1
|
Grassmann G, Di Rienzo L, Ruocco G, Miotto M, Milanetti E. Compact Assessment of Molecular Surface Complementarities Enhances Neural Network-Aided Prediction of Key Binding Residues. J Chem Inf Model 2025; 65:2695-2709. [PMID: 39982412 PMCID: PMC11898074 DOI: 10.1021/acs.jcim.4c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Predicting interactions between proteins is fundamental for understanding the mechanisms underlying cellular processes, since protein-protein complexes are crucial in physiological conditions but also in many diseases, for example by seeding aggregates formation. Despite the many advancements made so far, the performance of docking protocols is deeply dependent on their capability to identify binding regions. From this, the importance of developing low-cost and computationally efficient methods in this field. We present an integrated novel protocol mainly based on compact modeling of protein surface patches via sets of orthogonal polynomials to identify regions of high shape/electrostatic complementarity. By incorporating both hydrophilic and hydrophobic contributions, we define new binding matrices, which serve as effective inputs for training a neural network. In this work, we propose a new Neural Network (NN)-based architecture, Core Interacting Residues Network (CIRNet), which achieves a performance in terms of Area Under the Receiver Operating Characteristic Curve (ROC AUC) of approximately 0.87 in identifying pairs of core interacting residues on a balanced data set. In a blind search for core interacting residues, CIRNet distinguishes them from random decoys with an ROC AUC of 0.72. We test this protocol to enhance docking algorithms by filtering the proposed poses, addressing one of the still open problems in computational biology. Notably, when applied to the top ten models from three widely used docking servers, CIRNet improves docking outcomes, significantly reducing the average RMSD between the selected poses and the native state. Compared to another state-of-the-art tool for rescaling docking poses, CIRNet more efficiently identified the worst poses generated by the three docking servers under consideration and achieved superior rescaling performance in two cases.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, P.Le A. Moro 5, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
2
|
Lefebvre M, Chahinian H, La Scola B, Fantini J. Characterization and Fluctuations of an Ivermectin Binding Site at the Lipid Raft Interface of the N-Terminal Domain (NTD) of the Spike Protein of SARS-CoV-2 Variants. Viruses 2024; 16:1836. [PMID: 39772146 PMCID: PMC11680242 DOI: 10.3390/v16121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Most studies on the docking of ivermectin on the spike protein of SARS-CoV-2 concern the receptor binding domain (RBD) and, more precisely, the RBD interface recognized by the ACE2 receptor. The N-terminal domain (NTD), which controls the initial attachment of the virus to lipid raft gangliosides, has not received the attention it deserves. In this study, we combined molecular modeling and physicochemical approaches to analyze the mode of interaction of ivermectin with the interface of the NTD-facing lipid rafts of the host cell membrane. We characterize a binding area that presents point mutations and deletions in successive SARS-CoV-2 variants from the initial strain to omicron KP.3 circulating in many countries in 2024. We show that ivermectin has exceptional flexibility, allowing the drug to bind to the spike protein of all variants tested. The energy of interaction is specific to each variant, allowing a classification according to their affinity for ivermectin in the following ascending order: Omicron KP.3 < Delta < Omicron BA.5 < Alpha < Wuhan (B.1) < Omicron BA.1. The binding site of ivermectin is subject to important variations of the NTD, including the Y144 deletion. It overlaps with the ganglioside binding domain of the NTD, as demonstrated by docking and physicochemical studies. These results suggest a new mechanism of antiviral action for ivermectin based on competitive inhibition for initial virus attachment to lipid rafts. The current KP.3 variant is still recognized by ivermectin, although with an affinity slightly lower than the Wuhan strain.
Collapse
Affiliation(s)
- Marine Lefebvre
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (M.L.); (B.L.S.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
- Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France;
| | - Henri Chahinian
- Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France;
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (M.L.); (B.L.S.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Jacques Fantini
- Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France;
| |
Collapse
|
3
|
Ariza D, Castellar-Visbal L, Marquina M, Rivera-Porras D, Galbán N, Santeliz R, Gutiérrez-Rey M, Parra H, Vargas-Manotas J, Torres W, Quintana-Espinosa L, Manzano A, Cudris-Torres L, Bermúdez V. COVID-19: Unveiling the Neuropsychiatric Maze-From Acute to Long-Term Manifestations. Biomedicines 2024; 12:1147. [PMID: 38927354 PMCID: PMC11200893 DOI: 10.3390/biomedicines12061147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 virus has spread rapidly despite implementing strategies to reduce its transmission. The disease caused by this virus has been associated with a diverse range of symptoms, including common neurological manifestations such as dysgeusia, anosmia, and myalgias. Additionally, numerous cases of severe neurological complications associated with this disease have been reported, including encephalitis, stroke, seizures, and Guillain-Barré syndrome, among others. Given the high prevalence of neurological manifestations in this disease, the objective of this review is to analyze the mechanisms by which this virus can affect the nervous system, from its direct invasion to aberrant activation of the immune system and other mechanisms involved in the symptoms, including neuropsychiatric manifestations, to gain a better understanding of the disease and thus facilitate the search for effective therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Ariza
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Lily Castellar-Visbal
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Maria Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Diego Rivera-Porras
- Universidad Simón Bolívar, Facultad de Ciencias Jurídicas y Sociales, Centro de Investigación en Estudios Fronterizos, Cúcuta 540001, Colombia;
| | - Nestor Galbán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Melissa Gutiérrez-Rey
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - José Vargas-Manotas
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Laura Quintana-Espinosa
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Lorena Cudris-Torres
- Departamento de Ciencias Sociales, Universidad de la Costa, Barranquilla 080001, Colombia;
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Barranquilla 080001, Colombia
| |
Collapse
|
4
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
5
|
Dey M, Sharma A, Dhanawat G, Gupta D, Harshan KH, Parveen N. Synergistic Binding of SARS-CoV-2 to ACE2 and Gangliosides in Native Lipid Membranes. ACS Infect Dis 2024; 10:907-916. [PMID: 38412250 DOI: 10.1021/acsinfecdis.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Viruses utilize cell surface glycans and plasma membrane receptors to attain an adequate attachment strength for initiating cellular entry. We show that SARS-CoV-2 particles bind to endogenous ACE2 receptors and added sialylated gangliosides in near-native membranes. This was explored using supported membrane bilayers (SMBs) that were formed using plasma membrane vesicles having endogenous ACE2 and GD1a gangliosides reconstituted in lipid vesicles. The virus binding rate to the SMBs is influenced by GD1a and inhibition of the ganglioside reduces the extent of virus binding to the membrane receptors. Using combinations of inhibition assays, we confirm that added GD1a in lipid membranes increases the availability of the endogenous ACE2 receptor and results in the synergistic binding of SARS-CoV-2 to the membrane receptors in SMBs.
Collapse
Affiliation(s)
- Manorama Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Garvita Dhanawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Krishnan H Harshan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
6
|
Ahsanuddin S, Jin R, Dhanda AK, Georges K, Baredes S, Eloy JA, Fang CH. Otolaryngologic Side Effects After COVID-19 Vaccination. Laryngoscope 2024; 134:1163-1168. [PMID: 37539984 DOI: 10.1002/lary.30923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES With widespread vaccination against COVID-19, concerns regarding side effects have been raised. We aim to assess the frequency of otolaryngologic adverse events (AEs) following COVID-19 vaccination as compared with other vaccines in a national database. STUDY DESIGN Retrospective analysis of national registry. METHODS The Food and Drug Administration's Vaccine Adverse Event Reporting System (VAERS) database was queried from December 2020 to May 2021 for all COVID-19 vaccination AEs. Complaints were categorized as otolaryngologic and sub stratified into different anatomic components. Reporting odds ratios (ROR) and proportional reporting ratios (PRR) were determined for AEs of clinical significance. RESULTS The total number of AEs reported from vaccination with the Moderna, Pfizer-BioNTech, and Janssen vaccines equaled 1,280,950. Of these, 62,660 (4.9%) were otolaryngologic in nature, with 32.6% associated with the oropharynx/larynx, 18.3% with the nasal cavity/sinuses, 17.1% with the ears/vestibular system, 10.0% with the oral cavity, and 21.9% miscellaneous. Signal ratios reached significance levels for dysgeusia (n = 2124, PRR: 17.33, ROR: 16.36), ageusia (n = 1376, PRR: 2.81, ROR: 2.81), anosmia (n = 983, PRR: 4.01, ROR: 4.01), rhinorrhea (n = 2203, PRR: 2.99, ROR: 3.00), throat tightness (n = 3666, PRR: 4.99, ROR: 5.00), throat irritation (n = 3313, PRR: 4.51, ROR: 4.52), dysphagia (n = 2538, PRR: 2.07, ROR: 2.07), tinnitus (n = 4377, PRR: 3.97, ROR: 3.98), and vertigo (n = 2887, PRR: 3.93, ROR: 3.93). Signal ratios were not significant for facial paralysis, Bell's palsy, anaphylaxis, sinusitis, hearing disability, and ear pain. CONCLUSIONS Although several otolaryngologic symptoms were reported, few were found to be clinically significant. Of note, facial paralysis, Bell's palsy, and anaphylaxis did not meet signal thresholds to be determined significant. LEVEL OF EVIDENCE 4 Laryngoscope, 134:1163-1168, 2024.
