1
|
Pavan MF, Bok M, Betanzos San Juan R, Malito JP, Marcoppido GA, Franco DR, Militelo DA, Schammas JM, Bari SE, Stone W, López K, Porier DL, Muller JA, Auguste AJ, Yuan L, Wigdorovitz A, Parreño VG, Ibañez LI. SARS-CoV-2 Specific Nanobodies Neutralize Different Variants of Concern and Reduce Virus Load in the Brain of h-ACE2 Transgenic Mice. Viruses 2024; 16:185. [PMID: 38399961 PMCID: PMC10892724 DOI: 10.3390/v16020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.
Collapse
Affiliation(s)
- María Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Rafael Betanzos San Juan
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina;
| | - Juan Pablo Malito
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Gisela Ariana Marcoppido
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (G.A.M.); (D.R.F.)
| | - Diego Rafael Franco
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (G.A.M.); (D.R.F.)
| | - Daniela Ayelen Militelo
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - Juan Manuel Schammas
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Sara Elizabeth Bari
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - William Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Krisangel López
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Danielle LaBrie Porier
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - John Anthony Muller
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Albert Jonathan Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Lijuan Yuan
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Andrés Wigdorovitz
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Viviana Gladys Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lorena Itat Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| |
Collapse
|
2
|
Esmat K, Jamil B, Kheder RK, Kombe Kombe AJ, Zeng W, Ma H, Jin T. Immunoglobulin A response to SARS-CoV-2 infection and immunity. Heliyon 2024; 10:e24031. [PMID: 38230244 PMCID: PMC10789627 DOI: 10.1016/j.heliyon.2024.e24031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
The novel coronavirus disease (COVID-19) and its infamous "Variants" of the etiological agent termed Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has proven to be a global health concern. The three antibodies, IgA, IgM, and IgG, perform their dedicated role as main workhorses of the host adaptive immune system in virus neutralization. Immunoglobulin-A (IgA), also known as "Mucosal Immunoglobulin", has been under keen interest throughout the viral infection cycle. Its importance lies because IgA is predominant mucosal antibody and SARS family viruses primarily infect the mucosal surfaces of human respiratory tract. Therefore, IgA can be considered a diagnostic and prognostic marker and an active infection biomarker for SARS CoV-2 infection. Along with molecular analyses, serological tests, including IgA detection tests, are gaining ground in application as an early detectable marker and as a minimally invasive detection strategy. In the current review, it was emphasized the role of IgA response in diagnosis, host defense strategies, treatment, and prevention of SARS-CoV-2 infection. The data analysis was performed through almost 100 published peer-reviewed research reports and comprehended the importance of IgA in antiviral immunity against SARS-CoV-2 and other related respiratory viruses. Taken together, it is concluded that secretory IgA- Abs can serve as a promising detection tool for respiratory viral diagnosis and treatment parallel to IgG-based therapeutics and diagnostics. Vaccine candidates that target and trigger mucosal immune response may also be employed in future dimensions of research against other respiratory viruses.
Collapse
Affiliation(s)
- Khaleqsefat Esmat
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Baban Jamil
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, KRG, Erbil, Iraq
| | - Ramiar Kaml Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Weihong Zeng
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Huan Ma
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
3
|
Liu M, Liang Z, Cheng ZJ, Liu L, Liu Q, Mai Y, Chen H, Lei B, Yu S, Chen H, Zheng P, Sun B. SARS-CoV-2 neutralising antibody therapies: Recent advances and future challenges. Rev Med Virol 2023; 33:e2464. [PMID: 37322826 DOI: 10.1002/rmv.2464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic represents an unparalleled global public health crisis. Despite concerted research endeavours, the repertoire of effective treatment options remains limited. However, neutralising-antibody-based therapies hold promise across an array of practices, encompassing the prophylaxis and management of acute infectious diseases. Presently, numerous investigations into COVID-19-neutralising antibodies are underway around the world, with some studies reaching clinical application stages. The advent of COVID-19-neutralising antibodies signifies the dawn of an innovative and promising strategy for treatment against SARS-CoV-2 variants. Comprehensively, our objective is to amalgamate contemporary understanding concerning antibodies targeting various regions, including receptor-binding domain (RBD), non-RBD, host cell targets, and cross-neutralising antibodies. Furthermore, we critically examine the prevailing scientific literature supporting neutralising antibody-based interventions, and also delve into the functional evaluation of antibodies, with a particular focus on in vitro (vivo) assays. Lastly, we identify and consider several pertinent challenges inherent to the realm of COVID-19-neutralising antibody-based treatments, offering insights into potential future directions for research and development.
