1
|
Li Y, Liu Z, Li G, Yin X, Guo C, Jiang Y, Hu X, Yi J. Inactivated mechanisms of high pressure processing combined with mild temperature on pectin methylesterase and its inhibitor. Food Chem 2025; 484:144477. [PMID: 40300406 DOI: 10.1016/j.foodchem.2025.144477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/26/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
High pressure processing (HPP) of orange juice faces storage issues due to refrigeration need and cloud loss caused by pectin methylesterase (PME). Our previous research indicated that HPP conjunction with pectin methylesterase inhibitor (PMEI) enhanced juice stability, but not fully inactivated PME. This study explored the effectiveness of HPP with mild temperature treatments to fully inactivate PME and sterilize microorganisms in juice, using experimental analysis and molecular dynamics simulation. The findings revealed that PME activity was reduced by 94 % at 600 MPa and 60 °C, with completely inactivating at 80 °C. Conversely, PMEI exhibited resistance to pressure and temperature. Following processes at 600 MPa and above 60 °C, the tail-end helix structure of PME destabilized, with α-helices converting to β-sheets and disrupting hydrogen bonds within molecular chain. Conversely, the structure of PMEI was stable. Additionally, the combination of HPP and temperature treatment enhanced the binding affinity between PME and PMEI.
Collapse
Affiliation(s)
- Yantong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhuyin Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Guijing Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Xinyi Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China.
| |
Collapse
|
2
|
Parise A, Manini I, Pobega E, Covaceuszach S, Secco L, Simonelli F, Mastantuono S, di Loreto C, Pizzignach A, Skrap M, Vindigni M, Sgarra R, Manfioletti G, Cesselli D, Magistrato A. Identification of a new small Rho GTPase inhibitor effective in glioblastoma human cells. Eur J Med Chem 2025; 292:117704. [PMID: 40334503 DOI: 10.1016/j.ejmech.2025.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/09/2025]
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumour. The prognosis for GBM patients remains poor due to rapid tumour recurrence and resistance to conventional treatments. Small Rho GTPase proteins, which regulate cell shape and motility, are critical for GBM aggressive growth and infiltration into the surrounding brain parenchyma. Hence, small-molecule inhibitors targeting them represent an appealing opportunity to hinder the infiltration behaviour of GBM. Here, a synergistic experimental and computational approach allowed us to identify an inhibitor that reduces migration in patient-derived GBM cell lines. Computational and in vitro functional assays reveal that this compound inhibits Rho GTPases function by targeting multiple allosteric sites thereby enhancing flexibility of key functional regions and hindering their interaction with protein regulators. Our research unveiled a novel hit molecule targeting Rho GTPases with significant potential to improve the treatment of GBM and other highly aggressive tumours.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomia 265, 34136, Trieste, Italy
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100, Udine, Italy
| | - Enrico Pobega
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | - Sonia Covaceuszach
- Institute of Crystallography, National Research Council, Strada Statale 14 Km 16.5, Basovizza, 34149, (TS), Italy
| | - Luca Secco
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | - Federica Simonelli
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomia 265, 34136, Trieste, Italy
| | | | - Carla di Loreto
- Institute of Pathology, University Hospital of Udine, 33100, Udine, Italy; Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Alessio Pizzignach
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100, Udine, Italy
| | - Marco Vindigni
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100, Udine, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | | | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, 33100, Udine, Italy; Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomia 265, 34136, Trieste, Italy.
| |
Collapse
|
3
|
Li H, Nithin C, Kmiecik S, Huang SY. Computational methods for modeling protein-protein interactions in the AI era: Current status and future directions. Drug Discov Today 2025; 30:104382. [PMID: 40398752 DOI: 10.1016/j.drudis.2025.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/30/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
The modeling of protein-protein interactions (PPIs) has been revolutionized by artificial intelligence, with deep learning and end-to-end frameworks such as AlphaFold and its derivatives now dominating the field. This review surveys the current computational landscape for predicting protein complex structures, outlining the role of traditional docking approaches as well as focusing on recent advances in AI-driven methods. We discuss key challenges, including protein flexibility, reliance on co-evolutionary signals, modeling of large assemblies, and interactions involving intrinsically disordered regions (IDRs). Recent innovations aimed at improving sampling diversity, integrating experimental data, and enhancing robustness are also highlighted. Although classical methods remain relevant in specific contexts, the continued evolution of AI-based tools offers transformative potential for structural biology. These advances are poised to deepen our understanding of biomolecular interactions and accelerate the design of therapeutic interventions.
