1
|
Yoffe L, Bhinder B, Kang SW, Zhang H, Singh A, Ravichandran H, Markowitz G, Martin M, Kim J, Zhang C, Elemento O, Tansey W, Bates S, McGraw TE, Borczuk A, Lee HS, Altorki NK, Mittal V. Acquisition of discrete immune suppressive barriers contributes to the initiation and progression of preinvasive to invasive human lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630523. [PMID: 39803458 PMCID: PMC11722343 DOI: 10.1101/2024.12.31.630523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Computerized chest tomography (CT)-guided screening in populations at risk for lung cancer has increased the detection of preinvasive subsolid nodules, which progress to solid invasive adenocarcinoma. Despite the clinical significance, there is a lack of effective therapies for intercepting the progression of preinvasive to invasive adenocarcinoma. To uncover determinants of early disease emergence and progression, we used integrated single-cell approaches, including scRNA-seq, multiplexed imaging mass cytometry and spatial transcriptomics, to construct the first high-resolution map of the composition, lineage/functional states, developmental trajectories and multicellular crosstalk networks from microdissected non-solid (preinvasive) and solid compartments (invasive) of individual part-solid nodules. We found that early disease initiation and subsequent progression are associated with the evolution of immune-suppressive cellular phenotypes characterized by decreased cytotoxic CD8 T and NK cells, increased T cell exhaustion and accumulation of immunosuppressive regulatory T cells (Tregs) and M2-like macrophages expressing TREM2. Within Tregs, we identified a unique population of 4-1BB+ Treg subset enriched for the IL2-STAT5 suppressive pathway with transcription profiles supporting discrete metabolic alterations. Spatial analysis showed increased density of suppressive immune cells around tumor cells, increased exhaustion phenotype of both CD4 and CD8 T cells expressing chemokine CXCL13, and spatial microcomplex of endothelial and lymphocyte interactions within tertiary lymphoid structures. The single-cell architecture identifies determinants of early disease emergence and progression, which may be developed not only as diagnostic/prognostic biomarkers but also as targets for disease interception. Additionally, our dataset constitutes a valuable resource for the preinvasive lung cancer research community.
Collapse
Affiliation(s)
- Liron Yoffe
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Sung Wook Kang
- David Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Haoran Zhang
- Department of Computer Science, University of Texas at Austin, TX 78712, USA
| | - Arshdeep Singh
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Geoffrey Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Mitchell Martin
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Chen Zhang
- Department of Pathology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Wesley Tansey
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stewart Bates
- Interventional Oncology, Johnson and Johnson, 50-100 Holmers Farm Way, High Wycombe, UK, HP12 4DP
| | - Timothy E. McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Alain Borczuk
- Department of Pathology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Hyun-Sung Lee
- David Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| |
Collapse
|
2
|
Li J, Yang D, Lin L, Yu L, Chen L, Lu K, Lan J, Zeng Y, Xu Y. Important functions and molecular mechanisms of aquaporins family on respiratory diseases: potential translational values. J Cancer 2024; 15:6073-6085. [PMID: 39440058 PMCID: PMC11493008 DOI: 10.7150/jca.98829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024] Open
Abstract
Aquaporins (AQPs) are a subgroup of small transmembrane transporters that are distributed in various types of tissues, including the lung, kidney, heart and central nervous system. It is evident that respiratory diseases represent a significant global health concern, with a considerable number of deaths occurring worldwide. Recent researches have demonstrated that AQPs play a pivotal role in respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, acute respiratory distress syndrome (ARDS), and particularly non-small cell lung cancer (NSCLC). In the context of NSCLC, the overexpression of AQP1, AQP3, AQP4, and AQP5 has been demonstrated to facilitate tumor angiogenesis, as well as the proliferation, migration, and invasiveness of tumor cells. This review concisely explores the role of AQP family on respiratory diseases, to assess their clinical and translational significance for understanding molecular pathogenesis. However, the potential translation of AQPs biomarkers into clinical applications is promising and the understanding of the precise mechanisms influencing respiratory diseases is still ongoing. Addressing the challenges and outlining the future perspectives in AQPs development is essential for clinical progress in a concise manner.
