1
|
Jiang S, Yuan F, Zhou H. DDX3X Activates Chondrocyte Pyroptosis to Promote Osteoarthritis Progression. Cell Biochem Biophys 2025; 83:1955-1962. [PMID: 39592517 DOI: 10.1007/s12013-024-01605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
The RNA-binding protein DDX3X is associated with several biological processes including inflammation and immunity. However, the role of DDX3X in the pathology of inflammation-related osteoarthritis (OA) remains unclear. This study was to explore the action of DDX3X in the progression of OA as well as the underlying mechanisms by using RNA immunoprecipitation (RIP), Immunohistochemical (IHC) and DDX3X knockout mice, etc. We found that DDX3X expression was upregulated in cartilage tissue of OA patient. The in vitro study also showed upregulation of DDX3X in the inflammatory chondrocytes stimulated by LPS. DDX3X overexpression reduced cell viability by inducing pyroptosis in chondrocytes. Knockdown of DDX3X rescued LPS-induced chondrocytes pyroptosis through regulating NLRP3 signaling. In addition, DDX3X deletion attenuates osteoarthritis in vivo. In conclusion, DDX3X promotes OA progression by regulating chondrocytes pyroptosis via the activation of NLRP3 signaling.
Collapse
Affiliation(s)
- Shilin Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Feng Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Haibin Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
2
|
Lim J, Oh D, Cheng M, Chintapula U, Liu S, Reynolds D, Zhang X, Zhou Y, Xu X, Ko J. Enhancing Chimeric Antigen Receptor T-Cell Generation via Microfluidic Mechanoporation and Lipid Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410975. [PMID: 40103509 PMCID: PMC12036559 DOI: 10.1002/smll.202410975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment by engineering patients' T cells to specifically target cancer cells. Traditional CAR-T cell manufacturing methods use viral transduction to integrate CAR genes into T cells, but this can cause severe side effects and immune reactions and is costly. To overcome these challenges, non-viral methods, such as plasmid DNA (pDNA) transfection, are being explored. Here, a high-throughput intracellular delivery platform that integrates microfluidic mechanoporation with lipid nanoparticle (LNP)-based delivery, LNP + Squeeze, is introduced. This system enhances pDNA transfection efficiency in T cells while maintaining cell viability compared to other non-viral transfection methods like electroporation. This platform successfully engineers CAR-T cells using primary human T cells with a high transfection efficiency and demonstrates potent cytotoxicity against melanoma cells. This approach offers a promising, cost-effective, and scalable alternative to viral methods, potentially improving the accessibility and efficacy of CAR-T cell therapies.
Collapse
Affiliation(s)
- Jianhua Lim
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Daniel Oh
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Makayla Cheng
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Uday Chintapula
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Shujing Liu
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - David Reynolds
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Xiaogang Zhang
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yumeng Zhou
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jina Ko
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
3
|
Arakelyan NA, Kupriyanova DA, Vasilevska J, Rogaev EI. Sexual dimorphism in immunity and longevity among the oldest old. Front Immunol 2025; 16:1525948. [PMID: 40034689 PMCID: PMC11872714 DOI: 10.3389/fimmu.2025.1525948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Human longevity is a sex-biased process in which sex chromosomes and sex-specific immunity may play a crucial role in the health and lifespan disparities between men and women. Generally, women have a higher life expectancy than men, exhibiting lower infection rates for a broad range of pathogens, which results in a higher prevalence of female centenarians compared to males. Investigation of the immunological changes that occur during the process of healthy aging, while taking into account the differences between sexes, can significantly enhance our understanding of the mechanisms that underlie longevity. In this review, we aim to summarize the current knowledge on sexual dimorphism in the human immune system and gut microbiome during aging, with a particular focus on centenarians, based exclusively on human data.
