1
|
Urashima T, Ajisaka K, Ujihara T, Nakazaki E. Recent advances in the science of human milk oligosaccharides. BBA ADVANCES 2025; 7:100136. [PMID: 39991261 PMCID: PMC11847054 DOI: 10.1016/j.bbadva.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 02/25/2025] Open
Abstract
Human colostrum and mature milk contain oligosaccharides (Os), designated as human milk oligosaccharides (HMOs). Approximately 200 varieties of HMOs have been characterized. Although HMOs are not utilized as an energy source by infants, they have important protective functions, including pathogenic bacteria and viral infection inhibitors and immune modulators, among other functions, and HMOs stimulate brain-nerve development. The Os concentration is average 11 g/L in human milk but >100 mg/L in mature bovine milk, which is used to manufacture infant formula, suggesting that human-identical milk oligosaccharides (HiMOs) should be incorporated into milk substitutes. Some infant formulas incorporating 2'-fucosyllactose and lacto-N-neotetraose are now commercially available, and intervention trials have been concluded. We review basic HMO information, including their chemical structures and concentrations, attempts to synthesize HMOs at small and plant scale, studies that clarified HMO biological functions, and interventions with milk substitutes incorporating HiMOs in formula-fed infants.
Collapse
Affiliation(s)
- Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi2sen 11banchi, Inada cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Katsumi Ajisaka
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-Ku, Niigata City, Niigata, 956-8603, Japan
| | - Tetsuro Ujihara
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| | - Eri Nakazaki
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| |
Collapse
|
2
|
Wichmann A. Biological effects of combinations of structurally diverse human milk oligosaccharides. Front Pediatr 2024; 12:1439612. [PMID: 39564380 PMCID: PMC11573541 DOI: 10.3389/fped.2024.1439612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of structures and an abundant bioactive component of breastmilk that contribute to infant health and development. Preclinical studies indicate roles for HMOs in shaping the infant gut microbiota, inhibiting pathogens, modulating the immune system, and influencing cognitive development. In the past decade, several industrially produced HMOs have become available to fortify infant formula. Clinical intervention trials with manufactured HMOs have begun to corroborate some of the physiological effects reported in preclinical studies, especially modulation of the gut microbiota in the direction of breastfed infants. As more HMOs become commercially available and as HMOs have some shared mechanisms of action, there is a need to better understand the unique and differential effects of individual HMOs and the benefits of combining multiple HMOs. This review focuses on the differential effects of different HMO structural classes and individual structures and presents a scientific rationale for why combining multiple structurally diverse HMOs is expected to exert greater biological effects.
Collapse
Affiliation(s)
- Anita Wichmann
- Global Regulatory Affairs HMOs, Early Life & Medical Nutrition, DSM-Firmenich, Hørsholm, Denmark
| |
Collapse
|
3
|
Wang Q, Wang X, Ding J, Huang L, Wang Z. Structural insight of cell surface sugars in viral infection and human milk glycans as natural antiviral substance. Int J Biol Macromol 2024; 277:133867. [PMID: 39009265 DOI: 10.1016/j.ijbiomac.2024.133867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Viral infections are caused by the adhesion of viruses to host cell receptors, including sialylated glycans, glycosaminoglycans, and human blood group antigens (HBGAs). Atomic-level structural information on the interactions between viral particles or proteins with glycans can be determined to provide precise targets for designing antiviral drugs. Milk glycans, existing as free oligosaccharides or glycoconjugates, have attracted increasing attention; milk glycans protect infants against infectious diseases, particularly poorly manageable viral infections. Furthermore, several glycans containing structurally distinct sialic acid/fucose/sulfate modifications in human milk acting as a "receptor decoy" and serving as the natural antiviral library, could interrupt virus-receptor interaction in the first line of defense for viral infection. This review highlights the basis of virus-glycan interactions, presents specific glycan receptor binding by gastroenterovirus viruses, including norovirus, enteroviruses, and the breakthroughs in the studies on the antiviral properties of human milk glycans, and also elucidates the role of glycans in respiratory viruses infection. In addition, recent advances in methods for performing virus/viral protein-glycan interactions were reported. Finally, we discuss the prospects and challenges of the studies on the clinical application of human milk glycan for viral interventions.