Collapse
Affiliation(s)
- Jinshan Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Dongyong Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Kaiqiang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Jieli Lan
- Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, 350000, China
| |
Collapse
|
3
|
Lin G, Lin L, Chen X, Chen L, Yang J, Chen Y, Qian D, Zeng Y, Xu Y. PPAR-γ/NF-kB/AQP3 axis in M2 macrophage orchestrates lung adenocarcinoma progression by upregulating IL-6. Cell Death Dis 2024; 15:532. [PMID: 39060229 PMCID: PMC11282095 DOI: 10.1038/s41419-024-06919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Aquaporin 3 (AQP3), which is mostly expressed in pulmonary epithelial cells, was linked to lung adenocarcinoma (LUAD). However, the underlying functions and mechanisms of AQP3 in the tumor microenvironment (TME) of LUAD have not been elucidated. Single-cell RNA sequencing (scRNA-seq) was used to study the composition, lineage, and functional states of TME-infiltrating immune cells and discover AQP3-expressing subpopulations in five LUAD patients. Then the identifications of its function on TME were examined in vitro and in vivo. AQP3 was associated with TNM stages and lymph node metastasis of LUAD patients. We classified inter- and intra-tumor diversity of LUAD into twelve subpopulations using scRNA-seq analyses. The analysis showed AQP3 was mainly enriched in subpopulations of M2 macrophages. Importantly, mechanistic investigations indicated that AQP3 promoted M2 macrophage polarization by the PPAR-γ/NF-κB axis, which affected tumor growth and migration via modulating IL-6 production. Mixed subcutaneous transplanted tumor mice and Aqp3 knockout mice models were further utilized, and revealed that AQP3 played a critical role in mediating M2 macrophage polarization, modulating glucose metabolism in tumors, and regulating both upstream and downstream pathways. Overall, our study demonstrated that AQP3 could regulate the proliferation, migration, and glycometabolism of tumor cells by modulating M2 macrophages polarization through the PPAR-γ/NF-κB axis and IL-6/IL-6R signaling pathway, providing new insight into the early detection and potential therapeutic target of LUAD.
Collapse
Affiliation(s)
- Guofu Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Lanlan Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Xiaohui Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Jiansheng Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Yanling Chen
- Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Danwen Qian
- The Tumor Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, UK
| | - Yiming Zeng
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China.
| | - Yuan Xu
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
| |
Collapse
|
4
|
Lin H, Lin G, Lin L, Yang J, Yang D, Lin Q, Xu Y, Zeng Y. Comprehensive analysis of prognostic value and immune infiltration of Regulator of Chromosome Condensation 2 in lung adenocarcinoma. J Cancer 2024; 15:1901-1915. [PMID: 38434981 PMCID: PMC10905397 DOI: 10.7150/jca.91367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Background: Lung adenocarcinoma (LUAD) incidence and mortality take the leading place of most malignancies. Previous studies have revealed the regulator of chromosome condensation 1 (RCC1) family members played an essential role during tumorigenesis. However, its biological functions in LUAD still need further investigation. Methods: Several databases were applied to explore potential effects of RCC1 family members on LUAD, such as Oncomine, GEPIA, and cBioPortal. Real-time PCR and immunohistochemistry were used to verify the expression of RCC2 in stage I LUAD. H1975 and A549 were selected to explore the biological function of RCC2 in cellular malignant phenotype. Results: The expressions of RCC1 and RCC2 showed marked differences in malignant tissue compared to lung tissue. The higher the expression levels of RCC1 or RCC2 in LUAD patients, the shorter their overall survival (OS). In normal lung tissues, RCC1 expression was highly enriched in alveolar cells and endothelial cells. Compare with RCC1, RCC2 expression in normal lung tissue was significantly enriched in macrophages, B cells and granulocytes. Additionally, RCC2 expression level was correlated with multiple immune cell infiltration in LUAD. Moreover, the mutation or different sCNA status of RCC2 exerted influence on multiple immune cell infiltration distribution. We found that the upregulation of RCC1 and RCC2 were obviously related to TP53 mutation. GSEA analysis revealed that RCC2 was involved in the process of DNA replication, nucleotide excision repair and cell cycle, which might affect tumor progression through P53 signaling pathway. We further elucidated that downregulation of RCC2 could dramatically repress the migration and invasion of LUAD cells. Conclusions: The study demonstrated that RCC1 and RCC2 expression were markedly increased in early-stage of LUAD. Patients with high expression of RCC1 or RCC2 had a worse prognosis. Based on our analysis, RCC1 and RCC2 might exert influence on LUAD process through DNA replication, nucleotide excision repair and cell cycle, as well as cells migration and invasion. Different from RCC1, RCC2 also involved in immune infiltration. These analyses provided a novel insight into the identification of diagnostic biomarker.