Collapse
Affiliation(s)
- Hao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chandran Nithin
- University of Warsaw, Biological and Chemical Research Centre, Faculty of Chemistry, Warsaw, Poland
| | - Sebastian Kmiecik
- University of Warsaw, Biological and Chemical Research Centre, Faculty of Chemistry, Warsaw, Poland.
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
4
|
Diaz-Rovira AM, Lotze J, Hoffmann G, Pallara C, Molina A, Coburger I, Gloser-Bräunig M, Meysing M, Zwarg M, Díaz L, Guallar V, Bosse-Doenecke E, Roda S. Efficient Design of Affilin ® Protein Binders for HER3. Int J Mol Sci 2025; 26:4683. [PMID: 40429825 PMCID: PMC12112719 DOI: 10.3390/ijms26104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Engineered scaffold-based proteins that bind to concrete targets with high affinity offer significant advantages over traditional antibodies in theranostic applications. Their development often relies on display methods, where large libraries of variants are physically contacted with the desired target protein and pools of binding variants can be selected. Herein, we use a novel combined artificial intelligence/physics-based computational framework and phage display approach to obtain ubiquitin based Affilin® proteins targeting the human epidermal growth factor receptor 3 (HER3) extracellular domain, a relevant tumor target. As traditional antibodies against the receptor have failed so far, we sought to provide molecules in a smaller more versatile format to cover the medical need in HER3 related diseases. We demonstrate that the developed in silico pipeline can generate de novo Affilin® proteins binding the biochemical HER3 target using a small training set of <1000 sequences. The classical phage display yielded primary candidates with low nanomolar affinities to the biochemical target and HER3-expressing cells. The latter could be further optimized by phage display and computational maturation alike. These combined efforts resulted in four HER3 ligands with high affinity, cell binding, and serum stability with theranostic potential.
Collapse
Affiliation(s)
- Anna M. Diaz-Rovira
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Spain; (A.M.D.-R.); (V.G.)
- Doctoral Program in Theoretical Chemistry and Computational Modelling, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jonathan Lotze
- Navigo Proteins GmbH, 06120 Halle, Germany; (J.L.); (G.H.); (I.C.); (M.G.-B.); (M.M.); (M.Z.)
| | - Gregor Hoffmann
- Navigo Proteins GmbH, 06120 Halle, Germany; (J.L.); (G.H.); (I.C.); (M.G.-B.); (M.M.); (M.Z.)
| | - Chiara Pallara
- Nostrum Biodiscovery S.L., 08029 Barcelona, Spain; (C.P.); (A.M.); (L.D.)
| | - Alexis Molina
- Nostrum Biodiscovery S.L., 08029 Barcelona, Spain; (C.P.); (A.M.); (L.D.)
| | - Ina Coburger
- Navigo Proteins GmbH, 06120 Halle, Germany; (J.L.); (G.H.); (I.C.); (M.G.-B.); (M.M.); (M.Z.)
| | - Manja Gloser-Bräunig
- Navigo Proteins GmbH, 06120 Halle, Germany; (J.L.); (G.H.); (I.C.); (M.G.-B.); (M.M.); (M.Z.)
| | - Maren Meysing
- Navigo Proteins GmbH, 06120 Halle, Germany; (J.L.); (G.H.); (I.C.); (M.G.-B.); (M.M.); (M.Z.)
| | - Madlen Zwarg
- Navigo Proteins GmbH, 06120 Halle, Germany; (J.L.); (G.H.); (I.C.); (M.G.-B.); (M.M.); (M.Z.)
| | - Lucía Díaz
- Nostrum Biodiscovery S.L., 08029 Barcelona, Spain; (C.P.); (A.M.); (L.D.)
| | - Victor Guallar
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Spain; (A.M.D.-R.); (V.G.)