Collapse
Affiliation(s)
- Mingtao Liu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiman Liang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Guangzhou Medical University, Guangzhou, China
| | - Qiwen Liu
- Guangzhou Medical University, Guangzhou, China
| | - Yiyin Mai
- Guangzhou Medical University, Guangzhou, China
| | | | - Baoying Lei
- Guangzhou Medical University, Guangzhou, China
| | - Shangwei Yu
- Guangzhou Medical University, Guangzhou, China
| | - Huihui Chen
- Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Liu M, Gan H, Liang Z, Liu L, Liu Q, Mai Y, Chen H, Lei B, Yu S, Chen H, Zheng P, Sun B. Review of therapeutic mechanisms and applications based on SARS-CoV-2 neutralizing antibodies. Front Microbiol 2023; 14:1122868. [PMID: 37007494 PMCID: PMC10060843 DOI: 10.3389/fmicb.2023.1122868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
COVID-19 pandemic is a global public health emergency. Despite extensive research, there are still few effective treatment options available today. Neutralizing-antibody-based treatments offer a broad range of applications, including the prevention and treatment of acute infectious diseases. Hundreds of SARS-CoV-2 neutralizing antibody studies are currently underway around the world, with some already in clinical applications. The development of SARS-CoV-2 neutralizing antibody opens up a new therapeutic option for COVID-19. We intend to review our current knowledge about antibodies targeting various regions (i.e., RBD regions, non-RBD regions, host cell targets, and cross-neutralizing antibodies), as well as the current scientific evidence for neutralizing-antibody-based treatments based on convalescent plasma therapy, intravenous immunoglobulin, monoclonal antibodies, and recombinant drugs. The functional evaluation of antibodies (i.e., in vitro or in vivo assays) is also discussed. Finally, some current issues in the field of neutralizing-antibody-based therapies are highlighted.
Collapse
Affiliation(s)
- Mingtao Liu
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Hui Gan
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhiman Liang
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Li Liu
- Guangzhou Medical University, Guangzhou, China
| | - Qiwen Liu
- Guangzhou Medical University, Guangzhou, China
| | - Yiyin Mai
- Guangzhou Medical University, Guangzhou, China
| | | | - Baoying Lei
- Guangzhou Medical University, Guangzhou, China
| | - Shangwei Yu
- Guangzhou Medical University, Guangzhou, China
| | - Huihui Chen
- Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Baoqing Sun
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| |
Collapse
|
5
|
Pavan MF, Bok M, Juan RBS, Malito JP, Marcoppido GA, Franco DR, Militello DA, Schammas JM, Bari S, Stone WB, López K, Porier DL, Muller J, Auguste AJ, Yuan L, Wigdorovitz A, Parreño V, Ibañez LI. Nanobodies against SARS-CoV-2 reduced virus load in the brain of challenged mice and neutralized Wuhan, Delta and Omicron Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532528. [PMID: 36993215 PMCID: PMC10054972 DOI: 10.1101/2023.03.14.532528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In this work, we developed llama-derived nanobodies (Nbs) directed to the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Nanobodies were selected after the biopanning of two VHH-libraries, one of which was generated after the immunization of a llama (lama glama) with the bovine coronavirus (BCoV) Mebus, and another with the full-length pre-fused locked S protein (S-2P) and the RBD from the SARS-CoV-2 Wuhan strain (WT). Most of the neutralizing Nbs selected with either RBD or S-2P from SARS-CoV-2 were directed to RBD and were able to block S-2P/ACE2 interaction. Three Nbs recognized the N-terminal domain (NTD) of the S-2P protein as measured by competition with biliverdin, while some non-neutralizing Nbs recognize epitopes in the S2 domain. One Nb from the BCoV immune library was directed to RBD but was non-neutralizing. Intranasal administration of Nbs induced protection ranging from 40% to 80% against COVID-19 death in k18-hACE2 mice challenged with