Collapse
Affiliation(s)
- Salma Ahsanuddin
- Department of Otorhinolaryngology - Head and Neck Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Ryan Jin
- Department of Otolaryngology-Head & Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Aatin K Dhanda
- Department of Otolaryngology-Head & Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Kirolos Georges
- Department of Otolaryngology-Head & Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Soly Baredes
- Department of Otolaryngology-Head & Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jean Anderson Eloy
- Department of Otolaryngology-Head & Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Center for Skull Base and Pituitary Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Otolaryngology and Facial Plastic Surgery, Saint Barnabas Medical Center, RWJBarnabas Health, Livingston, New Jersey, USA
| | - Christina H Fang
- Department of Otorhinolaryngology - Head and Neck Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
7
|
Monti M, Milanetti E, Frans MT, Miotto M, Di Rienzo L, Baranov MV, Gosti G, Somavarapu AK, Nagaraj M, Golbek TW, Rossing E, Moons SJ, Boltje TJ, van den Bogaart G, Weidner T, Otzen DE, Tartaglia GG, Ruocco G, Roeters SJ. Two Receptor Binding Strategy of SARS-CoV-2 Is Mediated by Both the N-Terminal and Receptor-Binding Spike Domain. J Phys Chem B 2024; 128:451-464. [PMID: 38190651 PMCID: PMC10801686 DOI: 10.1021/acs.jpcb.3c06258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
It is not well understood why severe acute respiratory syndrome (SARS)-CoV-2 spreads much faster than other β-coronaviruses such as SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. In a previous publication, we predicted the binding of the N-terminal domain (NTD) of SARS-CoV-2 spike to sialic acids (SAs). Here, we experimentally validate this interaction and present simulations that reveal a second possible interaction between SAs and the spike protein via a binding site located in the receptor-binding domain (RBD). The predictions from molecular-dynamics simulations and the previously-published 2D-Zernike binding-site recognition approach were validated through flow-induced dispersion analysis (FIDA)─which reveals the capability of the SARS-CoV-2 spike to bind to SA-containing (glyco)lipid vesicles, and flow-cytometry measurements─which show that spike binding is strongly decreased upon inhibition of SA expression on the membranes of angiotensin converting enzyme-2 (ACE2)-expressing HEK cells. Our analyses reveal that the SA binding of the NTD and RBD strongly enhances the infection-inducing ACE2 binding. Altogether, our work provides in silico, in vitro, and cellular evidence that the SARS-CoV-2 virus utilizes a two-receptor (SA and ACE2) strategy. This allows the SARS-CoV-2 spike to use SA moieties on the cell membrane as a binding anchor, which increases the residence time of the virus on the cell surface and aids in the binding of the main receptor, ACE2, via 2D diffusion.
Collapse
Affiliation(s)
- Michele Monti
- RNA
Systems Biology, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Edoardo Milanetti
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Myrthe T. Frans
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Mattia Miotto
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maksim V. Baranov
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giorgio Gosti
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- DHILab,
Istituto di Scienze del Patrimonio Culturale, Sede di Roma, Consiglio Nazionale delle Ricerche, Via Salaria km, 29300, 00010 Rome, Italy
| | - Arun Kumar Somavarapu
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Madhu Nagaraj
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Thaddeus W. Golbek
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Emiel Rossing
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sam J. Moons
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tobias Weidner
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Daniel E. Otzen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giancarlo Ruocco
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Steven J. Roeters
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Amsterdam
UMC, Vrije Universiteit, Department of Anatomy
and Neurosciences, De
Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
8
|
Wang J, Liu R, Ma H, Zhang W. The Pathogenesis of COVID-19-Related Taste Disorder and Treatments. J Dent Res 2023; 102:1191-1198. [PMID: 37729625 DOI: 10.1177/00220345231182926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
COVID-19, mainly manifested as acute respiratory distress syndrome, has afflicted millions of people worldwide since 2019. Taste dysfunction is a common early-stage symptom of COVID-19 infection that burdens patients for weeks or even permanently in some cases. Owing to its subjectivity and complexity, the mechanism of taste disorder is poorly studied. Previous studies have reported that the COVID-19 entry receptors are highly expressed in taste buds, thereby intensifying the cytocidal effect. Taste receptor cells are vulnerable to inflammation, and the COVID-19-induced cytokine storm causes secondary damage to taste function. Interferon and various proinflammatory cytokines can trigger cell apoptosis and disrupt the renewal of taste bud stem cells. This immune response can be further enhanced by the accumulation of Angiotensin II (Ang II) caused by an unbalanced local renin-angiotensin system (RAS) system. In addition, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is neurotropic and can invade the brain through the olfactory bulb, affecting the nervous system. Other factors, such as host zinc deficiency, genetic susceptibility, sialic acid, and some neurotransmitters, also contribute to the pathogenesis process. Although several medical interventions have displayed effectiveness, only a few strategies exist for the treatment of postinfectious dysgeusia. Stem cell-based taste regeneration offers promise for long-term taste disorders. Clinical studies have demonstrated that stem cells can treat long COVID-19 through immune regulation. In dysgeusia, the differentiation of taste bud stem cells can be stimulated through exogenous epithelial-derived and neural-derived factors to regenerate taste buds. Tongue organoids are also emerging as functional taste buds, offering new insights into the study of taste regeneration. This review presents the current evidence of the pathogenesis of COVID-19-related dysgeusia, summarizes currently available treatments, and suggests future directions of taste regeneration therapy.
Collapse
Affiliation(s)
- J Wang
- Department of Prosthodontics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - R Liu
- Department of Prosthodontics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - H Ma
- Department of Prosthodontics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Zhang
- Department of Prosthodontics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Matveeva M, Lefebvre M, Chahinian H, Yahi N, Fantini J. Host Membranes as Drivers of Virus Evolution. Viruses 2023; 15:1854. [PMID: 37766261 PMCID: PMC10535233 DOI: 10.3390/v15091854] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The molecular mechanisms controlling the adaptation of viruses to host cells are generally poorly documented. An essential issue to resolve is whether host membranes, and especially lipid rafts, which are usually considered passive gateways for many enveloped viruses, also encode informational guidelines that could determine virus evolution. Due to their enrichment in gangliosides which confer an electronegative surface potential, lipid rafts impose a first control level favoring the selection of viruses with enhanced cationic areas, as illustrated by SARS-CoV-2 variants. Ganglioside clusters attract viral particles in a dynamic electrostatic funnel, the more cationic viruses of a viral population winning the race. However, electrostatic forces account for only a small part of the energy of raft-virus interaction, which depends mainly on the ability of viruses to form a network of hydrogen bonds with raft gangliosides. This fine tuning of virus-ganglioside interactions, which is essential to stabilize the virus on the host membrane, generates a second level of selection pressure driven by a typical induced-fit mechanism. Gangliosides play an active role in this process, wrapping around the virus spikes through a dynamic quicksand-like mechanism. Viruses are thus in an endless race for access to lipid rafts, and they are bound to evolve perpetually, combining speed (electrostatic potential) and precision (fine tuning of amino acids) under the selective pressure of the immune system. Deciphering the host membrane guidelines controlling virus evolution mechanisms may open new avenues for the design of innovative antivirals.
Collapse
Affiliation(s)
| | | | | | | | - Jacques Fantini
- Department of Biology, Faculty of Medicine, University of Aix-Marseille, INSERM UMR_S 1072, 13015 Marseille, France; (M.M.); (M.L.); (H.C.); (N.Y.)
| |
Collapse
|
10
|
Negi G, Sharma A, Chaudhary M, Gupta D, Harshan KH, Parveen N. SARS-CoV-2 Binding to Terminal Sialic Acid of Gangliosides Embedded in Lipid Membranes. ACS Infect Dis 2023; 9:1346-1361. [PMID: 37145972 DOI: 10.1021/acsinfecdis.3c00106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Multiple recent reports indicate that the S protein of SARS-CoV-2 specifically interacts with membrane receptors and attachment factors other than ACE2. They likely have an active role in cellular attachment and entry of the virus. In this article, we examined the binding of SARS-CoV-2 particles to gangliosides embedded in supported lipid bilayers (SLBs), mimicking the cell membrane-like environment. We show that the virus specifically binds to sialylated (sialic acid (SIA)) gangliosides, i.e., GD1a, GM3, and GM1, as determined from the acquired single-particle fluorescence images using a time-lapse total internal reflection fluorescence (TIRF) microscope. The data of virus binding events, the apparent binding rate constant, and the maximum virus coverage on the ganglioside-rich SLBs show that the virus particles have a higher binding affinity toward the GD1a and GM3 compared to the GM1 ganglioside. Enzymatic hydrolysis of the SIA-Gal bond of the gangliosides confirms that the SIA sugar unit of GD1a and GM3 is essential for virus attachment to the SLBs and even the cell surface sialic acid is critical for the cellular attachment of the virus. The structural difference between GM3/GD1a and GM1 is the presence of SIA at the main or branched chain. We conclude that the number of SIA per ganglioside can weakly influence the initial binding rate of SARS-CoV-2 particles, whereas the terminal or more exposed SIA is critical for the virus binding to the gangliosides in SLBs.
Collapse
Affiliation(s)
- Geetanjali Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Monika Chaudhary
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, 500007 Hyderabad, India
| | - Krishnan H Harshan
- CSIR-Centre for Cellular and Molecular Biology, 500007 Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| |
Collapse
|
11
|
Howe de la Torre S, Parlatini V, Cortese S. Long-term central nervous system (CNS) consequences of COVID-19 in children. Expert Rev Neurother 2023; 23:703-720. [PMID: 37545414 DOI: 10.1080/14737175.2023.2239500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Neurological/neuropsychiatric symptoms are commonly reported by children/young people with long COVID, especially headache, fatigue, cognitive deficits, anosmia and ageusia, dizziness, mood symptoms, and sleep problems. However, reported prevalence estimates are highly variable due to study heterogeneity and often small sample size; most studies only considered short-term follow-ups; and, apart from mood and sleep problems, neuropsychiatric conditions have received less attention. Considering the potential debilitating effects of neurological/neuropsychiatric conditions, a comprehensive review of the topic is timely, and needed to support clinical recognition as well as to set the direction for future research. AREAS COVERED The authors discuss neurological/neuropsychiatric manifestations of long COVID in pediatric populations, with a focus on prevalence, associated demographic characteristics, and potential pathogenetic mechanisms. EXPERT OPINION Children/young people may develop persistent neurological/neuropsychiatric symptoms following acute SARS-CoV-2 infection, which may affect daily functioning and well-being. Studies in larger samples with longer follow-ups are needed to clarify prevalence and symptom duration; as well as less investigated risk factors, including genetic predisposition, ethnicity, and comorbidities. Controlled studies may help separate infection-related direct effects from pandemic-related psychosocial stressors. Clarifying pathogenetic mechanisms is paramount to develop more targeted and effective treatments; whilst screening programs and psychoeducation may enhance early recognition.