- Nostrum Biodiscovery S.L., 08029 Barcelona, Spain; (C.P.); (A.M.); (L.D.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Eva Bosse-Doenecke
- Navigo Proteins GmbH, 06120 Halle, Germany; (J.L.); (G.H.); (I.C.); (M.G.-B.); (M.M.); (M.Z.)
| | - Sergi Roda
- Nostrum Biodiscovery S.L., 08029 Barcelona, Spain; (C.P.); (A.M.); (L.D.)
| |
Collapse
|
5
|
Liu Y, Lu H, Fang Z, Lu S. Hesperetin acts as a potent xanthine oxidase inhibitor: New evidence from its reactive oxygen suppression and enzyme binding. Int J Biol Macromol 2025; 306:141429. [PMID: 40010462 DOI: 10.1016/j.ijbiomac.2025.141429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Xanthine oxidase (XO) plays a crucial role in purine metabolism, catalyzing the oxidation of hypoxanthine to xanthine and subsequently to uric acid. Elevated uric acid levels can lead to hyperuricemia, a condition linked to gout, kidney stones, and other chronic diseases. Inhibiting XO activity represents a promising strategy for managing hyperuricemia. This study investigated the inhibitory effects of the flavonoid hesperetin enriched in citrus fruits on XO activity, its antioxidant properties against reactive oxygen species (ROS) generated by the XO reaction, and the underlying mechanisms of enzyme inhibition. Enzyme kinetics and spectroscopy revealed that hesperetin competitively inhibited XO at an inhibition constant of (2.15 ± 0.05) × 10-6 mol/L through its binding to the molybdopterin active center of XO, preventing the entry of xanthine and the transfer of electrons, effectively scavenging superoxide radicals by inhibiting uric acid production and oxygen reduction, and inducing conformational changes in XO's structure. Fluorescence quenching indicated that hesperetin interacted with XO through a combination of static and dynamic quenching mechanisms. Molecular docking simulations demonstrated that hesperetin binded tightly to XO's active site, blocking substrate entry. Molecular dynamics confirmed that hesperetin stabilized the XO-hesperetin complex through reinforced hydrophobic and hydrogen-bond interactions. The results suggest that hesperetin can act as a potent natural xanthine oxidase inhibitor or a functional food supplement to alleviate hyperuricemia.
Collapse
Affiliation(s)
- Yinying Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Hanyu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Vic 3010, Australia.
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.
| |
Collapse
|
6
|
Nahian M, Khan MR, Rahman F, Reza HM, Bayil I, Nodee TA, Basher T, Sany MR, Munmun RN, Habib SMA, Mazumder L, Acharjee M. Immunoinformatic strategy for developing multi-epitope subunit vaccine against Helicobacter pylori. PLoS One 2025; 20:e0318750. [PMID: 39919064 PMCID: PMC11805379 DOI: 10.1371/journal.pone.0318750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Helicobacter pylori is a gram-negative bacterium that persistently infects the human stomach, leading to peptic ulcers, gastritis, and an increased risk of gastric cancer. The extremophilic characteristics of this bacterium make it resistant to current drug treatments, and there are no licensed vaccines available against H. pylori. Computational approaches offer a viable alternative for designing antigenic, stable, and safe vaccines to control infections caused by this pathogen. In this study, we employed an immunoinformatic strategy to design a set of candidate multi-epitope subunit vaccines by combining the most potent B and T cell epitopes from three targeted antigenic proteins (BabA, CagA, and VacA). Out of the 12 hypothetical vaccines generated, two (HP_VaX_V1 and HP_VaX_V2) were found to be strongly immunogenic, non-allergenic, and structurally stable. The proposed vaccine candidates were evaluated based on population coverage, molecular docking, immune simulations, codon adaptation, secondary mRNA structure, and in silico cloning. The vaccine candidates exhibited antigenic scores of 1.19 and 1.01, with 93.5% and 90.4% of the most rama-favored regions, respectively. HP_VaX_V1 and HP_VaX_V2 exhibited the strongest binding affinity towards TLR-7 and TLR-8, as determined by molecular docking simulations (ΔG = -20.3 and -20.9, respectively). Afterward, multi-scale normal mode analysis simulation revealed the structural flexibility and stability of vaccine candidates. Additionally, immune simulations showed elevated levels of cell-mediated immunity, while repeated exposure simulations indicated rapid antigen clearance. Finally, in silico cloning was performed using the expression vector pET28a (+) with optimized restriction sites to develop a viable strategy for large-scale production of the chosen vaccine constructs. These analyses suggest that the proposed vaccines may elicit potent immune responses against H. pylori, but laboratory validation is needed to verify their safety and immunogenicity.