Collapse
Affiliation(s)
- Nelli A. Arakelyan
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | - Daria A. Kupriyanova
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | - Jelena Vasilevska
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
4
|
Young AA, Bohlin HE, Pierce JR, Cottrell KA. Suppression of double-stranded RNA sensing in cancer: molecular mechanisms and therapeutic potential. Biochem Soc Trans 2024; 52:2035-2045. [PMID: 39221819 PMCID: PMC11555700 DOI: 10.1042/bst20230727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy has emerged as a therapeutic option for many cancers. For some tumors, immune checkpoint inhibitors show great efficacy in promoting anti-tumor immunity. However, not all tumors respond to immunotherapies. These tumors often exhibit reduced inflammation and are resistant to checkpoint inhibitors. Therapies that turn these 'cold' tumors 'hot' could improve the efficacy and applicability of checkpoint inhibitors, and in some cases may be sufficient on their own to promote anti-tumor immunity. One strategy to accomplish this goal is to activate innate immunity pathways within the tumor. Here we describe how this can be accomplished by activating double-stranded RNA (dsRNA) sensors. These sensors evolved to detect and respond to dsRNAs arising from viral infection but can also be activated by endogenous dsRNAs. A set of proteins, referred to as suppressors of dsRNA sensing, are responsible for preventing sensing 'self' dsRNA and activating innate immunity pathways. The mechanism of action of these suppressors falls into three categories: (1) Suppressors that affect mature RNAs through editing, degradation, restructuring, or binding. (2) Suppressors that affect RNA processing. (3) Suppressors that affect RNA expression. In this review we highlight suppressors that function through each mechanism, provide examples of the effects of disrupting those suppressors in cancer cell lines and tumors, and discuss the therapeutic potential of targeting these proteins and pathways.
Collapse
Affiliation(s)
- Addison A. Young
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Holly E. Bohlin
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Jackson R. Pierce
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Kyle A. Cottrell
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| |
Collapse
|
5
|
Rodrigues CP, Collins JM, Yang S, Martinez C, Kim JW, Lama C, Nam AS, Alt C, Lin C, Zon LI. Transcripts of repetitive DNA elements signal to block phagocytosis of hematopoietic stem cells. Science 2024; 385:eadn1629. [PMID: 39264994 PMCID: PMC12012832 DOI: 10.1126/science.adn1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 09/14/2024]
Abstract
Macrophages maintain hematopoietic stem cell (HSC) quality by assessing cell surface Calreticulin (Calr), an "eat-me" signal induced by reactive oxygen species (ROS). Using zebrafish genetics, we identified Beta-2-microglobulin (B2m) as a crucial "don't eat-me" signal on blood stem cells. A chemical screen revealed inducers of surface Calr that promoted HSC proliferation without triggering ROS or macrophage clearance. Whole-genome CRISPR-Cas9 screening showed that Toll-like receptor 3 (Tlr3) signaling regulated b2m expression. Targeting b2m or tlr3 reduced the HSC clonality. Elevated B2m levels correlated with high expression of repetitive element (RE) transcripts. Overall, our data suggest that RE-associated double-stranded RNA could interact with TLR3 to stimulate surface expression of B2m on hematopoietic stem and progenitor cells. These findings suggest that the balance of Calr and B2m regulates macrophage-HSC interactions and defines hematopoietic clonality.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Joseph M. Collins
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Song Yang
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, MA, USA
| | - Catherine Martinez
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Ji Wook Kim
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Chhiring Lama
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anna S. Nam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Clemens Alt
- Wellman Center for Photomedicine, Mass General Research Institute, Boston, MA, USA
| | - Charles Lin
- Wellman Center for Photomedicine, Mass General Research Institute, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, MA, USA
| | - Leonard I. Zon
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Swarup A, Bolger TA. The Role of the RNA Helicase DDX3X in Medulloblastoma Progression. Biomolecules 2024; 14:803. [PMID: 39062517 PMCID: PMC11274571 DOI: 10.3390/biom14070803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Medulloblastoma is the most common pediatric brain cancer, with about five cases per million in the pediatric population. Current treatment strategies have a 5-year survival rate of 70% or more but frequently lead to long-term neurocognitive defects, and recurrence is relatively high. Genomic sequencing of medulloblastoma patients has shown that DDX3X, which encodes an RNA helicase involved in the process of translation initiation, is among the most commonly mutated genes in medulloblastoma. The identified mutations are 42 single-point amino acid substitutions and are mostly not complete loss-of-function mutations. The pathological mechanism of DDX3X mutations in the causation of medulloblastoma is poorly understood, but several studies have examined their role in promoting cancer progression. This review first discusses the known roles of DDX3X and its yeast ortholog Ded1 in translation initiation, cellular stress responses, viral replication, innate immunity, inflammatory programmed cell death, Wnt signaling, and brain development. It then examines our current understanding of the oncogenic mechanism of the DDX3X mutations in medulloblastoma, including the effect of these DDX3X mutations on growth, biochemical functions, translation, and stress responses. Further research on DDX3X's mechanism and targets is required to therapeutically target DDX3X and/or its downstream effects in medulloblastoma progression.