Collapse
Affiliation(s)
| | - Valeria Parlatini
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, UK
- Horizon Centre, CAMHS West, William Macleod Way, Solent NHS Trust, Southampton, UK
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, New York, USA
| |
Collapse
|
12
|
Miotto M, Di Rienzo L, Grassmann G, Desantis F, Cidonio G, Gosti G, Leonetti M, Ruocco G, Milanetti E. Differences in the organization of interface residues tunes the stability of the SARS-CoV-2 spike-ACE2 complex. Front Mol Biosci 2023; 10:1205919. [PMID: 37441163 PMCID: PMC10333926 DOI: 10.3389/fmolb.2023.1205919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The continuous emergence of novel variants represents one of the major problems in dealing with the SARS-CoV-2 virus. Indeed, also due to its prolonged circulation, more than ten variants of concern emerged, each time rapidly overgrowing the current viral version due to improved spreading features. As, up to now, all variants carry at least one mutation on the spike Receptor Binding Domain, the stability of the binding between the SARS-CoV-2 spike protein and the human ACE2 receptor seems one of the molecular determinants behind the viral spreading potential. In this framework, a better understanding of the interplay between spike mutations and complex stability can help to assess the impact of novel variants. Here, we characterize the peculiarities of the most representative variants of concern in terms of the molecular interactions taking place between the residues of the spike RBD and those of the ACE2 receptor. To do so, we performed molecular dynamics simulations of the RBD-ACE2 complexes of the seven variants of concern in comparison with a large set of complexes with different single mutations taking place on the RBD solvent-exposed residues and for which the experimental binding affinity was available. Analyzing the strength and spatial organization of the intermolecular interactions of the binding region residues, we found that (i) mutations producing an increase of the complex stability mainly rely on instaurating more favorable van der Waals optimization at the cost of Coulombic ones. In particular, (ii) an anti-correlation is observed between the shape and electrostatic complementarities of the binding regions. Finally, (iii) we showed that combining a set of dynamical descriptors is possible to estimate the outcome of point mutations on the complex binding region with a performance of 0.7. Overall, our results introduce a set of dynamical observables that can be rapidly evaluated to probe the effects of novel isolated variants or different molecular systems.
Collapse
Affiliation(s)
- Mattia Miotto
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Greta Grassmann
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Fausta Desantis
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia, Genova, Italy
| | - Gianluca Cidonio
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Marco Leonetti
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano-& Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Grassmann G, Di Rienzo L, Gosti G, Leonetti M, Ruocco G, Miotto M, Milanetti E. Electrostatic complementarity at the interface drives transient protein-protein interactions. Sci Rep 2023; 13:10207. [PMID: 37353566 PMCID: PMC10290103 DOI: 10.1038/s41598-023-37130-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023] Open
Abstract
Understanding the mechanisms driving bio-molecules binding and determining the resulting complexes' stability is fundamental for the prediction of binding regions, which is the starting point for drug-ability and design. Characteristics like the preferentially hydrophobic composition of the binding interfaces, the role of van der Waals interactions, and the consequent shape complementarity between the interacting molecular surfaces are well established. However, no consensus has yet been reached on the role of electrostatic. Here, we perform extensive analyses on a large dataset of protein complexes for which both experimental binding affinity and pH data were available. Probing the amino acid composition, the disposition of the charges, and the electrostatic potential they generated on the protein molecular surfaces, we found that (i) although different classes of dimers do not present marked differences in the amino acid composition and charges disposition in the binding region, (ii) homodimers with identical binding region show higher electrostatic compatibility with respect to both homodimers with non-identical binding region and heterodimers. Interestingly, (iii) shape and electrostatic complementarity, for patches defined on short-range interactions, behave oppositely when one stratifies the complexes by their binding affinity: complexes with higher binding affinity present high values of shape complementarity (the role of the Lennard-Jones potential predominates) while electrostatic tends to be randomly distributed. Conversely, complexes with low values of binding affinity exploit Coulombic complementarity to acquire specificity, suggesting that electrostatic complementarity may play a greater role in transient (or less stable) complexes. In light of these results, (iv) we provide a novel, fast, and efficient method, based on the 2D Zernike polynomial formalism, to measure electrostatic complementarity without the need of knowing the complex structure. Expanding the electrostatic potential on a basis of 2D orthogonal polynomials, we can discriminate between transient and permanent protein complexes with an AUC of the ROC of [Formula: see text] 0.8. Ultimately, our work helps shedding light on the non-trivial relationship between the hydrophobic and electrostatic contributions in the binding interfaces, thus favoring the development of new predictive methods for binding affinity characterization.
Collapse
Affiliation(s)
- Greta Grassmann
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, 00185, Rome, Italy
| | - Marco Leonetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, 00185, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Edoardo Milanetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
14
|
Tomris I, Unione L, Nguyen L, Zaree P, Bouwman KM, Liu L, Li Z, Fok JA, Ríos Carrasco M, van der Woude R, Kimpel ALM, Linthorst MW, Kilavuzoglu SE, Verpalen ECJM, Caniels TG, Sanders RW, Heesters BA, Pieters RJ, Jiménez-Barbero J, Klassen JS, Boons GJ, de Vries RP. SARS-CoV-2 Spike N-Terminal Domain Engages 9- O-Acetylated α2-8-Linked Sialic Acids. ACS Chem Biol 2023; 18:1180-1191. [PMID: 37104622 PMCID: PMC10178783 DOI: 10.1021/acschembio.3c00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan binding cleft. However, for the SARS-CoV-2 NTD, protein-glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of variants of concern (VoC) show antigenic pressure, which can be an indication of NTD-mediated receptor binding. Trimeric NTD proteins of SARS-CoV-2, alpha, beta, delta, and omicron did not reveal a receptor binding capability. Unexpectedly, the SARS-CoV-2 beta subvariant strain (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9-O-acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity toward 9-O-acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. These results indicate that SARS-CoV-2 can probe additional evolutionary space, allowing binding to glycan receptors on the surface of target cells.
Collapse
Affiliation(s)
- Ilhan Tomris
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Luca Unione
- CICbioGUNE,
Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Bizkaia, Spain
| | - Linh Nguyen
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Pouya Zaree
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kim M. Bouwman
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Lin Liu
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Zeshi Li
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jelle A. Fok
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - María Ríos Carrasco
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Roosmarijn van der Woude
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anne L. M. Kimpel
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mirte W. Linthorst
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sinan E. Kilavuzoglu
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Enrico C. J. M. Verpalen
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Tom G. Caniels
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Infectious Diseases, 1081 HZ Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department
of Medical Microbiology, Amsterdam UMC,
University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Infectious Diseases, 1081 HZ Amsterdam, The Netherlands
- Department
of Microbiology and Immunology, Weill Medical
Center of Cornell University, 1300 York Avenue, New York, New York 10065, United States
| | - Balthasar A. Heesters
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Roland J. Pieters
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jesús Jiménez-Barbero
- CICbioGUNE,
Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
- Department
of Microbiology and Immunology, Weill Medical
Center of Cornell University, 1300 York Avenue, New York, New York 10065, United States
- Department
of Organic Chemistry, II Faculty of Science
and Technology University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
- Centro
de Investigación Biomédica En Red de Enfermedades Respiratorias, Av. Monforte de Lemos, 3-5. Pabellón
11. Planta 0, 28029 Madrid, Spain
| | - John S. Klassen
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Geert-Jan Boons
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Robert P. de Vries
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
15
|
Hamed SA. Post-COVID-19 persistent olfactory, gustatory, and trigeminal chemosensory disorders: Definitions, mechanisms, and potential treatments. World J Otorhinolaryngol 2023; 10:4-22. [DOI: 10.5319/wjo.v10.i2.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
The nose and the oral cavities are the main sites for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into the body. Smell and taste deficits are the most common acute viral manifestations. Persistent smell disorders are the most common and bothersome complications after SARS-CoV-2 infection, lasting for months to years. The mechanisms and treatment of persistent post-coronavirus disease 2019 (COVID-19) smell and taste disorders are still challenges. Information sources for the review are PubMed, Centers for Disease Control and Prevention, Ovid Medline, Embase, Scopus, Web of Science, International Prospective Register of Systematic Reviews, Cumulative Index to Nursing and Allied Health Literature, Elton Bryson Stephens Company, Cochrane Effective Practice and Organization of Care, Cooperation in Science and Technology, International Clinical Trials Registry Platform, World Health Organization, Randomized Controlled Trial Number Registry, and MediFind. This review summarizes the up-to-date information about the prevalence, patterns at onset, and prognoses of post-COVID-19 smell and taste disorders, evidence for the neurotropism of SARS-CoV-2 and the overlap between SARS-CoV-1, Middle East respiratory syndrome coronavirus, and SARS-CoV-2 in structure, molecular biology, mode of replication, and host pathogenicity, the suggested cellular and molecular mechanisms for these post-COVID19 chemosensory disorders, and the applied pharmacotherapies and interventions as trials to treat these disorders, and the recommendations for future research to improve understanding of predictors and mechanisms of these disorders. These are crucial for hopeful proper treatment strategies.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University, Faculty of Medicine, Assiut 71516, Egypt
| |
Collapse
|
16
|
Yeung AWK. The Revived Interest in Ageusia Research during the COVID-19 Pandemic: A Bibliometric Analysis. Life (Basel) 2023; 13:life13041062. [PMID: 37109591 PMCID: PMC10144926 DOI: 10.3390/life13041062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
The evolution of ageusia research literature has yet to be investigated. This bibliometric study analyzed the entire ageusia research literature indexed in Web of Science, to reveal its growth and the most productive entities in terms of authors, institutions, countries, journals, and journal categories. In addition, this study aimed to identify medical conditions (and their treatments) that were frequently associated with ageusia. On 7 March 2022, the Web of Science Core Collection database was accessed with the following search query: TS = (ageusia OR "taste loss" OR "loss of taste" OR "loss of gustat*" OR "gustatory loss"). The search identified publications mentioning these terms in their title, abstract, or keywords. No additional filters were placed on publication year, language, etc. The basic publication and citation counts were extracted from the in-built functions of the database. The complete record of the publications was exported into VOSviewer, a bibliometric software for visualizations. The search yielded 1170 publications. The cumulative publication and citation counts of the ageusia research sharply increased in 2020. The most productive author was Professor Thomas Hummel from Technische Universität Dresden. Ageusia research had heavy contributions from the United States, Italy, the United Kingdom, Germany, and India. The top 5 most productive journals mainly belonged to the otorhinolaryngology and medicine categories. The medical conditions frequently investigated in ageusia research included COVID-19, cancers (head and neck, and advanced basal cell), Guillain-Barré syndrome, neurodegenerative diseases, diabetes, and Sjogren's syndrome. This study could act as a begvinner's guide for (1) clinicians who are not familiar with ageusia so that they might better understand which scenarios they need to be more aware of since ageusia could be a co-morbidity of a patient's underlying disease, and (2) for those who wish to search for relevant authors and journals for suitable publications related to the topic.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Sigamani A, Mayo KH, Miller MC, Chen-Walden H, Reddy S, Platt D. An Oral Galectin Inhibitor in COVID-19—A Phase II Randomized Controlled Trial. Vaccines (Basel) 2023; 11:vaccines11040731. [PMID: 37112643 PMCID: PMC10140888 DOI: 10.3390/vaccines11040731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Background: SARS-CoV-2 vaccines play an important role in reducing disease severity, hospitalization, and death, although they failed to prevent the transmission of SARS-CoV-2 variants. Therefore, an effective inhibitor of galectin-3 (Gal-3) could be used to treat and prevent the transmission of COVID-19. ProLectin-M (PL-M), a Gal-3 antagonist, was shown to interact with Gal-3 and thereby prevent cellular entry of SARS-CoV-2 in previous studies. Aim: The present study aimed to further evaluate the therapeutic effect of PL-M tablets in 34 subjects with COVID-19. Methods: The efficacy of PL-M was evaluated in a randomized, double-blind, placebo-controlled clinical study in patients with mild to moderately severe COVID-19. Primary endpoints included changes in the absolute RT-PCR Ct values of the nucleocapsid and open reading frame (ORF) genes from baseline to days 3 and 7. The incidence of adverse events, changes in blood biochemistry, inflammatory biomarkers, and levels of antibodies against COVID-19 were also evaluated as part of the safety evaluation. Results: PL-M treatment significantly (p = 0.001) increased RT-PCR cycle counts for N and ORF genes on days 3 (Ct values 32.09 ± 2.39 and 30.69 ± 3.38, respectively) and 7 (Ct values 34.91 ± 0.39 and 34.85 ± 0.61, respectively) compared to a placebo treatment. On day 3, 14 subjects in the PL-M group had cycle counts for the N gene above the cut-off value of 29 (target cycle count 29), whereas on day 7, all subjects had cycle counts above the cut-off value. Ct values in placebo subjects were consistently less than 29, and no placebo subjects were RT-PCR-negative until day 7. Most of the symptoms disappeared completely after receiving PL-M treatment for 7 days in more patients compared to the placebo group. Conclusion: PL-M is safe and effective for clinical use in reducing viral loads and promoting rapid viral clearance in COVID-19 patients by inhibiting SARS-CoV-2 entry into cells through the inhibition of Gal-3.