Collapse
Affiliation(s)
- Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Md. Rasel Khan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Fabiha Rahman
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Hossain Mohammed Reza
- Faculty of Life and Health Sciences, School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Imren Bayil
- Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| | | | - Tabassum Basher
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | | | | | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
7
|
Huang H, Xie C, Zhang F, Wu C, Li T, Li X, Zhou D, Fan G. Impact of pH and protein/polysaccharide ratio on phycocyanin-okra polysaccharides complex. Int J Biol Macromol 2025; 284:138049. [PMID: 39608547 DOI: 10.1016/j.ijbiomac.2024.138049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Phycocyanin is a natural blue pigment that tends to denature and lose its color in acidic solutions. In response to this problem, the complexes of phycocyanin (PC) with okra polysaccharides (OP) were prepared by ultrasonic processing at different pH conditions, and the molecular interactions of the complexes were characterized. The results showed that there were significant differences in the color, functional groups, and surface morphology of the complexes formed at different pH conditions. By colorimetry and particle size tester, it was demonstrated that the complex solution showed a steady blue color at pH 3.4. The highest fluorescence intensity (1.55 × 107 a.u.) and the significant red-shift of the complexes were observed at 0.4 % m/v polysaccharides addition. Infrared spectroscopy test further demonstrated that OP induced the formation of higher-order trimers of PC, which kept the color stable. Molecular dynamics simulations showed that the binding energy of PC/OP complex was -42.21 ± 2.61 kcal/mol, indicating that the binding affinity was very strong. Overall, this study suggests that this complex stabilizes the structure of PC, which in turn exerts a biological effect and will facilitate the use of PC as an artificial color substitute in food or beverage applications.
Collapse
Affiliation(s)
- Haoyi Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chunyan Xie
- College of Life Science, Langfang Normal University, Langfang 065000, Hebei, China
| | - Fuqiang Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
8
|
Childers MC, Geeves MA, Regnier M. Interacting myosin head dynamics and their modification by 2'-deoxy-ADP. Biophys J 2024; 123:3997-4008. [PMID: 39444161 PMCID: PMC11617627 DOI: 10.1016/j.bpj.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
The contraction of striated muscle is driven by cycling myosin motor proteins embedded within the thick filaments of sarcomeres. In addition to cross-bridge cycling with actin, these myosin proteins can enter an inactive, sequestered state in which the globular S1 heads rest along the thick filament surface and are inhibited from performing motor activities. Structurally, this state is called the interacting heads motif (IHM) and is a critical conformational state of myosin that regulates muscle contractility and energy expenditure. Structural perturbation of the sequestered state can pathologically disrupt IHM structure and the mechanical performance of muscle tissue. Thus, the IHM state has become a target for therapeutic intervention. An ATP analog called 2'-deoxy-ATP (dATP) is a potent myosin activator that destabilizes the IHM. Here, we use molecular dynamics simulations to study the molecular mechanisms by which dATP modifies the structure and dynamics of myosin in a sequestered state. Simulations of the IHM state containing ADP.Pi in both nucleotide binding pockets revealed dynamic motions of the blocked head-free head interface, light chain binding domain, and S2 in this "inactive" state of myosin. Replacement of ADP.Pi by dADP.Pi triggered a series of structural changes that increased heterogeneity among residue contact pairs at the blocked head-free head interface and a 14% decrease in the interaction energy at the interface. Dynamic changes to this interface were accompanied by dynamics in the light chain binding region. A comparative analysis of these dynamics predicted new structural sites that may affect IHM stability.