Collapse
Affiliation(s)
- Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jieqiong Ding
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
4
|
Xie Y, Chen S, Alvarez MR, Sheng Y, Li Q, Maverakis E, Lebrilla CB. Protein oxidation of fucose environments (POFE) reveals fucose-protein interactions. Chem Sci 2024; 15:5256-5267. [PMID: 38577366 PMCID: PMC10988611 DOI: 10.1039/d3sc06432h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
Cell membrane glycoproteins are generally highly fucosylated and sialylated, and post-translational modifications play important roles in the proteins' functions of signaling, binding and cellular processing. For these reasons, methods for measuring sialic acid-mediated protein-protein interactions have been developed. However, determining the role of fucose in these interactions has been limited by technological barriers that have thus far hindered the ability to characterize and observe fucose-mediated protein-protein interactions. Herein, we describe a method to metabolically label mammalian cells with modified fucose, which incorporates a bioorthogonal group into cell membrane glycoproteins thereby enabling the characterization of cell-surface fucose interactome. Copper-catalyzed click chemistry was used to conjugate a proximity labeling probe, azido-FeBABE. Following the addition of hydrogen peroxide (H2O2), the fucose-azido-FeBABE catalyzed the formation of hydroxyl radicals, which in turn oxidized the amino acids in the proximity of the labeled fucose residue. The oxidized peptides were identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Variations in degree of protein oxidation were obtained with different H2O2 reaction times yielding the acquisition of spatial information of the fucose-interacting proteins. In addition, specific glycoprotein-protein interactions were constructed for Galectin-3 (LEG3) and Galectin-3-binding protein (LG3BP) illustrating the further utility of the method. This method identifies new fucose binding partners thereby enhancing our understanding of the cell glycocalyx.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Chemistry, University of California, Davis Davis California USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine St. Louis Missouri 63110 USA
| | - Siyu Chen
- Department of Chemistry, University of California, Davis Davis California USA
| | | | - Ying Sheng
- Department of Chemistry, University of California, Davis Davis California USA
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis Davis California USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis Sacramento California USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis Davis California USA
- Department of Biochemistry, University of California, Davis Davis California USA
| |
Collapse
|
5
|
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. MASS SPECTROMETRY REVIEWS 2024; 43:193-229. [PMID: 36177493 PMCID: PMC9538640 DOI: 10.1002/mas.21813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
- Bioinformatics ProgramBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
6
|
Rao PG, Lambert GS, Upadhyay C. Broadly neutralizing antibody epitopes on HIV-1 particles are exposed after virus interaction with host cells. J Virol 2023; 97:e0071023. [PMID: 37681958 PMCID: PMC10537810 DOI: 10.1128/jvi.00710-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
The envelope (Env) glycoproteins on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAbs) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes, including V2i, the gp120-g41 interface, and gp41-MPER, are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by the pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where the virus-mAb mix was pre-incubated/not pre-incubated for 1 hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use. IMPORTANCE The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein mediates viral entry and is the sole target of neutralizing antibodies. Our data suggest that antibody epitopes including V2q (e.g., PG9, PGT145), CD4bs (e.g., VRC01, 3BNC117), and V3 (2219, 2557) are masked on HIV-1 particles. The PG9 and 2219 epitopes became accessible for binding after conformational unmasking was induced by the pre-binding of select mAbs. Attempts to understand the masking mechanism led to the revelation that interaction between virus and host cells is needed to sensitize the virions for neutralization by broadly neutralizing antibodies (bNAbs). These data provide insight on how bNAbs may gain access to these occluded epitopes to exert their neutralization effects and block HIV-1 infection. These findings have important implications for the way we evaluate the neutralizing efficacy of antibodies and can potentially guide vaccine design.
Collapse
Affiliation(s)
- Priyanka Gadam Rao
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory S. Lambert
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chitra Upadhyay
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Lv B, Huang S, Huang H, Niu N, Liu J. Endothelial Glycocalyx Injury in SARS-CoV-2 Infection: Molecular Mechanisms and Potential Targeted Therapy. Mediators Inflamm 2023; 2023:6685251. [PMID: 37674786 PMCID: PMC10480029 DOI: 10.1155/2023/6685251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