Collapse
Affiliation(s)
- Alben Sigamani
- Carmel Research Consultancy Pvt. Ltd., Bengaluru 560025, Karnataka, India
- Correspondence: ; Tel.: +9188-8443-1444
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Michelle C. Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Hana Chen-Walden
- Pharmalectin India Pvt. Ltd., Rangareddy 500039, Telangana, India
| | - Surendar Reddy
- Department of Pulmonology, ESIC Medical College and Hospital, Sanath Nagar, Hyderabad 500038, Telangana, India
| | - David Platt
- Pharmalectin India Pvt. Ltd., Rangareddy 500039, Telangana, India
| |
Collapse
|
18
|
郑 欣, 徐 欣, 周 学, 彭 显. [Mechanisms and Management of COVID-19-Associated Taste Disorders]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:334-341. [PMID: 36949695 PMCID: PMC10409153 DOI: 10.12182/20230260306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 03/24/2023]
Abstract
The taste buds in the human tongue contain specialized cells that generate taste signals when they are stimulated. These signals are then transmitted to the central nervous system, allowing the human body to distinguish nutritious substances from toxic or harmful ones. This process is critical to the survival of humans and other mammals. A number of studies have shown that dysgeusia, or taste disorder, is a common complication of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which can severely affect patients' nutritional intake and quality of life. Based on the physiological process of taste perception, the direct causes of dysgeusia include dysfunction of taste receptors and damage to the taste nervous system, while indirect causes include genetic factors, aging-related changes, bacterial and viral infections, and cancer treatments such as radiotherapy and chemotherapy. The pathogenic factors of dysgeusia are complicated, further research is needed to fully understand the underlying mechanisms, and some of the reported findings and conclusions still need further validation. All these form a great challenge for clinical diagnosis of the cause and targeted treatment of dysgeusia. Herein, we reviewed published research on the physiological process of taste perception, the potential mechanisms of taste disorders related to SARS-CoV-2 infection, and strategies for prevention and treatment, providing theoretical support for establishing and improving the comprehensive management of COVID-19 complicated by taste disorders.
Collapse
Affiliation(s)
- 欣 郑
- 口腔疾病研究国家重点实验室 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 欣 徐
- 口腔疾病研究国家重点实验室 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 显 彭
- 口腔疾病研究国家重点实验室 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Askari H, Rabiei F, Lohrasbi F, Ghadir S, Ghasemi-Kasman M. The Latest Cellular and Molecular Mechanisms of COVID-19 on Non-Lung Organs. Brain Sci 2023; 13:brainsci13030415. [PMID: 36979225 PMCID: PMC10046222 DOI: 10.3390/brainsci13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will aid in developing effective therapies directed at the virus’s life cycle or its side effects. While severe respiratory distress is the most common symptom of a coronavirus 2019 (COVID-19) infection, the virus is also known to cause damage to almost every major organ and system in the body. However, it is not obvious whether pathological changes in extra-respiratory organs are caused by direct infection, indirect, or combination of these effects. In this narrative review, we first elaborate on the characteristics of SARS-CoV-2, followed by the mechanisms of this virus on various organs such as brain, eye, and olfactory nerve and different systems such as the endocrine and gastrointestinal systems.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: ; Tel./Fax: +98-11-32190557
| |
Collapse
|
20
|
Loss of Sour Taste Is the Striking Feature among Four Basic Taste Qualities in Tunisian COVID-19 Patients. J Clin Med 2023; 12:jcm12020597. [PMID: 36675526 PMCID: PMC9865029 DOI: 10.3390/jcm12020597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Taste disorders (TDs) have been reported to be very common in patients suffering from coronavirus disease 2019 (COVID-19), which is caused by the SARS-CoV-2 virus. In most of the hitherto conducted studies, a gustatory assessment was performed on the basis of surveys or self-reports by patients. The aim of our study was to undertake an objective assessment of four basic taste qualities by conducting tasting sessions that allowed detection thresholds in COVID-19 Tunisian patients and to study their associations with inflammation. METHODS This analytical cross-sectional study was conducted on 89 patients aged between 21 to 70 years who had been diagnosed with COVID-19. We used Burghart taste strips to assess taste perception of the four taste qualities, i.e., sour, bitter, sweet, and salty. Serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and C-reactive protein (CRP) were measured. RESULTS Taste disorders were reported by 40.4% of the patients, while objective assessments revealed that 63.8% of participants were suffering from hypogeusia and/or ageusia. Sour taste was the most altered (70.8%) gustatory quality. Patients with severe COVID-19 had significantly lower sour and bitter taste scores when compared to patients with minor/moderate forms. There was no significant association between serum inflammatory markers and taste disorders. However, the relationship between bitter and sweet taste qualities and IL-1β levels was significant (p = 0.018 and p = 0.041). CONCLUSIONS Our results demonstrate the interest in the objective assessment of taste dysfunctions in COVID-19 patients.
Collapse
|
21
|
Berkowitz RL, Ostrov DA. The Elusive Coreceptors for the SARS-CoV-2 Spike Protein. Viruses 2022; 15:67. [PMID: 36680105 PMCID: PMC9862613 DOI: 10.3390/v15010067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Evidence suggests that the N-terminal domain (NTD) of the SARS-CoV-2 spike protein interacts with host coreceptors that participate in viral entry. Resolving the identity of coreceptors has important clinical implications as it may provide the basis for the development of antiviral drugs and vaccine candidates. The majority of characteristic mutations in variants of concern (VOCs) have occurred in the NTD and receptor binding domain (RBD). Unlike the RBD, mutations in the NTD have clustered in the most flexible parts of the spike protein. Many possible coreceptors have been proposed, including various sugars such as gangliosides, sialosides, and heparan sulfate. Protein coreceptors, including neuropilin-1 and leucine-rich repeat containing 15 (LRRC15), are also proposed coreceptors that engage the NTD.
Collapse
Affiliation(s)
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
22
|
Almeida KMM, Dourado KF, Barros Neto JA, Rodrigues IG, Arcoverde GMFP, Petribú MDMV. Association between nutritional therapy and complications in patients diagnosed with COVID-19 followed in the state of Pernambuco. REVISTA CIÊNCIAS EM SAÚDE 2022. [DOI: 10.21876/rcshci.v12i4.1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: To analyze the association between nutritional therapy and complications in patients diagnosed with COVID-19 followed in Pernambuco. Methods: A prospective cohort study was conducted to investigate secondary data from multicenter research from June 2020 to June 2021. Patients of both sexes over 18 years old were hospitalized for COVID-19 in wards or intensive care units of eight hospitals. Sociodemographic and economic data, nutritional status, nutritional therapy, gastrointestinal complications, and clinical outcome were collected during admission and at the end of hospitalization. Results: The sample consisted of 272 patients, with a median age of 67 years (IQR 54 - 76), equally distributed between men and women (50.4% vs. 49.6%). A higher frequency of overweight/obesity (40.31%) was observed. The most frequent alterations were inappetence (12.88%) and dysgeusia (8.28%). It was observed that 84.6% received an early diet, the caloric adequacy varied between 72.1% and 60.7%, the oral route between 82.4% and 70.7%, the majority (58%) received up to 1.3 g of protein per day, and 46.7% died. Caloric adequacy was associated with dysgeusia (p = 0.040) and clinical outcome (p = 0.044) and tended to be associated with vomiting (p = 0.077). No association was found with proteins. Conclusion: Nutritional therapy is associated with gastrointestinal symptoms such as vomiting and dysgeusia and the clinical outcome of patients with COVID-19.
Collapse
|
23
|
Ferrulli A, Senesi P, Terruzzi I, Luzi L. Eating Habits and Body Weight Changes Induced by Variation in Smell and Taste in Patients with Previous SARS-CoV-2 Infection. Nutrients 2022; 14:nu14235068. [PMID: 36501098 PMCID: PMC9738767 DOI: 10.3390/nu14235068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Olfactory and gustatory dysfunction are recognized as common symptoms in patients with COVID-19, with a prevalence ranging, respectively, between 41-61% and 38.2-49%. This review focused on relating the variations in dietary habits with the reduction/loss of smell and/or taste in patients who contracted the COVID-19 infection. Primarily, we reviewed the main pathological mechanisms involved in COVID 19-induced anosmia/dysosmia and ageusia/dysgeusia. Then, we explored and summarized the behavioural changes in food intake and body weight during the COVID-19 pandemic in relation to sensory impairment and the underlying mechanisms. Most studies on this topic argue that the altered chemosensory perception (taste and smell) mainly induces reduced appetite, leading to a faster fullness sensation during the consumption of a meal and, therefore, to a decrease in body weight. On the other hand, a reduced perception of the food's sensory properties may trigger compensatory responses that lead some individuals to increase food intake with a different effect on body weight. Regarding body weight, most studies evaluated malnutrition in patients hospitalized for COVID-19; more studies are warranted to investigate nutritional status specifically in non-hospitalized patients with olfactory and gustatory dysfunctions caused by COVID-19 infection.