Collapse
Affiliation(s)
- Matthew Carter Childers
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Kent, United Kingdom
| | - Michael Regnier
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
9
|
Chen PY, Chen YC, Chen PP, Lin KT, Sargsyan K, Hsu CP, Wang WL, Hsia KC, Ting SY. A whole-cell platform for discovering synthetic cell adhesion molecules in bacteria. Nat Commun 2024; 15:6568. [PMID: 39095377 PMCID: PMC11297345 DOI: 10.1038/s41467-024-51017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Developing programmable bacterial cell-cell adhesion is of significant interest due to its versatile applications. Current methods that rely on presenting cell adhesion molecules (CAMs) on bacterial surfaces are limited by the lack of a generalizable strategy to identify such molecules targeting bacterial membrane proteins in their natural states. Here, we introduce a whole-cell screening platform designed to discover CAMs targeting bacterial membrane proteins within a synthetic bacteria-displayed nanobody library. Leveraging the potency of the bacterial type IV secretion system-a contact-dependent DNA delivery nanomachine-we have established a positive feedback mechanism to selectively enrich for bacteria displaying nanobodies that target antigen-expressing cells. Our platform successfully identified functional CAMs capable of recognizing three distinct outer membrane proteins (TraN, OmpA, OmpC), demonstrating its efficacy in CAM discovery. This approach holds promise for engineering bacterial cell-cell adhesion, such as directing the antibacterial activity of programmed inhibitor cells toward target bacteria in mixed populations.
Collapse
Affiliation(s)
- Po-Yin Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
| | - Yung-Chih Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Po-Pang Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuan-Ting Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Program in Molecular Medicine, National Yang-Ming Chao-Tung University and Academia Sinica, Taipei, Taiwan
| | | | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Wei-Le Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Program in Molecular Medicine, National Yang-Ming Chao-Tung University and Academia Sinica, Taipei, Taiwan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - See-Yeun Ting
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Li Y, Zhang W, Jiang Y, Devahastin S, Hu X, Song Z, Yi J. Inactivation mechanisms on pectin methylesterase by high pressure processing combined with its recombinant inhibitor. Food Chem 2024; 446:138806. [PMID: 38402767 DOI: 10.1016/j.foodchem.2024.138806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
High pressure processing (HPP) juice often experiences cloud loss during storage, caused by the activity of pectin methylesterase (PME). The combination of HPP with natural pectin methylesterase inhibitor (PMEI) could improve juice stability. However, extracting natural PMEI is challenging. Gene recombination technology offers a solution by efficiently expressing recombinant PMEI from Escherichia coli and Pichia pastoris. Experimental and molecular dynamics simulation were conducted to investigate changes in activity, structure, and interaction of PME and recombinant PMEI during HPP. The results showed PME retained high residual activity, while PMEI demonstrated superior pressure resistance. Under HPP, PMEI's structure remained stable, while the N-terminus of PME's α-helix became unstable. Additionally, the helix at the junction with the PME/PMEI complex changed, thereby affecting its binding. Furthermore, PMEI competed with pectin for active sites on PME, elucidating. The potential mechanism of PME inactivation through the synergistic effects of HPP and PMEI.
Collapse
Affiliation(s)
- Yantong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Wanzhen Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Sakamon Devahastin
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok 10140, Thailand
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., 653100 Yuxi, Yunnan, China; Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, 653100 Yuxi, Yunnan, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China; Yunnan Maoduoli Group Food Co., Ltd., 653100 Yuxi, Yunnan, China.
| |
Collapse
|
11
|
Wang J, Wang X, Chu Y, Li C, Li X, Meng X, Fang Y, No KT, Mao J, Zeng X. Exploring the Conformational Ensembles of Protein-Protein Complex with Transformer-Based Generative Model. J Chem Theory Comput 2024; 20:4469-4480. [PMID: 38816696 DOI: 10.1021/acs.jctc.4c00255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Protein-protein interactions are the basis of many protein functions, and understanding the contact and conformational changes of protein-protein interactions is crucial for linking the protein structure to biological function. Although difficult to detect experimentally, molecular dynamics (MD) simulations are widely used to study the conformational ensembles and dynamics of protein-protein complexes, but there are significant limitations in sampling efficiency and computational costs. In this study, a generative neural network was trained on protein-protein complex conformations obtained from molecular simulations to directly generate novel conformations with physical realism. We demonstrated the use of a deep learning model based on the transformer architecture to explore the conformational ensembles of protein-protein complexes through MD simulations. The results showed that the learned latent space can be used to generate unsampled conformations of protein-protein complexes for obtaining new conformations complementing pre-existing ones, which can be used as an exploratory tool for the analysis and enhancement of molecular simulations of protein-protein complexes.