Collapse
Affiliation(s)
| | - Timothy A. Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Chen HH, Yu HI, Chang JJS, Li CW, Yang MH, Hung MC, Tarn WY. DDX3 regulates cancer immune surveillance via 3' UTR-mediated cell-surface expression of PD-L1. Cell Rep 2024; 43:113937. [PMID: 38489268 DOI: 10.1016/j.celrep.2024.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Programmed death-1 (PD-1)/PD ligand-1 (PD-L1)-mediated immune escape contributes to cancer development and has been targeted as an anti-cancer strategy. Here, we show that inhibition of the RNA helicase DDX3 increased CD8+ T cell infiltration in syngeneic oral squamous cell carcinoma tumors. DDX3 knockdown compromised interferon-γ-induced PD-L1 expression and, in particular, reduced the level of cell-surface PD-L1. DDX3 promoted surface PD-L1 expression by recruiting the adaptor protein 2 (AP2) complex to the 3' UTR of PD-L1 mRNA. DDX3 depletion or 3' UTR truncation increased the binding of the coatomer protein complexes to PD-L1, leading to its intracellular accumulation. Therefore, this 3' UTR-dependent mechanism may counteract cellular negative effects on surface trafficking of PD-L1. Finally, pharmaceutic disruption of DDX3's interaction with AP2 reduced surface PD-L1 expression, supporting that the DDX3-AP2 pathway routes PD-L1 to the cell surface. Targeting DDX3 to modulate surface trafficking of immune checkpoint proteins may provide a potential strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-I Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chao-Tung University, Taipei, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Adiguzel Y, Mahroum N, Muller S, Blank M, Halpert G, Shoenfeld Y. Shared Pathogenicity Features and Sequences between EBV, SARS-CoV-2, and HLA Class I Molecule-binding Motifs with a Potential Role in Autoimmunity. Clin Rev Allergy Immunol 2023; 65:206-230. [PMID: 37505416 DOI: 10.1007/s12016-023-08962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Epstein-Barr virus (EBV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are extraordinary in their ability to activate autoimmunity as well as to induce diverse autoimmune diseases. Here we reviewed the current knowledge on their relation. Further, we suggested that molecular mimicry could be a possible common mechanism of autoimmunity induction in the susceptible individuals infected with SARS-CoV-2. Molecular mimicry between SARS-CoV-2 and human proteins, and EBV and human proteins, are present. Besides, relation of the pathogenicity associated with both coronavirus diseases and EBV supports the notion. As a proof-of-the-concept, we investigated 8mer sequences with shared 5mers of SARS-CoV-2, EBV, and human proteins, which were predicted as epitopes binding to the same human leukocyte antigen (HLA) supertype representatives. We identified significant number of human peptide sequences with predicted-affinities to the HLA-A*02:01 allele. Rest of the peptide sequences had predicted-affinities to the HLA-A*02:01, HLA-B*40:01, HLA-B*27:05, HLA-A*01:01, and HLA-B*39:01 alleles. Carriers of these serotypes can be under a higher risk of autoimmune response induction upon getting infected, through molecular mimicry-based mechanisms common to SARS-CoV-2 and EBV infections. We additionally reviewed established associations of the identified proteins with the EBV-related pathogenicity and with the autoimmune diseases.
Collapse
Affiliation(s)
- Yekbun Adiguzel
- Department of Medical Biology, School of Medicine, Atilim University, Kizilcasar Mah. 06836 Incek, Golbasi, Ankara, Turkey.