This review aims at summarizing state-of-the-art knowledge on glycocalyx and SARS-CoV-2. The endothelial glycocalyx is a dynamic grid overlying the surface of the endothelial cell (EC) lumen and consists of membrane-bound proteoglycans and glycoproteins. The role of glycocalyx has been determined in the regulation of EC permeability, adhesion, and coagulation. SARS-CoV-2 is an enveloped, single-stranded RNA virus belonging to β-coronavirus that causes the outbreak and the pandemic of COVID-19. Through the respiratory tract, SARS-CoV-2 enters blood circulation and interacts with ECs possessing angiotensin-converting enzyme 2 (ACE2). Intact glycolyx prevents SARS-CoV-2 invasion of ECs. When the glycocalyx is incomplete, virus spike protein of SARS-CoV-2 binds with ACE2 and enters ECs for replication. In addition, cytokine storm targets glycocalyx, leading to subsequent coagulation disorder. Therefore, it is intriguing to develop a novel treatment for SARS-CoV-2 infection through the maintenance of the integrity of glycocalyx. This review aims to summarize state-of-the-art knowledge of glycocalyx and its potential function in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Shengshi Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Hong Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital, Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| |
Collapse
|
8
|
Bui D, Favell J, Kitova EN, Li Z, McCord KA, Schmidt EN, Mozaneh F, Elaish M, El-Hawiet A, St-Pierre Y, Hobman TC, Macauley MS, Mahal LK, Flynn MR, Klassen JS. Absolute Affinities from Quantitative Shotgun Glycomics Using Concentration-Independent (COIN) Native Mass Spectrometry. ACS CENTRAL SCIENCE 2023; 9:1374-1387. [PMID: 37521792 PMCID: PMC10303200 DOI: 10.1021/acscentsci.3c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Indexed: 08/01/2023]
Abstract
Native mass spectrometry (nMS) screening of natural glycan libraries against glycan-binding proteins (GBPs) is a powerful tool for ligand discovery. However, as the glycan concentrations are unknown, affinities cannot be measured directly from natural libraries. Here, we introduce Concentration-Independent (COIN)-nMS, which enables quantitative screening of natural glycan libraries by exploiting slow mixing of solutions inside a nanoflow electrospray ionization emitter. The affinities (Kd) of detected GBP-glycan interactions are determined, simultaneously, from nMS analysis of their time-dependent relative abundance changes. We establish the reliability of COIN-nMS using interactions between purified glycans and GBPs with known Kd values. We also demonstrate the implementation of COIN-nMS using the catch-and-release (CaR)-nMS assay for glycosylated GBPs. The COIN-CaR-nMS results obtained for plant, fungal, viral, and human lectins with natural libraries containing hundreds of N-glycans and glycopeptides highlight the assay's versatility for discovering new ligands, precisely measuring their affinities, and uncovering "fine" specificities. Notably, the COIN-CaR-nMS results clarify the sialoglycan binding properties of the SARS-CoV-2 receptor binding domain and establish the recognition of monosialylated hybrid and biantennary N-glycans. Moreover, pharmacological depletion of host complex N-glycans reduces both pseudotyped virions and SARS-CoV-2 cell entry, suggesting that complex N-glycans may serve as attachment factors.
Collapse
Affiliation(s)
- Duong
T. Bui
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - James Favell
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Elena N. Kitova
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Zhixiong Li
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Kelli A. McCord
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Edward N. Schmidt
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Fahima Mozaneh
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Mohamed Elaish
- Department
of Cell Biology, University of Alberta, Edmonton T6G 2H7, AB, Canada
- Poultry
Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Amr El-Hawiet
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, Alexandria 21561, Egypt
| | - Yves St-Pierre
- Institut
National de la Recherche Scientifique (INRS), INRS-Centre Armand-Frappier
Santé Biotechnologie, Laval H7 V 1B7, QC, Canada
| | - Tom C. Hobman
- Department
of Cell Biology, University of Alberta, Edmonton T6G 2H7, AB, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2E1, AB, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Matthew S. Macauley
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Morris R. Flynn
- Department
of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - John S. Klassen
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
9
|
Wang X, Li W, Li Z, Han T, Rong J, Fan J, Huang L, Lu Y, Wang Z. Human milk whey glycoprotein N-glycans varied greatly among different maternal secretor status. Carbohydr Polym 2023; 310:120728. [PMID: 36925253 DOI: 10.1016/j.carbpol.2023.120728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Human milk glycans are complex carbohydrates, which play a pivotal role in infant health and neonatal development. Maternal secretor status is known to affect free oligosaccharides in milk. Here, the milk N-glycome of secretor (Se+) and nonsecretor (Se-) individuals was qualitatively and quantitatively analyzed by hydrophilic interaction chromatography-electrospray ionization-tandem mass spectrometry. The total glycosylation, fucosylation, and sialylation of N-glycans was three times higher in the Se+ group compared to the Se- group (p < 0.001) per equal volume of milk. Importantly, 52 out of 63 N-glycans-including the eight most abundant ones-differed greatly between Se+ and Se- individuals (p < 0.05). Moreover, nine N-glycans (H5N3F1, H6N3, H3N5F1, H5N5F1, H5N5F1S1, H5N4F3S1, H6N4F2S1, H6N5F4S1, and H8N7S1) were >10 times more abundant in Se+ milk than in Se- milk. These findings lay a glycomics-basis for designing personalized nutrition supplements for infants.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wenqing Li