Collapse
Affiliation(s)
- Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Correspondence: or ; Tel.: +39-02-8599-4572
| | - Pamela Senesi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
24
|
Lam SD, Waman VP, Fraternali F, Orengo C, Lees J. Structural and energetic analyses of SARS-CoV-2 N-terminal domain characterise sugar binding pockets and suggest putative impacts of variants on COVID-19 transmission. Comput Struct Biotechnol J 2022; 20:6302-6316. [PMID: 36408455 PMCID: PMC9639386 DOI: 10.1016/j.csbj.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is an ongoing pandemic that causes significant health/socioeconomic burden. Variants of concern (VOCs) have emerged affecting transmissibility, disease severity and re-infection risk. Studies suggest that the - N-terminal domain (NTD) of the spike protein may have a role in facilitating virus entry via sialic-acid receptor binding. Furthermore, most VOCs include novel NTD variants. Despite global sequence and structure similarity, most sialic-acid binding pockets in NTD vary across coronaviruses. Our work suggests ongoing evolutionary tuning of the sugar-binding pockets and recent analyses have shown that NTD insertions in VOCs tend to lie close to loops. We extended the structural characterisation of these sugar-binding pockets and explored whether variants could enhance sialic acid-binding. We found that recent NTD insertions in VOCs (i.e., Gamma, Delta and Omicron variants) and emerging variants of interest (VOIs) (i.e., Iota, Lambda and Theta variants) frequently lie close to sugar-binding pockets. For some variants, including the recent Omicron VOC, we find increases in predicted sialic acid-binding energy, compared to the original SARS-CoV-2, which may contribute to increased transmission. These binding observations are supported by molecular dynamics simulations (MD). We examined the similarity of NTD across Betacoronaviruses to determine whether the sugar-binding pockets are sufficiently similar to be exploited in drug design. Whilst most pockets are too structurally variable, we detected a previously unknown highly structurally conserved pocket which can be investigated in pursuit of a generic pan-Betacoronavirus drug. Our structure-based analyses help rationalise the effects of VOCs and provide hypotheses for experiments. Our findings suggest a strong need for experimental monitoring of changes in NTD of VOCs.
Collapse
Affiliation(s)
- Su Datt Lam
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Vaishali P. Waman
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Christine Orengo
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Jonathan Lees
- Translational Health Sciences, Bristol Medical University, University of Bristol, Bristol, United Kingdom
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
25
|
Mazzatenta A. Physiological discrimination and correlation between olfactory and gustatory dysfunction in long-term COVID-19. Physiol Rep 2022; 10:e15486. [PMID: 36412058 PMCID: PMC9812235 DOI: 10.14814/phy2.15486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023] Open
Abstract
The spread of the SARS-CoV-2 virus produces a new disease termed COVID-19, the underlying physiological mechanisms of which are still being understood. Characteristic of the infection is the compromising of taste and smell. There is a persistent need to discriminate the dysfunctions and correlation between taste and smell, which are probably epiphenomena of other concealed conditions. Anosmic and ageusic long-term COVID-19 patients were re-evaluated after 1 year using a Volabolomic approach with an e-nose recording system coupled with olfactometric and gustometric tests. Here a range of sensory arrangements was found, from normal taste and smell to complete losses. The following patterns of olfactory threshold (OT)-taste threshold-olfactory uni- and cross-modal perception were found anosmia-severe hypogeusia-anosmia; hyposmia-hypogeusia-severe hyposmia; normosmia-ageusia-hyposmia; severe hyposmia -normogeusia-normosmia. There is a strong correlation between OT and olfactory uni- and cross-modal perception, a moderate correlation between olfactory and taste threshold and no correlation between OT and taste threshold. In conclusion, this study provides evidence for the feasibility of testing the chemical senses to directly objectify function in order to discriminate taste from olfactory impairment. Furthermore, it allows to hypothesize a long-term effect of the virus due to neuroinvasion through, probably, the olfactory system with injury in the related multisensory areas of taste and smell.
Collapse
Affiliation(s)
- Andrea Mazzatenta
- Neuroscience, Imaging and Clinical Sciences Department‘G. d'Annunzio’ Chieti‐Pescara UniversityChietiItaly
| |
Collapse
|
26
|
Tomris I, Unione L, Nguyen L, Zaree P, Bouwman KM, Liu L, Li Z, Fok JA, Ríos Carrasco M, van der Woude R, Kimpel ALM, Linthorst MW, Verpalen ECJM, Caniels TG, Sanders RW, Heesters BA, Pieters RJ, Jiménez-Barbero J, Klassen JS, Boons GJ, de Vries RP. The SARS-CoV-2 spike N-terminal domain engages 9- O -acetylated α2-8-linked sialic acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.14.507904. [PMID: 36263070 PMCID: PMC9580382 DOI: 10.1101/2022.09.14.507904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor-binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan-binding cleft. However, for the SARS-CoV-2 NTD protein-glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of Variants of Concern (VoC) shows antigenic pressure, which can be an indication of NTD-mediated receptor binding. Trimeric NTD proteins of SARS-CoV-2, Alpha, Beta, Delta, and Omicron did not reveal a receptor binding capability. Unexpectedly, the SARS-CoV-2 Beta subvariant strain (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9- O -acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The Beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity towards 9- O -acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. These results indicate that SARS-CoV-2 can probe additional evolutionary space, allowing binding to glycan receptors on the surface of target cells. Graphical abstract Synopsis Coronaviruses utilize their N-terminal domain (NTD) for initial reversible low-affinity interaction to (sialylated) glycans. This initial low-affinity/high-avidity engagement enables viral surfing on the target membrane, potentially followed by a stronger secondary receptor interaction. Several coronaviruses, such as HKU1 and OC43, possess a hemagglutinin-esterase for viral release after sialic acid interaction, thus allowing viral dissemination. Other coronaviruses, such as MERS-CoV, do not possess a hemagglutinin-esterase, but interact reversibly to sialic acids allowing for viral surfing and dissemination. The early 501Y.V2-1 subvariant of the Beta SARS-CoV-2 Variant of Concern has attained a receptor-binding functionality towards 9- O -acetylated sialic acid using its NTD. This binding functionality was selected against rapidly, most likely due to poor dissemination. Ablation of sialic acid binding in more recent SARS-CoV-2 Variants of Concern suggests a fine balance of sialic acid interaction of SARS-CoV-2 is required for infection and/or transmission.
Collapse
|
27
|
Oh L, Varki A, Chen X, Wang LP. SARS-CoV-2 and MERS-CoV Spike Protein Binding Studies Support Stable Mimic of Bound 9- O-Acetylated Sialic Acids. Molecules 2022; 27:5322. [PMID: 36014560 PMCID: PMC9415320 DOI: 10.3390/molecules27165322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Many disease-causing viruses target sialic acids (Sias), a class of nine-carbon sugars known to coat the surface of many cells, including those in the lungs. Human beta coronaviridae, known for causing respiratory tract diseases, often bind Sias, and some preferentially bind to those with 9-O-Ac-modification. Currently, co-binding of SARS-CoV-2, a beta coronavirus responsible for the COVID-19 pandemic, to human Sias has been reported and its preference towards α2-3-linked Neu5Ac has been shown. Nevertheless, O-acetylated Sias-protein binding studies are difficult to perform, due to the ester lability. We studied the binding free energy differences between Neu5,9Ac2α2-3GalβpNP and its more stable 9-NAc mimic binding to SARS-CoV-2 spike protein using molecular dynamics and alchemical free energy simulations. We identified multiple Sia-binding pockets, including two novel sites, with similar binding affinities to those of MERS-CoV, a known co-binder of sialic acid. In our binding poses, 9-NAc and 9-OAc Sias bind similarly, suggesting an experimentally reasonable mimic to probe viral mechanisms.
Collapse
Affiliation(s)
- Lisa Oh
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
28
|
Pereira E, Felipe S, de Freitas R, Araújo V, Soares P, Ribeiro J, Henrique Dos Santos L, Alves JO, Canabrava N, van Tilburg M, Guedes MI, Ceccatto V. ABO blood group and link to COVID-19: A comprehensive review of the reported associations and their possible underlying mechanisms. Microb Pathog 2022; 169:105658. [PMID: 35764188 PMCID: PMC9233352 DOI: 10.1016/j.micpath.2022.105658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
ABO blood group is long known to be an influencing factor for the susceptibility to infectious diseases, and many studies have been describing associations between ABO blood types and COVID-19 infection and severity, with conflicting findings. This narrative review aims to summarize the literature regarding associations between the ABO blood group and COVID-19. Blood type O is mostly associated with lower rates of SARS-CoV-2 infection, while blood type A is frequently described as a risk factor. Although results regarding the risk of severe outcomes are more variable, blood type A is the most associated with COVID-19 severity and mortality, while many studies describe O blood type as a protective factor for the disease progression. Furthermore, genetic associations with both the risk of infection and disease severity have been reported for the ABO locus. Some underlying mechanisms have been hypothesized to explain the reported associations, with incipient experimental data. Three major hypotheses emerge: SARS-CoV-2 could carry ABO(H)-like structures in its envelope glycoproteins and would be asymmetrically transmitted due to a protective effect of the ABO antibodies, ABH antigens could facilitate SARS-CoV-2 interaction with the host' cells, and the association of non-O blood types with higher risks of thromboembolic events could confer COVID-19 patients with blood type O a lower risk of severe outcomes. The hypothesized mechanisms would affect distinct aspects of the COVID-19 natural history, with distinct potential implications to the disease transmission and its management.