the WT strain. Interestingly, protection was not only associated with a significant reduction of virus replication in nasal turbinates and lungs, but also with a reduction of virus load in the brain. Employing pseudovirus neutralization assays, we were able to identify Nbs with neutralizing capacity against the Alpha, Beta, Delta and Omicron variants. Furthermore, cocktails of different Nbs performed better than individual Nbs to neutralize two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest these Nbs can potentially be used as a cocktail for intranasal treatment to prevent or treat COVID-19 encephalitis, or modified for prophylactic administration to fight this disease.
Collapse
Affiliation(s)
- María Florencia Pavan
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Rafael Betanzos San Juan
- Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Juan Pablo Malito
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Gisela Ariana Marcoppido
- Instituto de Investigación Patobiología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA)
| | - Diego Rafael Franco
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA)
| | - Daniela Ayelen Militello
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| | - Juan Manuel Schammas
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Sara Bari
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| | - William B Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Krisangel López
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Danielle L Porier
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - John Muller
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Lijuan Yuan
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Andrés Wigdorovitz
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
| | - Viviana Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Lorena Itatí Ibañez
- CONICET Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)
| |
Collapse
|
6
|
de Almeida Oliveira A, Praia Borges Freire D, Rodrigues de Andrade A, de Miranda Marques A, da Silva Madeira L, Moreno Senna JP, Freitas Brasileiro da Silveira IA, de Castro Fialho B. The Landscape of Neutralizing Monoclonal Antibodies (nAbs) for Treatment and Prevention of COVID-19. J Pharm Innov 2023; 18:1-19. [PMID: 36843665 PMCID: PMC9943047 DOI: 10.1007/s12247-023-09713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Purpose After nearly 3 years of the COVID-19 pandemic, even though a vast body of knowledge and products (including vaccines and treatments) have been developed and disseminated, the virus is still evolving and new variants arising. Consequently, thousands of lives continue to be lost. Neutralizing monoclonal antibodies (nAbs) are promising drugs that emerged to treat SARS-CoV-2. In the uncertainty of the current situation, there is the question of whether organizations should continue to invest in this technology. To help decision-making in scientifical and pharmaceutical organizations, it is of major importance to monitor the development of products and technologies. Therefore, the aim of this study is analyze the landscape of nAbs for COVID-19. Methods The scenario of 473 biotherapeutics focusing on nAbs was evaluated using foresight techniques and a review of literature. Data were obtained from structured and semi-structured databases and processed for treatment, cleaning, consistency, validation, and enrichment. Results We identified 227 nAbs and performed an extensive literature review of 16 nAbs in late clinical development, including development technologies, responses to variants of concern (VOCs), manufacturing, and clinical aspects. Conclusions Even though the emergence of new VOCs is a threat to the effectiveness of this treatment, demanding constant genomic surveillance, the use of nAbs to treat and prevent COVID-19 will probably continue to be relevant due to excellent safety profiles and the possibility of immediate immunity transfer, especially in patients showing inadequate immunological response to vaccination. Therefore, we suggest that organizations should keep investing in improvements in this technology.