Collapse
Affiliation(s)
- Jianmin Wang
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Incheon 21983, Korea
| | - Xun Wang
- School of Computer Science and Technology, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
- High Performance Computer Research Center, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanyi Chu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Chunyan Li
- School of Informatics, Yunnan Normal University, Kunming, Yunnan 650500, P. R. China
| | - Xue Li
- School of Computer Science and Technology, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Xiangyu Meng
- School of Computer Science and Technology, China University of Petroleum, Qingdao, Shandong 266580, P. R. China
| | - Yitian Fang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Incheon 21983, Korea
| | - Jiashun Mao
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, Sichuan 646000, P. R. China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
12
|
Childers MC, Geeves MA, Regnier M. An atomistic model of myosin interacting heads motif dynamics and their modification by 2'-deoxy-ADP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597809. [PMID: 38895221 PMCID: PMC11185614 DOI: 10.1101/2024.06.06.597809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The contraction of striated muscle is driven by cycling myosin motor proteins embedded within the thick filaments of sarcomeres. In addition to cross-bridge cycling with actin, these myosin proteins can enter an inactive, sequestered state in which the globular S1 heads rest along the thick filament surface and are unable to perform motor activities. Structurally, this state is called the interacting heads motif (IHM) and is a critical conformational state of myosin that regulates muscle contractility and energy expenditure. Structural perturbation of the sequestered state via missense mutations can pathologically disrupt the mechanical performance of muscle tissue. Thus, the IHM state has become a target for therapeutic intervention. An ATP analogue called 2'-deoxy-ATP (dATP) is a potent myosin activator which destabilizes the IHM. Here we use molecular dynamics simulations to study the molecular mechanisms by which dATP modifies the structure and dynamics of myosin in a sequestered state. Simulations with IHM containing ADP.Pi in both nucleotide binding pockets revealed residual dynamics in an otherwise 'inactive' and 'sequestered' state of a motor protein. Replacement of ADP.Pi by dADP.Pi triggered a series of structural changes that modify the protein-protein interface that stabilizes the sequestered state, and changes to this interface were accompanied by allosteric changes in remote regions of the protein complex. A comparative analysis of these dynamics predicted new structural sites that may affect IHM stability.
Collapse
|
13
|
Sabei A, Hognon C, Martin J, Frezza E. Dynamics of Protein-RNA Interfaces Using All-Atom Molecular Dynamics Simulations. J Phys Chem B 2024; 128:4865-4886. [PMID: 38740056 DOI: 10.1021/acs.jpcb.3c07698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Facing the current challenges posed by human health diseases requires the understanding of cell machinery at a molecular level. The interplay between proteins and RNA is key for any physiological phenomenon, as well protein-RNA interactions. To understand these interactions, many experimental techniques have been developed, spanning a very wide range of spatial and temporal resolutions. In particular, the knowledge of tridimensional structures of protein-RNA complexes provides structural, mechanical, and dynamical pieces of information essential to understand their functions. To get insights into the dynamics of protein-RNA complexes, we carried out all-atom molecular dynamics simulations in explicit solvent on nine different protein-RNA complexes with different functions and interface size by taking into account the bound and unbound forms. First, we characterized structural changes upon binding and, for the RNA part, the change in the puckering. Second, we extensively analyzed the interfaces, their dynamics and structural properties, and the structural waters involved in the binding, as well as the contacts mediated by them. Based on our analysis, the interfaces rearranged during the simulation time showing alternative and stable residue-residue contacts with respect to the experimental structure.