Collapse
Affiliation(s)
- Eric Pereira
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Stela Felipe
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Raquel de Freitas
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Valdevane Araújo
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Paula Soares
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Jannison Ribeiro
- Hematology and Hemotherapy Center of Ceará, José Bastos Av., Fortaleza, 60431-086, Ceará, Brazil
| | - Luiz Henrique Dos Santos
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Juliana Osório Alves
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Natália Canabrava
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Mauricio van Tilburg
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Maria Izabel Guedes
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Vânia Ceccatto
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil.
| |
Collapse
|
29
|
Paoletti AM, Melilli MG, Vecchio I. Experimental Models of SARS-COV-2 Infection in the Central Nervous System. J Cent Nerv Syst Dis 2022; 14:11795735221102231. [PMID: 35783991 PMCID: PMC9247991 DOI: 10.1177/11795735221102231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/05/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has raised serious concerns worldwide due to
its great impact on human health and forced scientists racing to find effective
therapies to control the infection and a vaccine for the virus. To this end,
intense research efforts have focused on understanding the viral biology of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for
COVID-19. The ever-expanding list of cases, reporting clinical neurological
complications in COVID-19 patients, strongly suggests the possibility of the
virus invading the nervous system. The pathophysiological processes responsible
for the neurological impact of COVID-19 are not fully understood. Some
neurodegenerative disorders sometimes take more than a decade to manifest, so
the long-term pathophysiological outcomes of SARS-CoV-2 neurotropism should be
regarded as a challenge for researchers in this field. There is no documentation
on the long-term impact of SARS-CoV-2 on the human central nervous system (CNS).
Most of the data relating to neurological damage during SARS-CoV-2 infection
have yet to be established experimentally. The purpose of this review is to
describe the knowledge gained, from experimental models, to date, on the
mechanisms of neuronal invasion and the effects produced by infection. The hope
is that, once the processes are understood, therapies can be implemented to
limit the damage produced. Long-term monitoring and the use of appropriate and
effective therapies could reduce the severity of symptoms and improve quality of
life of the most severely affected patients, with a special focus on those have
required hospital care and assisted respiration.
Collapse
Affiliation(s)
- Anna Maria Paoletti
- Institute for Biomedical Research and Innovation (IRIB), National Council of Research (CNR), Catanzaro, Italy
| | | | - Immacolata Vecchio
- Institute for Biomedical Research and Innovation (IRIB), National Council of Research (CNR), Catanzaro, Italy
| |
Collapse
|
30
|
ERDOĞMUŞ KÜÇÜKCAN N, KÜÇÜKCAN A. COVID-19 ile enfekte hastalarda koku ve tat disfonksiyonu prevalansı. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1093938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Amaç: Bu çalışma, COVID-19 ile enfekte kişilerin hastaneye başvuru şekline ve olası risk faktörlerine göre koku ve tat alma disfonksiyonunu (KTD) değerlendirmeyi amaçlamaktadır.
Gereç ve Yöntem: Çalışmaya Ocak ve Eylül 2021 arasında COVID-19 tanısı konan toplam 200 hasta dahil edildi. Hastalar iki gruba ayrıldı. İlk grupta; kliniği daha hafif seyreden, evde izole olan 100 hasta, ikinci grupta; kliniği daha ağır seyreden pandemi servisinde yatan 100 hasta bulunmaktaydı. Hastalar hastaneye başvuru sırasında koku ve tat fonksiyonları ve çeşitli klinik bilgileri hakkında veri formu doldurdu. Hastalardan ayrıca görsel analog skalası (GAS) kullanarak koku ve tat bozukluklarını derecelendirmeleri istendi.
Bulgular: Evde izole olarak takip edilen hastaların, %72’ si kadın olup, yaş ortalaması 39,6±13,2’dır. Pandemi servisinde takip edilen hastaların ise %50’ si kadın ve ortalama yaş 52.4±11,0. Tüm hastalarda en sık görülen semptom tat (%41) ve koku (45,5) kaybıydı. Kadın cinsiyette ve gençlerde KTD daha yüksek bulundu. Ayaktan hastalarda KTD daha sıktı. Tat ve koku VAS skorları ayakta takip edilen hastalarda daha düşüktü.
Sonuç: KTD; COVID-19 ile enfekte kişilerde çeşitli mekanizmalar aracılığıyla artmış inflamatuar yanıta bağlı oluşur. KTD, anahtar semptom ve tanı göstergesi olarak görülmeli ve sorgulanmalıdır. KTD sıklığının yaş gruplarında ve cinsiyete göre farklılıklar gösterebileceği akılda tutulmalıdır.
Collapse
|
31
|
Saso W, Yamasaki M, Nakakita SI, Fukushi S, Tsuchimoto K, Watanabe N, Sriwilaijaroen N, Kanie O, Muramatsu M, Takahashi Y, Matano T, Takeda M, Suzuki Y, Watashi K. Significant role of host sialylated glycans in the infection and spread of severe acute respiratory syndrome coronavirus 2. PLoS Pathog 2022; 18:e1010590. [PMID: 35700214 PMCID: PMC9197039 DOI: 10.1371/journal.ppat.1010590] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been transmitted across all over the world, in contrast to the limited epidemic of genetically- and virologically-related SARS-CoV. However, the molecular basis explaining the difference in the virological characteristics among SARS-CoV-2 and SARS-CoV has been poorly defined. Here we identified that host sialoglycans play a significant role in the efficient spread of SARS-CoV-2 infection, while this was not the case with SARS-CoV. SARS-CoV-2 infection was significantly inhibited by α2-6-linked sialic acid-containing compounds, but not by α2–3 analog, in VeroE6/TMPRSS2 cells. The α2-6-linked compound bound to SARS-CoV-2 spike S1 subunit to competitively inhibit SARS-CoV-2 attachment to cells. Enzymatic removal of cell surface sialic acids impaired the interaction between SARS-CoV-2 spike and angiotensin-converting enzyme 2 (ACE2), and suppressed the efficient spread of SARS-CoV-2 infection over time, in contrast to its least effect on SARS-CoV spread. Our study provides a novel molecular basis of SARS-CoV-2 infection which illustrates the distinctive characteristics from SARS-CoV. SARS-CoV-2, which has been highly transmissible and rapidly spreading worldwide, has caused approximately 458 million confirmed cases of COVID-19 with more than 6 million deaths by March 2022. Here we found that SARS-CoV-2 infection was significantly inhibited by α2-6-linked sialic acid-containing compounds and by depletion of cell surface sialic acid with only a minor effect on SARS-CoV infection. We identified that SARS-CoV-2 spike S1 subunit directly binds to α2-6-linked sialoglycans for efficient attachment to host cell surface. Our finding indicated that host sialoglycans play a significant role in the efficient infection of SARS-CoV-2, which provides a novel understanding of the molecular basis explaining the rapid spread of SARS-CoV-2 over SARS-CoV.
Collapse
Affiliation(s)
- Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masako Yamasaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Sciences, Tokyo University of Science, Noda, Japan
| | - Shin-ichi Nakakita
- Department of Functional Glycomics, Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kana Tsuchimoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyuki Watanabe
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Osamu Kanie
- Micro/Nano Technology Center and Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- * E-mail: (Y.S); (K.W)
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Sciences, Tokyo University of Science, Noda, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- MIRAI, JST, Saitama, Japan
- * E-mail: (Y.S); (K.W)
| |
Collapse
|
32
|
De Lauro A, Di Rienzo L, Miotto M, Olimpieri PP, Milanetti E, Ruocco G. Shape Complementarity Optimization of Antibody–Antigen Interfaces: The Application to SARS-CoV-2 Spike Protein. Front Mol Biosci 2022; 9:874296. [PMID: 35669567 PMCID: PMC9163568 DOI: 10.3389/fmolb.2022.874296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Many factors influence biomolecule binding, and its assessment constitutes an elusive challenge in computational structural biology. In this aspect, the evaluation of shape complementarity at molecular interfaces is one of the main factors to be considered. We focus on the particular case of antibody–antigen complexes to quantify the complementarities occurring at molecular interfaces. We relied on a method we recently developed, which employs the 2D Zernike descriptors, to characterize the investigated regions with an ordered set of numbers summarizing the local shape properties. Collecting a structural dataset of antibody–antigen complexes, we applied this method and we statistically distinguished, in terms of shape complementarity, pairs of the interacting regions from the non-interacting ones. Thus, we set up a novel computational strategy based on in silico mutagenesis of antibody-binding site residues. We developed a Monte Carlo procedure to increase the shape complementarity between the antibody paratope and a given epitope on a target protein surface. We applied our protocol against several molecular targets in SARS-CoV-2 spike protein, known to be indispensable for viral cell invasion. We, therefore, optimized the shape of template antibodies for the interaction with such regions. As the last step of our procedure, we performed an independent molecular docking validation of the results of our Monte Carlo simulations.
Collapse
Affiliation(s)
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- *Correspondence: Lorenzo Di Rienzo,
| | - Mattia Miotto
- Center for Life Nano & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Edoardo Milanetti
- Center for Life Nano & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| |
Collapse
|
33
|
Piacentini R, Centi L, Miotto M, Milanetti E, Di Rienzo L, Pitea M, Piazza P, Ruocco G, Boffi A, Parisi G. Lactoferrin Inhibition of the Complex Formation between ACE2 Receptor and SARS CoV-2 Recognition Binding Domain. Int J Mol Sci 2022; 23:ijms23105436. [PMID: 35628247 PMCID: PMC9141661 DOI: 10.3390/ijms23105436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023] Open
Abstract
The present investigation focuses on the analysis of the interactions among human lactoferrin (LF), SARS-CoV-2 receptor-binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2) receptor in order to assess possible mutual interactions that could provide a molecular basis of the reported preventative effect of lactoferrin against CoV-2 infection. In particular, kinetic and thermodynamic parameters for the pairwise interactions among the three proteins were measured via two independent techniques, biolayer interferometry and latex nanoparticle-enhanced turbidimetry. The results obtained clearly indicate that LF is able to bind the ACE2 receptor ectodomain with significantly high affinity, whereas no binding to the RBD was observed up to the maximum “physiological” lactoferrin concentration range. Lactoferrin, above 1 µM concentration, thus appears to directly interfere with RBD–ACE2 binding, bringing about a measurable, up to 300-fold increase of the KD value relative to RBD–ACE2 complex formation.
Collapse
Affiliation(s)
- Roberta Piacentini
- Department of Biochemistry, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.P.); (L.C.); (A.B.)
