo assays, the function of only a few has been revealed. Here, we focus on well-characterized small base-pairing RNAs, regulating specific target genes as well as on larger protein-binding RNAs that sequester and thereby modulate the activity of translational repressors. As the latter impact large gene networks governing metabolism, acute or chronic infections, these protein-binding RNAs in conjunction with their cognate proteins are regarded as global post-transcriptional regulators.
Collapse
Affiliation(s)
- Petra Pusic
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
17
|
Legüe M, Aguila B, Calixto A. Interspecies RNA Interactome of Pathogen and Host in a Heritable Defensive Strategy. Front Microbiol 2021; 12:649858. [PMID: 34367078 PMCID: PMC8334366 DOI: 10.3389/fmicb.2021.649858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Communication with bacteria deeply impacts the life history traits of their hosts. Through specific molecules and metabolites, bacteria can promote short- and long-term phenotypic and behavioral changes in the nematode Caenorhabditis elegans. The chronic exposure of C. elegans to pathogens promotes the adaptive behavior in the host’s progeny called pathogen-induced diapause formation (PIDF). PIDF is a pathogen avoidance strategy induced in the second generation of animals infected and can be recalled transgenerationally. This behavior requires the RNA interference machinery and specific nematode and bacteria small RNAs (sRNAs). In this work, we assume that RNAs from both species co-exist and can interact with each other. Under this principle, we explore the potential interspecies RNA interactions during PIDF-triggering conditions, using transcriptomic data from the holobiont. We study two transcriptomics datasets: first, the dual sRNA expression of Pseudomonas aeruginosa PAO1 and C. elegans in a transgenerational paradigm for six generations and second, the simultaneous expression of sRNAs and mRNA in intergenerational PIDF. We focus on those bacterial sRNAs that are systematically overexpressed in the intestines of animals compared with sRNAs expressed in host-naïve bacteria. We selected diverse in silico methods that represent putative mechanisms of RNA-mediated interspecies interaction. These interactions are as follows: heterologous perfect and incomplete pairing between bacterial RNA and host mRNA; sRNAs of similar sequence expressed in both species that could mimic each other; and known or predicted eukaryotic motifs present in bacterial transcripts. We conclude that a broad spectrum of tools can be applied for the identification of potential sRNA and mRNA targets of the interspecies RNA interaction that can be subsequently tested experimentally.
Collapse
Affiliation(s)
- Marcela Legüe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Blanca Aguila
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile.,Programa de Doctorado en Microbiología, Universidad de Chile, Santiago, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
18
|
Sarpong DD, Murphy ER. RNA Regulated Toxin-Antitoxin Systems in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:661026. [PMID: 34084755 PMCID: PMC8167048 DOI: 10.3389/fcimb.2021.661026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
The dynamic host environment presents a significant hurdle that pathogenic bacteria must overcome to survive and cause diseases. Consequently, these organisms have evolved molecular mechanisms to facilitate adaptation to environmental changes within the infected host. Small RNAs (sRNAs) have been implicated as critical regulators of numerous pathways and systems in pathogenic bacteria, including that of bacterial Toxin-Antitoxin (TA) systems. TA systems are typically composed of two factors, a stable toxin, and a labile antitoxin which functions to protect against the potentially deleterious activity of the associated toxin. Of the six classes of bacterial TA systems characterized to date, the toxin component is always a protein. Type I and Type III TA systems are unique in that the antitoxin in these systems is an RNA molecule, whereas the antitoxin in all other TA systems is a protein. Though hotly debated, the involvement of TA systems in bacterial physiology is recognized by several studies, with the Type II TA system being the most extensively studied to date. This review focuses on RNA-regulated TA systems, highlighting the role of Type I and Type III TA systems in several pathogenic bacteria.
Collapse
Affiliation(s)
- David D. Sarpong
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Erin R. Murphy
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Heritage College of Osteopathic Medicine, Athens, OH, United States
| |
Collapse
|
19
|
Miller WB, Enguita FJ, Leitão AL. Non-Random Genome Editing and Natural Cellular Engineering in Cognition-Based Evolution. Cells 2021; 10:1125. [PMID: 34066959 PMCID: PMC8148535 DOI: 10.3390/cells10051125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Neo-Darwinism presumes that biological variation is a product of random genetic replication errors and natural selection. Cognition-Based Evolution (CBE) asserts a comprehensive alternative approach to phenotypic variation and the generation of biological novelty. In CBE, evolutionary variation is the product of natural cellular engineering that permits purposive genetic adjustments as cellular problem-solving. CBE upholds that the cornerstone of biology is the intelligent measuring cell. Since all biological information that is available to cells is ambiguous, multicellularity arises from the cellular requirement to maximize the validity of available environmental information. This is best accomplished through collective measurement purposed towards maintaining and optimizing individual cellular states of homeorhesis as dynamic flux that sustains cellular equipoise. The collective action of the multicellular measurement and assessment of information and its collaborative communication is natural cellular engineering. Its yield is linked cellular ecologies and mutualized niche constructions that comprise biofilms and holobionts. In this context, biological variation is the product of collective differential assessment of ambiguous environmental cues by networking intelligent cells. Such concerted action is enabled by non-random natural genomic editing in response to epigenetic impacts and environmental stresses. Random genetic activity can be either constrained or deployed as a 'harnessing of stochasticity'. Therefore, genes are cellular tools. Selection filters cellular solutions to environmental stresses to assure continuous cellular-organismal-environmental complementarity. Since all multicellular eukaryotes are holobionts as vast assemblages of participants of each of the three cellular domains (Prokaryota, Archaea, Eukaryota) and the virome, multicellular variation is necessarily a product of co-engineering among them.