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhenhua Li
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianjiao Han
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jinqiao Rong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jiangbo Fan
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
10
|
Grijaldo SB, Alvarez MR, Heralde FM, Nacario RC, Lebrilla CB, Rabajante JF, Completo GC. Integrating Computational Methods in Network Pharmacology and In Silico Screening to Uncover Multi-targeting Phytochemicals against Aberrant Protein Glycosylation in Lung Cancer. ACS OMEGA 2023; 8:20303-20312. [PMID: 37332828 PMCID: PMC10268607 DOI: 10.1021/acsomega.2c07542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/05/2023] [Indexed: 06/20/2023]
Abstract
Glycoproteins are an underexploited drug target for cancer therapeutics. In this work, we integrated computational methods in network pharmacology and in silico docking approaches to identify phytochemical compounds that could potentially interact with several cancer-associated glycoproteins. We first created a database of phytochemicals from selected plant species, Manilkara zapota (sapodilla/chico), Mangifera indica (mango), Annona muricata (soursop/guyabano), Artocarpus heterophyllus (jackfruit/langka), Lansium domesticum (langsat/lanzones), and Antidesma bunius (bignay), and performed pharmacokinetic analysis to determine their drug-likeness properties. We then constructed a phytochemical-glycoprotein interaction network and characterized the degree of interactions between the phytochemical compounds and with cancer-associated glycoproteins and other glycosylation-related proteins. We found a high degree of interactions from α-pinene (Mangifera indica), cyanomaclurin (Artocarpus heterophyllus), genistein (Annona muricata), kaempferol (Annona muricata and Antidesma bunius), norartocarpetin (Artocarpus heterophyllus), quercetin (Annona muricata, Antidesma bunius, Manilkara zapota, Mangifera indica), rutin (Annona muricata, Antidesma bunius, Lansium domesticum), and ellagic acid (Antidesma bunius and Mangifera indica). Subsequent docking analysis confirmed that these compounds could potentially bind to EGFR, AKT1, KDR, MMP2, MMP9, ERBB2, IGF1R, MTOR, and HRAS proteins, which are known cancer biomarkers. In vitro cytotoxicity assays of the plant extracts showed that the n-hexane, ethyl acetate, and methanol leaf extracts from A. muricata, L. domesticum and M. indica gave the highest growth inhibitory activity against A549 lung cancer cells. These may help further explain the reported cytotoxic activities of select compounds from these plant species.
Collapse
Affiliation(s)
- Sheryl
Joyce B. Grijaldo
- Institute
of Chemistry, University of the Philippines, Los Baños, Philippines 4031
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | | | - Francisco M. Heralde
- Lung
Center of the Philippines, Quezon
City, Philippines 1100
- Department
of Biochemistry and Molecular Biology, College
of Medicine, University of the Philippines Manila, Philippines 1000
| | - Ruel C. Nacario
- Institute
of Chemistry, University of the Philippines, Los Baños, Philippines 4031
| | - Carlito B. Lebrilla
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Jomar F. Rabajante
- Institute
of Mathematical Sciences and Physics, University
of the Philippines, Los Baños, Philippines 4031
| | - Gladys C. Completo
- Institute
of Chemistry, University of the Philippines, Los Baños, Philippines 4031
| |
Collapse
|
11
|
Yang L, Zhu Y, Zhang W, Mu W. Recent progress in health effects and biosynthesis of lacto- N-tetraose, the most dominant core structure of human milk oligosaccharide. Crit Rev Food Sci Nutr 2023; 64:6802-6811. [PMID: 36744615 DOI: 10.1080/10408398.2023.2175197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human milk oligosaccharides (HMOs), which are a group of complex carbohydrates highly abundant in human milk, have been recognized as critical functional biomolecules for infant health. Lacto-N-tetraose (LNT) is one of the most abundant HMO members and the most dominant core structure of HMO. The promising physiological effects of LNT have been well documented, including prebiotic property, antiadhesive antimicrobial activity, and antiviral effect. Its safety has been evaluated and it has been commercially added to infant formula as a functional ingredient. Because of great commercial importance of LNT, increasing attention has been paid to its highly efficient biological production. In particular, microbial synthesis based on metabolic engineering displays obvious advantages in large-scale production of LNT. This review contains important information about the recent progress in physiological effects, safety evaluation, and biosynthesis of LNT.
Collapse
Affiliation(s)
- Longhao Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Pinto SM, Subbannayya Y, Kim H, Hagen L, Górna MW, Nieminen AI, Bjørås M, Espevik T, Kainov D, Kandasamy RK. Multi-OMICs landscape of SARS-CoV-2-induced host responses in human lung epithelial cells. iScience 2022; 26:105895. [PMID: 36590899 PMCID: PMC9794516 DOI: 10.1016/j.isci.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Corresponding author
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Proteomics and Modomics Experimental Core, PROMEC, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Maria W. Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014Helsinki, Finland
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA,Corresponding author
| |
Collapse
|