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
| | - Laura Centi
- Department of Biochemistry, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.P.); (L.C.); (A.B.)
| | - Mattia Miotto
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Edoardo Milanetti
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Di Rienzo
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
| | - Martina Pitea
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
- D-Tails s.r.l., Via di Torre Rossa 66, 00165 Rome, Italy
| | - Paolo Piazza
- EDIF Instruments s.r.l., Via Ardeatina 132, 00147 Rome, Italy;
| | - Giancarlo Ruocco
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Boffi
- Department of Biochemistry, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.P.); (L.C.); (A.B.)
| | - Giacomo Parisi
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
- Correspondence:
| |
Collapse
|
34
|
Petitjean SJL, Chen W, Koehler M, Jimmidi R, Yang J, Mohammed D, Juniku B, Stanifer ML, Boulant S, Vincent SP, Alsteens D. Multivalent 9-O-Acetylated-sialic acid glycoclusters as potent inhibitors for SARS-CoV-2 infection. Nat Commun 2022; 13:2564. [PMID: 35538121 PMCID: PMC9091252 DOI: 10.1038/s41467-022-30313-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 01/08/2023] Open
Abstract
The recent emergence of highly transmissible SARS-CoV-2 variants illustrates the urgent need to better understand the molecular details of the virus binding to its host cell and to develop anti-viral strategies. While many studies focused on the role of the angiotensin-converting enzyme 2 receptor in the infection, others suggest the important role of cell attachment factors such as glycans. Here, we use atomic force microscopy to study these early binding events with the focus on the role of sialic acids (SA). We show that SARS-CoV-2 binds specifically to 9-O-acetylated-SA with a moderate affinity, supporting its role as an attachment factor during virus landing to cell host surfaces. For therapeutic purposes and based on this finding, we have designed novel blocking molecules with various topologies and carrying a controlled number of SA residues, enhancing affinity through a multivalent effect. Inhibition assays show that the AcSA-derived glycoclusters are potent inhibitors of cell binding and infectivity, offering new perspectives in the treatment of SARS-CoV-2 infection. Cell surface attachment factors, such as glycans, play an important role in viral infection. Here, Petitjean et al. show that SARS-CoV-2 specifically binds to 9-Oacetylated sialic acid and have designed novel inhibitors based on multivalent derivatives.
Collapse
Affiliation(s)
- Simon J L Petitjean
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Wenzhang Chen
- Laboratory of Bio-Organic Chemistry (NARILIS), UNamur, Namur, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ravikumar Jimmidi
- Laboratory of Bio-Organic Chemistry (NARILIS), UNamur, Namur, Belgium
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Blinera Juniku
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Megan L Stanifer
- Dept. of Infectious Diseases, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120, Heidelberg, Germany.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, USA
| | - Steeve Boulant
- Dept. of Infectious Diseases, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120, Heidelberg, Germany.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, USA
| | | | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium. .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium.
| |
Collapse
|
35
|
Scotto G, Fazio V, Lo Muzio E, Lo Muzio L, Spirito F. SARS-CoV-2 Infection and Taste Alteration: An Overview. Life (Basel) 2022; 12:690. [PMID: 35629357 PMCID: PMC9147711 DOI: 10.3390/life12050690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Since the worldwide spread of SARS-CoV-2 infection, the management of COVID-19 has been a challenge for healthcare professionals. Although the respiratory system has primarily been affected with symptoms ranging from mild pneumonia to acute respiratory distress syndrome, other organs or systems have also been targets of the virus. The mouth represents an important route of entry for SARS-CoV-2. Cells in the oral epithelium, taste buds, and minor and major salivary glands express cellular entry factors for the virus, such as ACE2, TMPRSS2 and Furin. This leads to symptoms such as deterioration of taste, salivary dysfunction, mucosal ulcers, before systemic manifestation of the disease. In this review we report and discuss the prevalence and socio-demographics of taste disturbances in COVID-19 patients, analysing the current international data. Importantly, we also take stock of the various hypothesized pathogenetic mechanisms and their impact on the reported symptoms. The literature indicated that COVID-19 patients frequently present with gustatory dysfunction, whose prevalence varies by country, age and sex. Furthermore, this dysfunction also has a variable duration in relation to the severity of the disease. The pathogenetic action is intricately linked to viral action which can be expressed in several ways. However, in many cases these are only hypotheses that need further confirmation.
Collapse
Affiliation(s)
- Gaetano Scotto
- Infectious Diseases Unit, University Hospital “OORR” Foggia, 71122 Foggia, Italy;
| | - Vincenzina Fazio
- Department of Prevention, Hygiene and Public Health Unit, University Hospital “OORR” Foggia, 71122 Foggia, Italy;
| | - Eleonora Lo Muzio
- Department of Dental Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
36
|
Unione L, Moure MJ, Lenza MP, Oyenarte I, Ereño‐Orbea J, Ardá A, Jiménez‐Barbero J. The SARS-CoV-2 Spike Glycoprotein Directly Binds Exogeneous Sialic Acids: A NMR View. Angew Chem Int Ed Engl 2022; 61:e202201432. [PMID: 35191576 PMCID: PMC9074024 DOI: 10.1002/anie.202201432] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 01/07/2023]
Abstract
The interaction of the SARS CoV2 spike glycoprotein with two sialic acid-containing trisaccharides (α2,3 and α2,6 sialyl N-acetyllactosamine) has been demonstrated by NMR. The NMR-based distinction between the signals of those sialic acids in the glycans covalently attached to the spike protein and those belonging to the exogenous α2,3 and α2,6 sialyl N-acetyllactosamine ligands has been achieved by synthesizing uniformly 13 C-labelled trisaccharides at the sialic acid and galactose moieties. STD-1 H,13 C-HSQC NMR experiments elegantly demonstrate the direct interaction of the sialic acid residues of both trisaccharides with additional participation of the galactose moieties, especially for the α2,3-linked analogue. Additional experiments with the spike protein in the presence of a specific antibody for the N-terminal domain and with the isolated receptor binding and N-terminal domains of the spike protein unambiguously show that the sialic acid binding site is located at the N-terminal domain.
Collapse
Affiliation(s)
- Luca Unione
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - María J. Moure
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - Maria Pia Lenza
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - Iker Oyenarte
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - June Ereño‐Orbea
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
- IkerbasqueBasque Foundation for ScienceMaria Diaz de Haro 348013 BilbaoBizkaiaSpain
| | - Ana Ardá
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
- IkerbasqueBasque Foundation for ScienceMaria Diaz de Haro 348013 BilbaoBizkaiaSpain
| | - Jesús Jiménez‐Barbero
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
- IkerbasqueBasque Foundation for ScienceMaria Diaz de Haro 348013 BilbaoBizkaiaSpain
- Department of Organic ChemistryII Faculty of Science and Technology University of the Basque Country, EHU-UPV48940LeioaSpain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES)28029MadridSpain
| |
Collapse
|
37
|
Grassmann G, Miotto M, Di Rienzo L, Gosti G, Ruocco G, Milanetti E. A novel computational strategy for defining the minimal protein molecular surface representation. PLoS One 2022; 17:e0266004. [PMID: 35421111 PMCID: PMC9009619 DOI: 10.1371/journal.pone.0266004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
Most proteins perform their biological function by interacting with one or more molecular partners. In this respect, characterizing local features of the molecular surface, that can potentially be involved in the interaction with other molecules, represents a step forward in the investigation of the mechanisms of recognition and binding between molecules. Predictive methods often rely on extensive samplings of molecular patches with the aim to identify hot spots on the surface. In this framework, analysis of large proteins and/or many molecular dynamics frames is often unfeasible due to the high computational cost. Thus, finding optimal ways to reduce the number of points to be sampled maintaining the biological information (including the surface shape) carried by the molecular surface is pivotal. In this perspective, we here present a new theoretical and computational algorithm with the aim of defining a set of molecular surfaces composed of points not uniformly distributed in space, in such a way as to maximize the information of the overall shape of the molecule by minimizing the number of total points. We test our procedure’s ability in recognizing hot-spots by describing the local shape properties of portions of molecular surfaces through a recently developed method based on the formalism of 2D Zernike polynomials. The results of this work show the ability of the proposed algorithm to preserve the key information of the molecular surface using a reduced number of points compared to the complete surface, where all points of the surface are used for the description. In fact, the methodology shows a significant gain of the information stored in the sampling procedure compared to uniform random sampling.
Collapse
Affiliation(s)
| | - Mattia Miotto
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
- * E-mail:
| |
Collapse
|
38
|
In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds. COMPUTATION 2022. [DOI: 10.3390/computation10040051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Some clinical studies have indicated activity of ivermectin, a macrocyclic lactone, against COVID-19, but a biological mechanism initially proposed for this anti-viral effect is not applicable at physiological concentrations. This in silico investigation explores potential modes of action of ivermectin and 14 related compounds, by which the infectivity and morbidity of the SARS-CoV-2 virus may be limited. Binding affinity computations were performed for these agents on several docking sites each for models of (1) the spike glycoprotein of the virus, (2) the CD147 receptor, which has been identified as a secondary attachment point for the virus, and (3) the alpha-7 nicotinic acetylcholine receptor (α7nAChr), an indicated point of viral penetration of neuronal tissue as well as an activation site for the cholinergic anti-inflammatory pathway controlled by the vagus nerve. Binding affinities were calculated for these multiple docking sites and binding modes of each compound. Our results indicate the high affinity of ivermectin, and even higher affinities for some of the other compounds evaluated, for all three of these molecular targets. These results suggest biological mechanisms by which ivermectin may limit the infectivity and morbidity of the SARS-CoV-2 virus and stimulate an α7nAChr-mediated anti-inflammatory pathway that could limit cytokine production by immune cells.
Collapse
|
39
|
Autoimmune Encephalitis in COVID-19 Infection: Our Experience and Systematic Review of the Literature. Biomedicines 2022; 10:biomedicines10040774. [PMID: 35453524 PMCID: PMC9024859 DOI: 10.3390/biomedicines10040774] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
The neurologic complications of COVID-19 infection are frequent in hospitalized patients; a high percentage of them present neurologic manifestations at some point during the course of their disease. Headache, muscle pain, encephalopathy and dizziness are among the most common complications. Encephalitis is an inflammatory condition with many etiologies. There are several forms of encephalitis associated with antibodies against intracellular neuronal proteins, cell surfaces or synaptic proteins, referred to as autoimmune encephalitis. Several case reports published in the literature document autoimmune encephalitis cases triggered by COVID-19 infection. Our paper first presents our experience in this issue and then systematically reviews the literature on autoimmune encephalitis that developed in the background of SARS-CoV-2 infections and also discusses the possible pathophysiological mechanisms of auto-immune-mediated damage to the nervous system. This review contributes to improve the management and prognosis of COVID-19-related autoimmune encephalitis.