Collapse
Affiliation(s)
- Afra Sabei
- Université Paris Cité, CiTCoM, CNRS, Paris F-75006, France
| | - Cécilia Hognon
- Université Paris Cité, CiTCoM, CNRS, Paris F-75006, France
| | - Juliette Martin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5086 MMSB, Lyon 69367, France
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, Lyon 69367, France
| | - Elisa Frezza
- Université Paris Cité, CiTCoM, CNRS, Paris F-75006, France
| |
Collapse
|
14
|
Tripathi N, Saraf P, Bhardwaj N, Shrivastava SK, Jain SK. Identifying inflammation-related targets of natural lactones using network pharmacology, molecular modeling and in vitro approaches. J Biomol Struct Dyn 2024:1-16. [PMID: 38334283 DOI: 10.1080/07391102.2024.2310783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Natural lactones have been used in traditional and folklore medicine for centuries owing to their anti-inflammatory properties. The study uses a multifaceted approach to identify lead anti-inflammatory lactones from the SISTEMATX natural products database. The study analyzed the natural lactone database, revealing 18 lactones linked to inflammation targets. The primary targets were PTGES, PTGS1, COX-2, ALOX5 and IL1B. STX 12273 was the best hit, with the lowest binding energy and potential for inhibiting the COX-2 enzyme. The study suggested natural lactone, STX 12273, from the SISTEMATX database with anti-inflammatory potential and postulated its use for inflammation treatment or prevention.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
15
|
Rohit S, Patel M, Jagtap Y, Shah U, Patel A, Patel S, Solanki N. Structural Insights of PD-1/PD-L1 Axis: An In silico Approach. Curr Protein Pept Sci 2024; 25:638-650. [PMID: 38706351 DOI: 10.2174/0113892037297012240408063250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Interaction of PD-1 protein (present on immune T-cell) with its ligand PD-L1 (over-expressed on cancerous cell) makes the cancerous cell survive and thrive. The association of PD-1/PD-L1 represents a classical protein-protein interaction (PPI), where receptor and ligand binding through a large flat surface. Blocking the PD-1/PDL-1 complex formation can restore the normal immune mechanism, thereby destroying cancerous cells. However, the PD-1/PDL1 interactions are only partially characterized. OBJECTIVE We aim to comprehend the time-dependent behavior of PD-1 upon its binding with PD-L1. METHODS The current work focuses on a molecular dynamics simulation (MDs) simulation study of apo and ligand bound PD-1. RESULTS Our simulation reveals the flexible nature of the PD-1, both in apo and bound form. Moreover, the current study also differentiates the type of strong and weak interactions which could be targeted to overcome the complex formation. CONCLUSION The current article could provide a valuable structural insight about the target protein (PD-1) and its ligand (PD-L1) which could open new opportunities in developing small molecule inhibitors (SMIs) targeting either PD-1 or PD-L1.
Collapse
Affiliation(s)
- Shishir Rohit
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
- Department of Drug Discovery and Development, Kashiv BioSciences Pvt. Ltd., Ahmedabad, Gujrat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Yogesh Jagtap
- Department of Drug Discovery and Development, Kashiv BioSciences Pvt. Ltd., Ahmedabad, Gujrat, India
| | - Umang Shah
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Ashish Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Swayamprakash Patel
- Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| | - Nilay Solanki
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Ta. Petlad, Dist. Anand, Gujrat, India
| |
Collapse
|
16
|
Luo S, Wohl S, Zheng W, Yang S. Biophysical and Integrative Characterization of Protein Intrinsic Disorder as a Prime Target for Drug Discovery. Biomolecules 2023; 13:biom13030530. [PMID: 36979465 PMCID: PMC10046839 DOI: 10.3390/biom13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Protein intrinsic disorder is increasingly recognized for its biological and disease-driven functions. However, it represents significant challenges for biophysical studies due to its high conformational flexibility. In addressing these challenges, we highlight the complementary and distinct capabilities of a range of experimental and computational methods and further describe integrative strategies available for combining these techniques. Integrative biophysics methods provide valuable insights into the sequence–structure–function relationship of disordered proteins, setting the stage for protein intrinsic disorder to become a promising target for drug discovery. Finally, we briefly summarize recent advances in the development of new small molecule inhibitors targeting the disordered N-terminal domains of three vital transcription factors.
Collapse
Affiliation(s)
- Shuqi Luo
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Samuel Wohl
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
- Correspondence: (W.Z.); (S.Y.)
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: (W.Z.); (S.Y.)
| |
Collapse
|