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Göztepe Mah, Atatürk Cd. No:40, Beykoz, Istanbul, 34810, Turkey
| | - Sylviane Muller
- Centre National de la Recherche scientifique-Université de Strasbourg, Biotechnology and Cell Signalling Unit, Neuroimmunology and Peptide Therapeutics Team, Strasbourg Drug Discovery and Development Institute, Strasbourg, France
- University of Strasbourg Institute for Advanced Study, Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Miri Blank
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Tel-Hashomer, 52621, Israel
| | - Gilad Halpert
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Tel-Hashomer, 52621, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Tel-Hashomer, 52621, Israel
- Reichman University, Herzliya, 4610101, Israel
| |
Collapse
|
9
|
Heaton SM, Gorry PR, Borg NA. DExD/H-box helicases in HIV-1 replication and their inhibition. Trends Microbiol 2023; 31:393-404. [PMID: 36463019 DOI: 10.1016/j.tim.2022.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
Antiretroviral therapy (ART) reduces human immunodeficiency virus type 1 (HIV-1) infection, but selection of treatment-refractory variants remains a major challenge. HIV-1 encodes 16 canonical proteins, a small number of which are the singular targets of nearly all antiretrovirals developed to date. Cellular factors are increasingly being explored, which may present more therapeutic targets, more effectively target certain aspects of the viral replication cycle, and/or limit viral escape. Unlike most other positive-sense RNA viruses that encode at least one helicase, retroviruses are limited to the host repertoire. Accordingly, HIV-1 subverts DEAD-box helicase 3X (DDX3X) and numerous other cellular helicases of the Asp-Glu-x-Asp/His (DExD/H)-box family to service multiple aspects of its replication cycle. Here we review DDX3X and other DExD/H-box helicases in HIV-1 replication and their inhibition.
Collapse
Affiliation(s)
- Steven M Heaton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Current affiliation: RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, 1-chōme-7-22 Suehirochō, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan.
| | - Paul R Gorry
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Natalie A Borg
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
10
|
Lacroix M, Beauchemin H, Khandanpour C, Möröy T. The RNA helicase DDX3 and its role in c-MYC driven germinal center-derived B-cell lymphoma. Front Oncol 2023; 13:1148936. [PMID: 37035206 PMCID: PMC10081492 DOI: 10.3389/fonc.2023.1148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
DDX3X is an RNA helicase with many functions in RNA metabolism such as mRNA translation, alternative pre-mRNA splicing and mRNA stability, but also plays a role as a regulator of transcription as well as in the Wnt/beta-catenin- and Nf-κB signaling pathways. The gene encoding DDX3X is located on the X-chromosome, but escapes X-inactivation. Hence females have two active copies and males only one. However, the Y chromosome contains the gene for the male DDX3 homologue, called DDX3Y, which has a very high sequence similarity and functional redundancy with DDX3X, but shows a more restricted protein expression pattern than DDX3X. High throughput sequencing of germinal center (GC)-derived B-cell malignancies such as Burkitt Lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL) samples showed a high frequency of loss-of-function (LOF) mutations in the DDX3X gene revealing several features that distinguish this gene from others. First, DDX3X mutations occur with high frequency particularly in those GC-derived B-cell lymphomas that also show translocations of the c-MYC proto-oncogene, which occurs in almost all BL and a subset of DLBCL. Second, DDX3X LOF mutations occur almost exclusively in males and is very rarely found in females. Third, mutations in the male homologue DDX3Y have never been found in any type of malignancy. Studies with human primary GC B cells from male donors showed that a loss of DDX3X function helps the initial process of B-cell lymphomagenesis by buffering the proteotoxic stress induced by c-MYC activation. However, full lymphomagenesis requires DDX3 activity since an upregulation of DDX3Y expression is invariably found in GC derived B-cell lymphoma with DDX3X LOF mutation. Other studies with male transgenic mice that lack Ddx3x, but constitutively express activated c-Myc transgenes in B cells and are therefore prone to develop B-cell malignancies, also showed upregulation of the DDX3Y protein expression during the process of lymphomagenesis. Since DDX3Y is not expressed in normal human cells, these data suggest that DDX3Y may represent a new cancer cell specific target to develop adjuvant therapies for male patients with BL and DLBCL and LOF mutations in the DDX3X gene.
Collapse
Affiliation(s)
- Marion Lacroix
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Hugues Beauchemin
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
| | - Cyrus Khandanpour
- Klinik für Hämatologie und Onkologie, University Hospital Schleswig Holstein, University Lübeck, Lübeck, Germany
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| |
Collapse
|