Collapse
Affiliation(s)
- Aline de Almeida Oliveira
- Immunobiological Technology Institute, Bio-Manguinhos/Fiocruz, Oswaldo Cruz Foundation, Avenida Brasil, 4.365, NAPA, Manguinhos, Rio de Janeiro, RJ 21040‑900 Brazil
| | - Diana Praia Borges Freire
- Immunobiological Technology Institute, Bio-Manguinhos/Fiocruz, Oswaldo Cruz Foundation, Avenida Brasil, 4.365, NAPA, Manguinhos, Rio de Janeiro, RJ 21040‑900 Brazil
| | - Ana Rodrigues de Andrade
- Immunobiological Technology Institute, Bio-Manguinhos/Fiocruz, Oswaldo Cruz Foundation, Avenida Brasil, 4.365, NAPA, Manguinhos, Rio de Janeiro, RJ 21040‑900 Brazil
| | - Amanda de Miranda Marques
- Immunobiological Technology Institute, Bio-Manguinhos/Fiocruz, Oswaldo Cruz Foundation, Avenida Brasil, 4.365, NAPA, Manguinhos, Rio de Janeiro, RJ 21040‑900 Brazil
| | - Luciana da Silva Madeira
- Immunobiological Technology Institute, Bio-Manguinhos/Fiocruz, Oswaldo Cruz Foundation, Avenida Brasil, 4.365, NAPA, Manguinhos, Rio de Janeiro, RJ 21040‑900 Brazil
| | - José Procópio Moreno Senna
- Immunobiological Technology Institute, Bio-Manguinhos/Fiocruz, Oswaldo Cruz Foundation, Avenida Brasil, 4.365, NAPA, Manguinhos, Rio de Janeiro, RJ 21040‑900 Brazil
| | - Ivna Alana Freitas Brasileiro da Silveira
- Immunobiological Technology Institute, Bio-Manguinhos/Fiocruz, Oswaldo Cruz Foundation, Avenida Brasil, 4.365, NAPA, Manguinhos, Rio de Janeiro, RJ 21040‑900 Brazil
| | - Beatriz de Castro Fialho
- Immunobiological Technology Institute, Bio-Manguinhos/Fiocruz, Oswaldo Cruz Foundation, Avenida Brasil, 4.365, NAPA, Manguinhos, Rio de Janeiro, RJ 21040‑900 Brazil
| |
Collapse
|
7
|
Kota KP, Ziółkowska NE, Wei J, Peng J, Ordonez D, Raney C, Prigge J, Hooper JW, Awasthi M, Goebel SJ, Zabel BA, Nasar F, Lederman S, Bavari S. Development of a rapid image-based high-content imaging screening assay to evaluate therapeutic antibodies against the monkeypox virus. Antiviral Res 2023; 210:105513. [PMID: 36592670 PMCID: PMC9803393 DOI: 10.1016/j.antiviral.2022.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Antibody-based therapy is emerging as a critical therapeutic countermeasure to treat acute viral infections by offering rapid protection against clinical disease. The advancements in structural biology made it feasible to rationalize monoclonal antibodies (mAbs) by identifying key and, possibly, neutralizing epitopes of viral proteins for therapeutic purposes. A critical component in assessing mAbs during pandemics requires the development of rapid but detailed methods to detect and quantitate the neutralization activity. In this study, we developed and optimized two high-content image (HCI)-based assays: one to detect viral proteins by staining and the second to quantify cytopathic viral effects by a label-free phenotypic assay. These assays were employed to screen for therapeutic antibodies against the monkeypox virus (MPXV) using surrogate poxviruses such as vaccinia virus (VACV). Plaque-based neutralization results confirmed the HCI data. The phenotypic assay found pox virus-induced syncytia formation in various cells, and we were able to quantitate and use this phenotype to screen mAbs. The HCI identified several potent VACV-neutralizing antibodies that showed in vitro efficacy against both clades of MPXV. In addition, a combination study of ST-246/tecovirimat/TPOXX a single neutralizing antibody Ab-40, showed synergistic activity against VACV in an in-vitro neutralization assay. This rapid high-content method utilizing state-of-the-art technologies enabled the evaluation of hundreds of mAbs quickly to identify several potent anti-MPXV neutralizing mAbs for further development.