Collapse
Affiliation(s)
- Hai Lin
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China
- The Second Clinical College, Fujian Medical University, Fuzhou, China
| | - Guofu Lin
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China
- The Second Clinical College, Fujian Medical University, Fuzhou, China
| | - Lanlan Lin
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China
- The Second Clinical College, Fujian Medical University, Fuzhou, China
| | - Jiansheng Yang
- Department of thoracic surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Dongyong Yang
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China
| | - Qinhui Lin
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China
| | - Yuan Xu
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China
| | - Yiming Zeng
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China
| |
Collapse
|
5
|
Zhang X, Liang B, Huang Y, Meng H, Li Z, Du J, Zhou L, Zhong Y, Wang B, Lin X, Yu G, Chen X, Lu W, Chen Z, Yang X, Huang Z. Behind the Indolent Facade: Uncovering the Molecular Features and Malignancy Potential in Lung Minimally Invasive Adenocarcinoma by Single-Cell Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303753. [PMID: 37991139 PMCID: PMC10754125 DOI: 10.1002/advs.202303753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/28/2023] [Indexed: 11/23/2023]
Abstract
The increased use of low-dose computed tomography screening has led to more frequent detection of early stage lung tumors, including minimally invasive adenocarcinoma (MIA). To unravel the intricacies of tumor cells and the immune microenvironment in MIA, this study performs a comprehensive single-cell transcriptomic analysis and profiles the transcriptomes of 156,447 cells from fresh paired MIA and invasive adenocarcinoma (IA) tumor samples, peripheral blood mononuclear cells, and adjacent normal tissue samples from three patients with synchronous multiple primary lung adenocarcinoma. This study highlights a connection and heterogeneity between the tumor ecosystem of MIA and IA. MIA tumor cells exhibited high expression of aquaporin-1 and angiotensin II receptor type 2 and a basal-like molecular character. Furthermore, it identifies that cathepsin B+ tumor-associated macrophages may over-activate CD8+ T cells in MIA, leading to an enrichment of granzyme K+ senescent CD8+ T cells, indicating the possibility of malignant progression behind the indolent appearance of MIA. These findings are further validated in 34 MIA and 35 IA samples by multiplexed immunofluorescence. These findings provide valuable insights into the mechanisms that maintain the indolent nature and prompt tumor progression of MIA and can be used to develop more effective therapeutic targets and strategies for MIA patients.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthGuangzhou510140China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Hao Meng
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Lang Zhou
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Bo Wang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Xi Lin
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Guangchuang Yu
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xuewei Chen
- Department of Thoracic SurgeryThe First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthGuangzhou510140China
| | - Weixiang Lu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthGuangzhou510140China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of CosmeticsGuangdong Provincial Key Laboratory of Tropical Disease ResearchSchool of Public HealthSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
6
|
Zhu B, Zhou W, Chen C, Cao A, Luo W, Huang C, Wang J. AQP4 is an Emerging Regulator of Pathological Pain: A Narrative Review. Cell Mol Neurobiol 2023; 43:3997-4005. [PMID: 37864629 PMCID: PMC11407711 DOI: 10.1007/s10571-023-01422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023]
Abstract
Pathological pain presents significant challenges in clinical practice and research. Aquaporin-4 (AQP4), which is primarily found in astrocytes, is being considered as a prospective modulator of pathological pain. This review examines the association between AQP4 and pain-related diseases, including cancer pain, neuropathic pain, and inflammatory pain. In cancer pain, upregulated AQP4 expression in tumor cells is linked to increased pain severity, potentially through tumor-induced inflammation and edema. Targeting AQP4 may offer therapeutic strategies for managing cancer pain. AQP4 has also been found to play a role in nerve damage. Changes in AQP4 expression have been detected in pain-related regions of the brain and spinal cord; thus, modulating AQP4 expression or function may provide new avenues for treating neuropathic pain. Of note, AQP4-deficient mice exhibit reduced chronic pain responses, suggesting potential involvement of AQP4 in chronic pain modulation, and AQP4 is involved in pain modulation during inflammation, so understanding AQP4-mediated pain modulation may lead to novel anti-inflammatory and analgesic therapies. Recent advancements in magnetic resonance imaging (MRI) techniques enable assessment of AQP4 expression and localization, contributing to our understanding of its involvement in brain edema and clearance pathways related to pathological pain. Furthermore, targeting AQP4 through gene therapies and small-molecule modulators shows promise as a potential therapeutic intervention. Future research should focus on utilizing advanced MRI techniques to observe glymphatic system changes and the exchange of cerebrospinal fluid and interstitial fluid. Additionally, investigating the regulation of AQP4 by non-coding RNAs and exploring novel small-molecule medicines are important directions for future research. This review shed light on AQP4-based innovative therapeutic strategies for the treatment of pathological pain. Dark blue cells represent astrocytes, green cells represent microglia, and red ones represent brain microvasculature.