Collapse
|
40
|
Unione L, Moure MJ, Lenza MP, Oyenarte I, Ereño‐Orbea J, Ardá A, Jiménez‐Barbero J. The SARS‐CoV‐2 Spike Glycoprotein Directly Binds Exogeneous Sialic Acids: A NMR View. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Luca Unione
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - María J. Moure
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - Maria Pia Lenza
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - Iker Oyenarte
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - June Ereño‐Orbea
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Bizkaia Spain
| | - Ana Ardá
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Bizkaia Spain
| | - Jesús Jiménez‐Barbero
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Bizkaia Spain
- Department of Organic Chemistry II Faculty of Science and Technology University of the Basque Country, EHU-UPV 48940 Leioa Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES) 28029 Madrid Spain
| |
Collapse
|
41
|
Scheim DE. A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at Its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody. Int J Mol Sci 2022; 23:2558. [PMID: 35269703 PMCID: PMC8910562 DOI: 10.3390/ijms23052558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Rouleaux (stacked clumps) of red blood cells (RBCs) observed in the blood of COVID-19 patients in three studies call attention to the properties of several enveloped virus strains dating back to seminal findings of the 1940s. For COVID-19, key such properties are: (1) SARS-CoV-2 binds to RBCs in vitro and also in the blood of COVID-19 patients; (2) although ACE2 is its target for viral fusion and replication, SARS-CoV-2 initially attaches to sialic acid (SA) terminal moieties on host cell membranes via glycans on its spike protein; (3) certain enveloped viruses express hemagglutinin esterase (HE), an enzyme that releases these glycan-mediated bindings to host cells, which is expressed among betacoronaviruses in the common cold strains but not the virulent strains, SARS-CoV, SARS-CoV-2 and MERS. The arrangement and chemical composition of the glycans at the 22 N-glycosylation sites of SARS-CoV-2 spike protein and those at the sialoglycoprotein coating of RBCs allow exploration of specifics as to how virally induced RBC clumping may form. The in vitro and clinical testing of these possibilities can be sharpened by the incorporation of an existing anti-COVID-19 therapeutic that has been found in silico to competitively bind to multiple glycans on SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- David E Scheim
- US Public Health Service, Commissioned Officer, Inactive Reserve, Blacksburg, VA 24060, USA
| |
Collapse
|
42
|
Jayaprakash NG, Surolia A. Spike Protein and the Various Cell-Surface Carbohydrates: An Interaction Study. ACS Chem Biol 2022; 17:103-117. [PMID: 34928574 PMCID: PMC8713392 DOI: 10.1021/acschembio.1c00691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023]
Abstract
The SARS-CoV-2 virus has been known to gain entry into the host cell through the spike protein that binds to the host ACE2 cell surface protein. However, the role of the putative sugar-binding sites in the spike protein has remained unclear. We provide a comprehensive in silico outlook into the infection initiation wherein the virus first recognizes the sialosides on the cell via its S1A domain of the spike protein as it surfs over the cell surface. This facilitates the subsequent interaction with the cellular glycosaminoglycans through the S1B domain of the spike protein as it binds to the ACE2 receptor. The unique coadaptation to recognize both the host protein and the cell-surface carbohydrate receptors provides an additional coupling mechanism for efficient viral attachment and infection.
Collapse
Affiliation(s)
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute
of Science, Bangalore-560012, India
| |
Collapse
|
43
|
Miotto M, Di Rienzo L, Gosti G, Bo' L, Parisi G, Piacentini R, Boffi A, Ruocco G, Milanetti E. Inferring the stabilization effects of SARS-CoV-2 variants on the binding with ACE2 receptor. Commun Biol 2022; 5:20221. [PMID: 34992214 PMCID: PMC8738749 DOI: 10.1038/s42003-021-02946-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
As the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic continues to spread, several variants of the virus, with mutations distributed all over the viral genome, are emerging. While most of the variants present mutations having little to no effects at the phenotypic level, some of these variants are spreading at a rate that suggests they may present a selective advantage. In particular, these rapidly spreading variants present specific mutations on the spike protein. These observations call for an urgent need to characterize the effects of these variants’ mutations on phenotype features like contagiousness and antigenicity. With this aim, we performed molecular dynamics simulations on a selected set of possible spike variants in order to assess the stabilizing effect of particular amino acid substitutions on the molecular complex. We specifically focused on the mutations that are both characteristic of the top three most worrying variants at the moment, i.e the English, South African, and Amazonian ones, and that occur at the molecular interface between SARS-CoV-2 spike protein and its human ACE2 receptor. We characterize these variants’ effect in terms of (i) residue mobility, (ii) compactness, studying the network of interactions at the interface, and (iii) variation of shape complementarity via expanding the molecular surfaces in the Zernike basis. Overall, our analyses highlighted greater stability of the three variant complexes with respect to both the wild type and two negative control systems, especially for the English and Amazonian variants. In addition, in the three variants, we investigate the effects a not-yet observed mutation in position 501 could provoke on complex stability. We found that a phenylalanine mutation behaves similarly to the English variant and may cooperate in further increasing the stability of the South African one, hinting at the need for careful surveillance for the emergence of these mutations in the population. Ultimately, we show that the proposed observables describe key features for the stability of the ACE2-spike complex and can help to monitor further possible spike variants. Miotto et al. perform molecular dynamics simulations on a selected set of possible SARS-CoV-2 spike variants in order to assess the stabilizing effect of particular amino acid substitutions on the molecular complex. Their analysis can help to monitor further possible spike variants.
Collapse
Affiliation(s)
- Mattia Miotto
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Leonardo Bo'
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giacomo Parisi
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Roberta Piacentini
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.,Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy
| | - Alberto Boffi
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.,Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.,Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy. .,Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
44
|
Grassmann G, Miotto M, Di Rienzo L, Salaris F, Silvestri B, Zacco E, Rosa A, Tartaglia GG, Ruocco G, Milanetti E. A Computational Approach to Investigate TDP-43 RNA-Recognition Motif 2 C-Terminal Fragments Aggregation in Amyotrophic Lateral Sclerosis. Biomolecules 2021; 11:1905. [PMID: 34944548 PMCID: PMC8699346 DOI: 10.3390/biom11121905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Many of the molecular mechanisms underlying the pathological aggregation of proteins observed in neurodegenerative diseases are still not fully understood. Among the aggregate-associated diseases, Amyotrophic Lateral Sclerosis (ALS) is of relevant importance. In fact, although understanding the processes that cause the disease is still an open challenge, its relationship with protein aggregation is widely known. In particular, human TDP-43, an RNA/DNA binding protein, is a major component of the pathological cytoplasmic inclusions observed in ALS patients. Indeed, the deposition of the phosphorylated full-length TDP-43 in spinal cord cells has been widely studied. Moreover, it has also been shown that the brain cortex presents an accumulation of phosphorylated C-terminal fragments (CTFs). Even if it is debated whether the aggregation of CTFs represents a primary cause of ALS, it is a hallmark of TDP-43 related neurodegeneration in the brain. Here, we investigate the CTFs aggregation process, providing a computational model of interaction based on the evaluation of shape complementarity at the molecular interfaces. To this end, extensive Molecular Dynamics (MD) simulations were conducted for different types of protein fragments, with the aim of exploring the equilibrium conformations. Adopting a newly developed approach based on Zernike polynomials, able to find complementary regions in the molecular surface, we sampled a large set of solvent-exposed portions of CTFs structures as obtained from MD simulations. Our analysis proposes and assesses a set of possible association mechanisms between the CTFs, which could drive the aggregation process of the CTFs. To further evaluate the structural details of such associations, we perform molecular docking and additional MD simulations to propose possible complexes and assess their stability, focusing on complexes whose interacting regions are both characterized by a high shape complementarity and involve β3 and β5 strands at their interfaces.
Collapse
Affiliation(s)
- Greta Grassmann
- Department of Physics and Astronomy, University of Bologna, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy; or
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Mattia Miotto
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Lorenzo Di Rienzo
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Federico Salaris
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
| | - Beatrice Silvestri
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Elsa Zacco
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy;
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy;
- Center for Human Technologies, Via Enrico Melen 83, 16152 Genova, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (M.M.); (L.D.R.); (F.S.); (B.S.); (A.R.); (G.G.T.); (G.R.)
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
45
|
Srinivasan M. Taste Dysfunction and Long COVID-19. Front Cell Infect Microbiol 2021; 11:716563. [PMID: 34336725 PMCID: PMC8317431 DOI: 10.3389/fcimb.2021.716563] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
46
|
Gu R, Mao T, Lu Q, Tianjiao Su T, Wang J. Myeloid dysregulation and therapeutic intervention in COVID-19. Semin Immunol 2021; 55:101524. [PMID: 34823995 PMCID: PMC8576142 DOI: 10.1016/j.smim.2021.101524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
The dysregulation of myeloid cell responses is increasingly demonstrated to be a major mechanism of pathogenesis for COVID-19. The pathological cellular and cytokine signatures associated with this disease point to a critical role of a hyperactivated innate immune response in driving pathology. Unique immunopathological features of COVID-19 include myeloid-cell dominant inflammation and cytokine release syndrome (CRS) alongside lymphopenia and acute respiratory distress syndrome (ARDS), all of which correlate with severe disease. Studies suggest a range of causes mediating myeloid hyperactivation, such as aberrant innate sensing, asynchronized immune cellular responses, as well as direct viral protein/host interactions. These include the recent identification of new myeloid cell receptors that bind SARS-CoV-2, which drive myeloid cell hyperinflammatory responses independently of lung epithelial cell infection via the canonical receptor, angiotensin-converting enzyme 2 (ACE2). The spectrum and nature of myeloid cell dysregulation in COVID-19 also differs from, at least to some extent, what is observed in other infectious diseases involving myeloid cell activation. While much of the therapeutic effort has focused on preventative measures with vaccines or neutralizing antibodies that block viral infection, recent clinical trials have also targeted myeloid cells and the associated cytokines as a means to resolve CRS and severe disease, with promising but thus far modest effects. In this review, we critically examine potential mechanisms driving myeloid cell dysregulation, leading to immunopathology and severe disease, and discuss potential therapeutic strategies targeting myeloid cells as a new paradigm for COVID-19 treatment.
Collapse
Affiliation(s)
- Runxia Gu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Qiao Lu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
| | - Tina Tianjiao Su
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA.
| |
Collapse
|