Collapse
Affiliation(s)
| | | | - Jiayi Wei
- Tonix Pharmaceuticals Inc, Frederick, MD, USA
| | | | | | | | | | - Jay W. Hooper
- United States Army Medical Institute of Infectious Diseases, Frederick, MD, USA
| | | | | | | | | | | | - Sina Bavari
- Tonix Pharmaceuticals Inc, Frederick, MD, USA.
| |
Collapse
|
8
|
Wang Q, Ye S, Zhou Z, Song A, Zhu X, Peng J, Liang R, Yang C, Yu X, Huang X, Yu J, Qiu Y, Ge X. Key mutations in the spike protein of SARS-CoV-2 affecting neutralization resistance and viral internalization. J Med Virol 2023; 95:e28407. [PMID: 36519597 PMCID: PMC9877909 DOI: 10.1002/jmv.28407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
To control the ongoing COVID-19 pandemic, a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been developed. However, the rapid mutations of SARS-CoV-2 spike (S) protein may reduce the protective efficacy of the existing vaccines which is mainly determined by the level of neutralizing antibodies targeting S. In this study, we screened prevalent S mutations and constructed 124 pseudotyped lentiviral particles carrying these mutants. We challenged these pseudoviruses with sera vaccinated by Sinovac CoronaVac and ZF2001 vaccines, two popular vaccines designed for the initial strain of SARS-CoV-2, and then systematically assessed the susceptivity of these SARS-CoV-2 variants to the immune sera of vaccines. As a result, 14 S mutants (H146Y, V320I + S477N, V382L, K444R, L455F + S477N, L452M + F486L, F486L, Y508H, P521R, A626S, S477N + S698L, A701V, S477N + T778I, E1144Q) were found to be significantly resistant to neutralization, indicating reduced protective efficacy of the vaccines against these SARS-CoV-2 variants. In addition, F486L and Y508H significantly enhanced the utilization of human angiotensin-converting enzyme 2, suggesting a potentially elevated infectivity of these two mutants. In conclusion, our results show that some prevalent S mutations of SARS-CoV-2 reduced the protective efficacy of current vaccines and enhance the infectivity of the virus, indicating the necessity of vaccine renewal and providing direction for the development of new vaccines.
Collapse
Affiliation(s)
- Qiong Wang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina
| | - Sheng‐Bao Ye
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina
| | - Zhi‐Jian Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina
| | - A‐Ling Song
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina
| | - Xi Zhu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina
| | - Jia‐Mei Peng
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina
| | - Rui‐Min Liang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina
| | - Chen‐Hui Yang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina
| | - Xiao‐Wei Yu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina,Hunan Prevention and Treatment Institute for Occupational DiseasesChangshaHunanChina
| | - Xun Huang
- Department of Hospital Infection Control CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Jie Yu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina
| | - Xing‐Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of BiologyHunan UniversityChangshaHunanChina,Department of Hospital Infection Control CenterXiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
9
|
Kombe Kombe AJ, Jin T. Editorial: Host-microbe interaction in SARS-CoV-2 infection: mechanism and intervention. Front Immunol 2023; 14:1198868. [PMID: 37143671 PMCID: PMC10152881 DOI: 10.3389/fimmu.2023.1198868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Affiliation(s)
- Arnaud John Kombe Kombe
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, Chinese Academy of Sciences (C.A.S.) Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Healthy Processed Foods Research Unit, United State Department of Agriculture, Agriculture Research Service (USDA-ARS), Western Regional Research Center, Albany, CA, United States
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, Chinese Academy of Sciences (C.A.S.) Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, China
- *Correspondence: Tengchuan Jin,
| |
Collapse
|
10
|