Collapse
Affiliation(s)
- Binbin Zhu
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Weijian Zhou
- Health Science Center, Ningbo University, Ningbo, China
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chunqu Chen
- Health Science Center, Ningbo University, Ningbo, China
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Angyang Cao
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Wenjun Luo
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Changshun Huang
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Jianhua Wang
- Health Science Center, Ningbo University, Ningbo, China.
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
7
|
Jaskiewicz L, Romaszko-Wojtowicz A, Doboszynska A, Skowronska A. The Role of Aquaporin 5 (AQP5) in Lung Adenocarcinoma: A Review Article. Cells 2023; 12:cells12030468. [PMID: 36766810 PMCID: PMC9913646 DOI: 10.3390/cells12030468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Aquaporins (AQPs) are selective, transmembrane proteins, which are primarily responsible for the transport of water and small molecules. They have been demonstrated to play a key role in the development and progression of cancer. Lung adenocarcinoma is the most common primary lung cancer diagnosed in patients in Europe and the USA. The research done so far has provided firm evidence that some AQPs can be biomarkers for various diseases. The objective of this review article is to present a potential role of AQP5 in the development of lung adenocarcinoma. Original papers discussing the involvement of AQP5 in carcinogenesis and containing relevant clinical data were identified. In order to analyze the research material in accordance with PRISMA guidelines, a systematic search of the ScienceDirect, Web of Science, and Pubmed databases was conducted. Out of the total number of 199 papers identified, 14 original articles were subject to analysis. This article presents the pathophysiological role of AQP5 in the biology of lung adenocarcinoma as well as its prognostic value. The analysis substantiates the conclusion that the prognostic value of AQP5 in lung cancer requires further research. Another aim of this paper is to disseminate knowledge about AQPs among clinicians.
Collapse
Affiliation(s)
- Lukasz Jaskiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
- Correspondence: (L.J.); (A.R.-W.)
| | - Anna Romaszko-Wojtowicz
- Department of Pulmonology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (L.J.); (A.R.-W.)
| | - Anna Doboszynska
- Department of Pulmonology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
8
|
Hirano S, Kojima A, Nakayama Y, Takeda T, Kishimoto T, Takahashi T, Kuwabara S, Mori M. A case report of neuromyelitis optica spectrum disorder induced by pembrolizumab treatment for lung adenocarcinoma: a clinical and immunohistochemical study. BMC Neurol 2022; 22:483. [PMID: 36517738 PMCID: PMC9753385 DOI: 10.1186/s12883-022-02987-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND We report a case of neuromyelitis optica spectrum disorders (NMOSD), who developed after the pembrolizumab treatment, an immune checkpoint inhibitor, against lung adenocarcinoma. The present case is discussed with the lung adenocarcinoma specimen which was stained by aquaporin-4 (AQP4) and with literature review of NMOSD linked to immune checkpoint inhibitors. CASE PRESENTATION A 62-year-old Japanese man presented with acute diencephalic syndrome, left optic neuritis, and myelitis 5 months after initiation of pembrolizumab treatment for lung adenocarcinoma. He was diagnosed with NMOSD based on serum anti-aquaporin-4 (AQP4) antibody positivity. Immunohistochemistry of lung biopsy samples showed AQP4 expression on CD68+ cells. This is the fifth reported case of AQP4+ NMOSD triggered by an immune checkpoint inhibitor and the first with a brain lesion. Four out of five NMOSD cases, including the present case and one case with lung metastasis, had lung cancer. CONCLUSIONS Immune checkpoint inhibitors may trigger AQP4+ NMOSD owing to their molecular similarity to AQP4 expressed in lung and glial tissues. Prompt brain/spinal cord imaging and anti-AQP4 antibody testing may facilitate early diagnosis of immune-mediated adverse event in central nervous system associated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Shigeki Hirano
- grid.136304.30000 0004 0370 1101Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba Chiba, 260-8670 Japan ,grid.416096.c0000 0004 0569 0258Department of Internal Medicine, Funabashi Central Hospital, Funabashi, Chiba Japan