Collapse
Affiliation(s)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
20
|
Parise D, Teixeira Dornelles Parise M, Pinto Gomide AC, Figueira Aburjaile F, Bentes Kato R, Salgado-Albarrán M, Tauch A, Ariston de Carvalho Azevedo V, Baumbach J. The Transcriptional Regulatory Network of Corynebacterium pseudotuberculosis. Microorganisms 2021; 9:microorganisms9020415. [PMID: 33671149 PMCID: PMC7923171 DOI: 10.3390/microorganisms9020415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, facultative intracellular, pathogenic bacterium that infects several different hosts, yielding serious economic losses in livestock farming. It causes several diseases including oedematous skin disease (OSD) in buffaloes, ulcerative lymphangitis (UL) in horses, and caseous lymphadenitis (CLA) in sheep, goats and humans. Despite its economic and medical-veterinary importance, our understanding concerning this organism’s transcriptional regulatory mechanisms is still limited. Here, we review the state of the art knowledge on transcriptional regulatory mechanisms of this pathogenic species, covering regulatory interactions mediated by two-component systems, transcription factors and sigma factors. Key transcriptional regulatory players involved in virulence and pathogenicity of C. pseudotuberculosis, such as the PhoPR system and DtxR, are in the focus of this review, as these regulators are promising targets for future vaccine design and drug development. We conclude that more experimental studies are needed to further understand the regulatory repertoire of this important zoonotic pathogen, and that regulators are promising targets for future vaccine design and drug development.
Collapse
Affiliation(s)
- Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
- Correspondence: or
| | - Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Anne Cybelle Pinto Gomide
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Marisol Salgado-Albarrán
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05348, Mexico
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
21
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
22
|
Huang MS, Hsu YL, Yeh IJ, Liu KT, Yen MC. The Expression Profile of mRNA and tRNA Genes in Splenocytes and Neutrophils after In Vivo Delivery of Antitumor Short Hairpin RNA of Indoleamine 2,3- Dioxygenase. Int J Mol Sci 2020; 21:ijms21186703. [PMID: 32933162 PMCID: PMC7555719 DOI: 10.3390/ijms21186703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
RNA-based therapeutics are considered as novel treatments for human diseases. Our previous study demonstrated that treatment with short-hairpin RNA against Ido1 (IDO shRNA) suppresses tumor growth, detects Th1-bias immune responses, and elevates expression of tryptophan transfer RNA (tRNATrp) in total splenocytes. In addition, depletion of Ly6g+ neutrophils attenuates the effect of IDO shRNA. The aim of this study was to investigate the regulatory network and the expression profile of tRNAs and other non-coding RNAs in IDO shRNA-treated spleens. The total splenocytes and magnetic bead-enriched splenic neutrophils were collected from the lung tumor bearing mice, which were treated with IDO shRNA or scramble IDO shRNA, and the collected cells were subsequently subjected to RNA sequencing. The gene ontology analysis revealed the different enrichment pathways in total splenocytes and splenic neutrophils. Furthermore, the expression of tRNA genes was identified and validated. Six isoacceptors of tRNA, with different expression patterns between total splenocytes and splenic neutrophils, were observed. In summary, our findings not only revealed novel biological processes in IDO shRNA-treated total splenocytes and splenic neutrophils, but the identified tRNAs and other non-coding RNAs may contribute to developing a novel biomarker gene set for evaluating the clinical efficiency of RNA-based cancer immunotherapies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Ontology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/administration & dosage
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Lung Neoplasms/genetics
- Mice
- Mice, Inbred C57BL
- Neutrophils/drug effects
- Neutrophils/physiology
- RNA, Messenger/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Transfer/genetics
- Spleen/drug effects
- Spleen/physiology
Collapse
Affiliation(s)
- Ming-Shyan Huang
- Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung 840, Taiwan;
- School of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (I.-J.Y.); (K.-T.L.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuan-Ting Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (I.-J.Y.); (K.-T.L.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (I.-J.Y.); (K.-T.L.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 2015)
| |
Collapse
|