Li J, Liang T, Hei A, Wang X, Li H, Yu X, Zhao R, Gao P, Fang C, Zhou J, Li M, He E, Skog S. Novel neutralizing chicken IgY antibodies targeting 17 potent conserved peptides identified by SARS-CoV-2 proteome microarray, and future prospects. Front Immunol 2022; 13:1074077. [PMID: 36618358 PMCID: PMC9815496 DOI: 10.3389/fimmu.2022.1074077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction An approach toward novel neutralizing IgY polyclonal antibodies (N-IgY-pAb) against SARS-CoV-2 S-ECD was developed. Material and methods The novel N-IgY-pAb and its intranasal spray response against the wild type ("'WH-Human 1") SARS-CoV-2 virus, variants of Delta or Omicron were up to 98%. Unique virus peptides binding to N-IgY-pAb were screened by a SARS-CoV-2 proteome microarray. Results Seventeen mutation-free peptides with a Z-score > 3.0 were identified as potent targets from a total of 966 peptides. The new findings show that one is in the RBM domain (461LKPFERDISTEIYQA475 ), two are in the NTD domain (21RTQLPPAYTNSFTRG35, 291CALDPLSETKCTLKS305) four are in the C1/2-terminal (561PFQQFGRDIADTTDA575,571DTTDAVRDPQTLEIL585,581TLEILDITPCSFGGV595, 661ECDIPIGAGICASYQ675 ), three are in the S1/S2 border (741YICGDSTECSNLLLQ755, 811KPSKRSFIEDLLFNK825, 821LLFNKVTLADAGFIK835) one target is in HR2 (1161SPDVDLGDISGINAS1175) and one is in HR2-TM (1201QELGKYEQYIKWPWY1215). Moreover, five potential peptides were in the NSP domain: nsp3-55 (1361SNEKQEILGTVSWNL1375), nsp14-50 (614HHANEYRLYLDAYNM642, ORF10-3 (21MNSRNYIAQVDVVNFNLT38, ORF7a-1(1MKIILFLALITLATC15) and ORF7a-12 (1116TLCFTLKRKTE121). Discussion and conclusion We concluded that the N-IgY-pAb could effectively neutralize the SARS-CoV-2. The new findings of seventeen potent conserved peptides are extremely important for developing new vaccines and "cocktails" of neutralizing Abs for efficient treatments for patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Jin Li
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Te Liang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Ailian Hei
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Xiangbin Wang
- SciProtech Co., Ltd, Beijing Changping Science Park, Beijing, China
| | - Huijun Li
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences-Beijing (PHOENIX Centre), Beijing Institute of LifeOmics, Beijing, China
| | - Rui Zhao
- SciProtech Co., Ltd, Beijing Changping Science Park, Beijing, China
| | - Peng Gao
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Cong Fang
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Ji Zhou
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Maogang Li
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Ellen He
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Sven Skog
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China,*Correspondence: Sven Skog,
| |
Collapse
|
11
|
Gupta D, Kumar M, Sharma P, Mohan T, Prakash A, Kumari R, Kaur P. Effect of Double Mutation (L452R and E484Q) on the Binding Affinity of Monoclonal Antibodies (mAbs) against the RBD-A Target for Vaccine Development. Vaccines (Basel) 2022; 11:23. [PMID: 36679867 PMCID: PMC9860914 DOI: 10.3390/vaccines11010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, emerges as a global health problem, as the viral genome is evolving rapidly to form several variants. Advancement and progress in the development of effective vaccines and neutralizing monoclonal antibodies are promising to combat viral infections. In the current scenario, several lineages containing "co-mutations" in the receptor-binding domain (RBD) region of the spike (S) protein are imposing new challenges. Co-occurrence of some co-mutations includes delta (L452R/T478K), kappa (L452R/E484Q), and a common mutation in both beta and gamma variants (E484K/N501Y). The effect of co-mutants (L452R/E484Q) on human angiotensin-converting enzyme 2 (hACE2) binding has already been elucidated. Here, for the first time, we investigated the role of these RBD co-mutations (L452R/E484Q) on the binding affinity of mAbs by adopting molecular dynamics (MD) simulation and free-energy binding estimation. The results obtained from our study suggest that the structural and dynamic changes introduced by these co-mutations reduce the binding affinity of the viral S protein to monoclonal antibodies (mAbs). The structural changes imposed by L452R create a charged patch near the interfacial surface that alters