| | - Akira Kojima
- grid.416096.c0000 0004 0569 0258Department of Internal Medicine, Funabashi Central Hospital, Funabashi, Chiba Japan
| | - Yoko Nakayama
- grid.416096.c0000 0004 0569 0258Department of Ophthalmology, Funabashi Central Hospital, Funabashi, Chiba Japan
| | - Takahiro Takeda
- grid.416698.4Department of Neurology, National Hospital Organization Chiba-Higashi Hospital, Chiba, Chiba Japan
| | - Takashi Kishimoto
- grid.136304.30000 0004 0370 1101Department of Molecular Pathology, Graduate School of Medicine, Chiba University, Chiba, Chiba Japan
| | - Toshiyuki Takahashi
- grid.69566.3a0000 0001 2248 6943Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan ,Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa, Yamagata Japan
| | - Satoshi Kuwabara
- grid.136304.30000 0004 0370 1101Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba Chiba, 260-8670 Japan
| | - Masahiro Mori
- grid.136304.30000 0004 0370 1101Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba Chiba, 260-8670 Japan
| |
Collapse
|
9
|
The Comprehensive Analysis of Hub Gene ARRB2 in Prostate Cancer. DISEASE MARKERS 2022; 2022:8518378. [PMID: 36284990 PMCID: PMC9588343 DOI: 10.1155/2022/8518378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022]
Abstract
Methods The differential expressed genes (DEGs) were screened from the gene expression profile GSE30994 related to PRAD and then analyzed by protein-protein interaction (PPI) to screen the hub gene. Subsequently, the relation between hub gene and pan cancers, PRAD prognosis, and immunotherapy was analyzed. Besides, the effects of hub gene on the growth and metastasis of PRAD cell lines and inflammatory factors (IFs) were detected by functional experiments. Results 276 upregulated and 1,861 downregulated DEGs were analyzed from GSE30994 gene expression profiles. Through enrichment analysis, it was found that upregulated DEGs were significantly enriched in nitric oxide-mediated signal transduction, insulin signaling pathway, etc. Through PPI networks, ARRB2 was determined as the hub gene that was highly expressed in pan cancers, including PRAD, and contributed to poor prognosis of PRAD patients. Immunoassay showed that ARRB2 was associated with B cells, NK cells, endothelial cells, etc. and also connected with tumor-infiltrating lymphocytes (TILs). Next, the signature model analysis revealed that ARRB2 had a clinical value in predicting PRAD prognosis. In functional experiments, ARRB2 was highly expressed in PRAD cell lines, promoted PRAD cell growth and metastasis, and positively associated with IFs. Conclusion ARRB2 has a good prognostic ability in PRAD, and it could be a potential target of PRAD immunotherapy, which offers new directions for PRAD research.
Collapse
|
10
|
Expression Profiles of AQP3 and AQP4 in Lung Adenocarcinoma Samples Generated via Bronchoscopic Biopsies. J Clin Med 2022; 11:jcm11195954. [PMID: 36233821 PMCID: PMC9573329 DOI: 10.3390/jcm11195954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
Aquaporins (AQPs) are highly conserved channel proteins which are mainly responsible for the exchange of water and small molecules and have shown to play a pivotal role in the development and progression of cancer. Lung adenocarcinoma is the most common primary lung cancer seen in patients in Europe and the United States. However, in patients it is often not diagnosed until the advanced tumor stage is present. Previous studies provided strong evidence that some members of the AQP family could serve as clinical biomarkers for different diseases. Therefore, we aimed to investigate how AQP3 and AQP4 protein expression in lung adenocarcinoma (ADC) biopsy samples correlate with clinical and pathological parameters. The protein expression of AQP3 and AQP4 was analyzed based on immunohistochemical staining. AQP3 protein was observed in the cytoplasmic membrane of cancer tissue in 82% of lung samples. Significant differences in relative protein expression of AQP3 were noted between advanced age patients compared to younger counterparts (p = 0.017). A high expression of AQP3 was significant in cancer tissue when compared to the control group (p < 0.001), whereas a low AQP4 membrane expression was noted as significantly common in cancer tissue compared to non-neoplastic lung tissue (p < 0.001). Moreover, a low AQP4 membrane expression was positively correlated with a more advanced disease status, e.g., lymph node metastases (p = 0.046). Based on our findings, AQP3 and AQP4 could be used as biomarkers in ADC patients.