the affinity towards mAbs. In E484Q mutation, polar negatively charged E484 helps in the formation of electrostatic interaction, while the neutrally charged Q residue affects the interaction by forming repulsive forces. MD simulations along with molecular mechanics-generalized Born surface area (MMGBSA) studies revealed that the REGN 10933, BD-368-2, and S2M11 complexes have reduced binding affinity towards the double-mutant RBD. This indicates that their mutant (MT) structures have a stronger ability to escape from most antibodies than the wild type (WT). However, EY6A Ab showed higher affinity towards the double MT-RBD complex as compared to the WT. However, no significant effect of the per-residue contribution of double-mutated residues was observed, as this mAb does not interact with the region harboring L452 and E484 residues.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Priyanka Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
- Division of Bio-Medical Informatics, Indian Council of Medical Research, New Delhi 110029, India
| | - Trishala Mohan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Amresh Prakash
- Data Science Division, Amity Institute of Integrative Sciences and Health, Gurgaon 122412, India
| | - Renu Kumari
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| |
Collapse
|
12
|
Kombe Kombe AJ, Biteghe FAN, Ndoutoume ZN, Jin T. CD8 + T-cell immune escape by SARS-CoV-2 variants of concern. Front Immunol 2022; 13:962079. [PMID: 36389664 PMCID: PMC9647062 DOI: 10.3389/fimmu.2022.962079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/03/2022] [Indexed: 07/30/2023] Open
Abstract
Despite the efficacy of antiviral drug repositioning, convalescent plasma (CP), and the currently available vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the worldwide coronavirus disease 2019 (COVID-19) pandemic is still challenging because of the ongoing emergence of certain new SARS-CoV-2 strains known as variants of concern (VOCs). Mutations occurring within the viral genome, characterized by these new emerging VOCs, confer on them the ability to efficiently resist and escape natural and vaccine-induced humoral and cellular immune responses. Consequently, these VOCs have enhanced infectivity, increasing their stable spread in a given population with an important fatality rate. While the humoral immune escape process is well documented, the evasion mechanisms of VOCs from cellular immunity are not well elaborated. In this review, we discussed how SARS-CoV-2 VOCs adapt inside host cells and escape anti-COVID-19 cellular immunity, focusing on the effect of specific SARS-CoV-2 mutations in hampering the activation of CD8+ T-cell immunity.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Zélia Nelly Ndoutoume
- The Second Clinical School, Medical Imaging, Chongqing Medical University, Chongqing, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Structural Immunology, Chinese Academic of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Chinese Academic of Sciences (CAS) Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
13
|
Affiliation(s)
- Qingrui Huang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaonan Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
15
|
Abbasi F, Adatorwovor R, Davarpanah MA, Mansoori Y, Hajiani M, Azodi F, Sefidbakht S, Davoudi S, Rezaei F, Mohammadmoradi S, Asadipooya K. A Randomized Trial of Combination Therapy, Sitagliptin and Spironolactone, in Hospitalized Adult Patients with COVID-19. J Endocr Soc 2022; 6:bvac017. [PMID: 35261932 PMCID: PMC8898039 DOI: 10.1210/jendso/bvac017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Context COVID-19 may cause respiratory distress syndrome and death. Treatment of COVID-19 to prevent complications remains a priority. Objective Our investigation sought to determine whether combination of spironolactone and sitagliptin could reduce mortality for inpatients with SARS-CoV-2 infection. Methods This single-blind, 4-arm, prospective randomized clinical trial was conducted at Shiraz and Bushehr University of Medical Sciences hospitals between December 2020 and April 2021. We randomized hospitalized adult patients with COVID-19 pneumonia into 4 groups: control, combination therapy, sitagliptin add-on, or spironolactone add-on. The primary outcome was the clinical improvement of the patients in the hospital as measured on an 8-point numerical scale. The secondary outcomes included intubation, ICU admission, end organ damages, CT findings, and paraclinical information. Results A total of 263 admitted patients were randomly assigned to control group (87 patients), combination group (60 patients), sitagliptin group (66 patients), and spironolactone group (50 patients). There were no significant differences in baseline characteristics, except for higher age in control group. The intervention groups, especially combination therapy, had better clinical outcomes (clinical score on fifth day of admission: 3.11 ± 2.45 for controls, 1.33 ± 0.50 for combination, 1.68 ± 1.02 for sitagliptin, and 1.64 ± 0.81 for spironolactone; P = 0.004). However, the mortality rate was lower in patients who received spironolactone (21.84% control, 13.33% combination, 13.64% sitagliptin, 10.00% spironolactone; P = 0.275). Our intervention reduced lung infiltration but not the area of involvement in lungs. Conclusion Sitagliptin and spironolactone can potentially improve clinical outcomes of hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Farhad Abbasi
- Department of Infectious Diseases, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | | | - Farzan Azodi
- Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sepideh Sefidbakht
- Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Shayan Mohammadmoradi
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA. Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Kamyar Asadipooya
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, USA
| |
Collapse
|
16
|
Mengist HM, Kombe Kombe AJ, Mekonnen D, Abebaw A, Getachew M, Jin T. Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Semin Immunol 2021; 55:101533. [PMID: 34836774 PMCID: PMC8604694 DOI: 10.1016/j.smim.2021.101533] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/04/2023]
Abstract
Responsible for more than 4.9 million deaths so far, COVID-19, caused by SARS-CoV-2, is instigating devastating effects on the global health care system whose impacts could be longer for the years to come. Acquiring a comprehensive knowledge of host-virus interaction is critical for designing effective vaccines and/or drugs. Understanding the evolution of the virus and the impact of genetic variability on host immune evasion and vaccine efficacy is helpful to design novel strategies to minimize the effects of the emerging variants of concern (VOC). Most vaccines under development and/or in current use target the spike protein owning to its unique function of host receptor binding, relatively conserved nature, potent immunogenicity in inducing neutralizing antibodies, and being a good target of T cell responses. However, emerging SARS-CoV-2 strains are exhibiting variability on the spike protein which could affect the efficacy of vaccines and antibody-based therapies in addition to enhancing viral immune evasion mechanisms. Currently, the degree to which mutations on the spike protein affect immunity and vaccination, and the ability of the current vaccines to confer protection against the emerging variants attracts much attention. This review discusses the implications of SARS-CoV-2 spike protein mutations on immune evasion and vaccine-induced immunity and forward directions which could contribute to future studies focusing on designing effective vaccines and/or immunotherapies to consider viral evolution. Combining vaccines derived from different regions of the spike protein that boost both the humoral and cellular wings of adaptive immunity could be the best options to cope with the emerging VOC.
Collapse
Affiliation(s)
- Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Arnaud John Kombe Kombe
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Daniel Mekonnen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Abtie Abebaw
- Department of Medical Laboratory Science, College of Health Science, Debre Markos University, Debre Markos, 269, Ethiopia
| | - Melese Getachew
- Department of Clinical Pharmacy, College of Health Science, Debre Markos University, Debre Markos, 269, Ethiopia
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031, China.
| |
Collapse
|