Collapse
|
11
|
Lin G, Lin L, Lin H, Chen W, Chen L, Chen X, Chen S, Lin Q, Xu Y, Zeng Y. KCNK3 inhibits proliferation and glucose metabolism of lung adenocarcinoma via activation of AMPK-TXNIP pathway. Cell Death Dis 2022; 8:360. [PMID: 35963847 PMCID: PMC9376064 DOI: 10.1038/s41420-022-01152-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a primary histological subtype of lung cancer with increased morbidity and mortality. K+ channels have been revealed to be involved in carcinogenesis in various malignant tumors. However, TWIK-related acid-sensitive potassium channel 1 (TASK-1, also called KCNK3), a genetic member of K2P channels, remains an enigma in lung adenocarcinoma (LUAD). Herein, we investigated the pathological process of KCNK3 in proliferation and glucose metabolism of LUAD. The expressions of KCNK3 in LUAD tissues and corresponding adjacent tissues were identified by RNA sequencing, quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry. Gain and loss-of-function assays were performed to estimate the role of KCNK3 in proliferation and glucose metabolism of LUAD. Additionally, energy metabolites of LUAD cells were identified by targeted metabolomics analysis. The expressions of metabolic molecules and active biomarkers associated with AMPK-TXNIP signaling pathway were detected via western blot and immunofluorescence. KCNK3 was significantly downregulated in LUAD tissues and correlated with patients' poor prognosis. Overexpression of KCNK3 largely regulated the process of oncogenesis and glycometabolism in LUAD in vitro and in vivo. Mechanistic studies found that KCNK3-mediated differential metabolites were mainly enriched in AMPK signaling pathway. Furthermore, rescue experiments demonstrated that KCNK3 suppressed proliferation and glucose metabolism via activation of the AMPK-TXNIP pathway in LUAD cells. In summary, our research highlighted an emerging role of KCNK3 in the proliferative activity and glycometabolism of LUAD, suggesting that KCNK3 may be an optimal predictor for prognosis and a potential therapeutic target of LUAD.
Collapse
Affiliation(s)
- Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Hai Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Wenhan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Shaohua Chen
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Qinhui Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China. .,Clinical Research Unit, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China. .,Clinical Research Unit, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.
| |
Collapse
|
12
|
A Potential Prognostic Marker PRDM1 in Pancreatic Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1934381. [PMID: 35607327 PMCID: PMC9123419 DOI: 10.1155/2022/1934381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic adenocarcinoma (PAAD) is a major threat to people's health. PRDM1 is a transcription factor with multiple functions, and its functions have been validated in a variety of tumors; however, there are few studies reported on PRDM1 in PAAD. Using the GEPIA2 database, this research found that PRDM1 expression in PAAD was significantly higher than that in normal pancreatic tissue. The Kaplan-Meier Plotter database showed that high expression of PRDM1 in PAAD has a poor prognosis, suggesting that PRDM1 may be a potential prognostic marker in PAAD. The cBioPortal database shows that the expression of PRDM1 in PAAD is significantly correlated with its methylation degree. Further analysis on the coexpressed genes of PRDM1 in PAAD was performed by using LinkedOmics database to explore potential mechanisms. Based on gene enrichment analysis, PRDM1 was implicated in many pathways involved in tumor progression. In the construction of a PPI network of PRDM1 and its coexpressed gene protein via the STRING database, we found that PRDM1 may be involved in the pathogenesis and development of PAAD. TIMER database suggested that a high level of PRDM1 has a significant positive correlation with macrophages, neutrophils, and DCs. Potential methylation sites of PRDM1 were found through DNMIVD database, and MethSurv database explored eight sites which were significantly related with the prognosis of PAAD. In conclusion, PRDM1 may work as a prognostic marker or even provide a potential therapeutic strategy in PAAD.
Collapse
|