1
|
Deng S, Xie H, Xie B. Cell-based regenerative and rejuvenation strategies for treating neurodegenerative diseases. Stem Cell Res Ther 2025; 16:167. [PMID: 40189500 PMCID: PMC11974143 DOI: 10.1186/s13287-025-04285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Neurodegenerative diseases including Alzheimer's and Parkinson's disease are age-related disorders which severely impact quality of life and impose significant societal burdens. Cellular senescence is a critical factor in these disorders, contributing to their onset and progression by promoting permanent cell cycle arrest and reducing cellular function, affecting various types of cells in brain. Recent advancements in regenerative medicine have highlighted "R3" strategies-rejuvenation, regeneration, and replacement-as promising therapeutic approaches for neurodegeneration. This review aims to critically analyze the role of cellular senescence in neurodegenerative diseases and organizes therapeutic approaches within the R3 regenerative medicine paradigm. Specifically, we examine stem cell therapy, direct lineage reprogramming, and partial reprogramming in the context of R3, emphasizing how these interventions mitigate cellular senescence and counteracting aging-related neurodegeneration. Ultimately, this review seeks to provide insights into the complex interplay between cellular senescence and neurodegeneration while highlighting the promise of cell-based regenerative strategies to address these debilitating conditions.
Collapse
Affiliation(s)
- Sixiu Deng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China
- Department of Gastroenterology, The Shapingba Hospital, Chongqing University( People's Hospital of Shapingba District), Chongqing, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Wang C, Fan X, Shi Y, Tang F. Radiation-Induced Brain Injury with Special Reference to Astrocytes as a Therapeutic Target. J Integr Neurosci 2025; 24:25907. [PMID: 40152565 DOI: 10.31083/jin25907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 03/29/2025] Open
Abstract
Radiotherapy is one of the primary modalities for oncologic treatment and has been utilized at least once in over half of newly diagnosed cancer patients. Cranial radiotherapy has significantly enhanced the long-term survival rates of patients with brain tumors. However, radiation-induced brain injury, particularly hippocampal neuronal damage along with impairment of neurogenesis, inflammation, and gliosis, adversely affects the quality of life for these patients. Astrocytes, a type of glial cell that are abundant in the brain, play essential roles in maintaining brain homeostasis and function. Despite their importance, the pathophysiological changes in astrocytes induced by radiation have not been thoroughly investigated, and no systematic or comprehensive review addressing the effects of radiation on astrocytes and related diseases has been conducted. In this paper, we review current studies on the neurophysiological roles of astrocytes following radiation exposure. We describe the pathophysiological changes in astrocytes, including astrogliosis, astrosenescence, and the associated cellular and molecular mechanisms. Additionally, we summarize the roles of astrocytes in radiation-induced impairments of neurogenesis and the blood-brain barrier (BBB). Based on current research, we propose that brain astrocytes may serve as potential therapeutic targets for treating radiation-induced brain injury (RIBI) and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, Jiangsu, China
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| | - Xingjuan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, Jiangsu, China
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| |
Collapse
|
3
|
Zhang J, Yang CQ, Liu ZQ, Wu SP, Li ZG, Zhang LM, Fan HW, Guo ZY, Man HY, Li X, Lu YM, Zhu LQ, Liu D. Cpeb1 remodels cell type-specific translational program to promote fear extinction. SCIENCE ADVANCES 2025; 11:eadr8687. [PMID: 39792668 PMCID: PMC11721575 DOI: 10.1126/sciadv.adr8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex (IL) during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction. Specifically, Cpeb1 deficiency in neurons activates the translation of heterochromatin protein 1 binding protein 3, which enhances microRNA networks, whereas in microglia, it suppresses the translation of chemokine receptor 1 (Cx3cr1), resulting in an aged-like microglial phenotype. These coordinated alterations impair spine formation and plasticity. Our study highlights the critical role of cell type-specific protein translation in fear extinction and provides an insight into therapeutic targets for disorders with extinction deficits.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chun-Qing Yang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shi-Ping Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zu-Guang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luo-Man Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
| | - Hong-Wei Fan
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi-Yuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430030, China
| | - You-Ming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
4
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
5
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
6
|
Tan X, Su X, Wang Y, Liang W, Wang D, Huo D, Wang H, Qi Y, Zhang W, Han L, Zhang D, Wang M, Xu J, Feng H. BRD7 regulates cellular senescence and apoptosis in ALS by modulating p21 expression and p53 mitochondrial translocation respectively. Neuroscience 2024; 563:51-62. [PMID: 39510439 DOI: 10.1016/j.neuroscience.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Cellular senescence is involved in the progression of neurodegenerative diseases. Motor neurons exhibit senescence-like alterations in ALS. BRD7, identified as a regulatory factor associated with cellular senescence, its function in ALS remains unclear. This study aims to investigate the potential role and mechanisms of BRD7 in ALS. We analyzed RNA levels using qRT-PCR, protein levels through immunofluorescence and western blot, and apoptosis via TUNEL staining. Cell transfection was conducted for in vitro experiments. The level of β-galactosidase was measured by β-galactosidase activity detection kit. ALS motor neurons exhibited senescence-like alterations, characterized by increased activity of p53, p21, and β-galactosidase, as well as reduced lamin B1 staining. Additionally, the expression of BRD7 was upregulated and induced cellular senescence and apoptosis. Downregulation of BRD7 alleviates the cellular senescence by inhibiting p21 rather than p53. Knockdown of BRD7 inhibited p53 mitochondrial translocation, leading to reduced apoptosis. Our results suggest that BRD7 plays an important role in the survival of ALS motor neurons. BRD7 knockdown can reduce cellular senescence and apoptosis by inhibiting p21 and p53 mitochondrial translocation.
Collapse
Affiliation(s)
- Xingli Tan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xiaoli Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Weiwei Liang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Di Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hongyong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yan Qi
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Wenmo Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ling Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Dongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ming Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Jing Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
7
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Juráková V, Széky B, Zapletalová M, Fehér A, Zana M, Pandey S, Kučera R, Šerý O, Hudeček J, Dinnyés A, Lochman J. Assessment and Evaluation of Contemporary Approaches for Astrocyte Differentiation from hiPSCs: A Modeling Paradigm for Alzheimer's Disease. Biol Proced Online 2024; 26:30. [PMID: 39342077 PMCID: PMC11437813 DOI: 10.1186/s12575-024-00257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Astrocytes have recently gained attention as key players in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Numerous differentiation protocols have been developed to study human astrocytes in vitro. However, the properties of the resulting glia are inconsistent, making it difficult to select an appropriate method for a given research question. Therefore, we compared three approaches for the generation of iPSC-derived astrocytes. We performed a detailed analysis using a widely used long serum-free (LSFP) and short serum-free (SSFP) protocol, as well as a TUSP protocol using serum for a limited time of differentiation. RESULTS We used RNA sequencing and immunochemistry to characterize the cultures. Astrocytes generated by the LSFP and SSFP methods differed significantly in their characteristics from those generated by the TUSP method using serum. The TUSP astrocytes had a less neuronal pattern, showed a higher degree of extracellular matrix formation, and were more mature. The short-term presence of FBS in the medium facilitated the induction of astroglia characteristics but did not result in reactive astrocytes. Data from cell-type deconvolution analysis applied to bulk transcriptomes from the cultures assessed their similarity to primary and fetal human astrocytes. CONCLUSIONS Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol for solving specific research tasks or drug discovery studies with iPSC-derived astrocytes.
Collapse
Affiliation(s)
- Veronika Juráková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | - Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Radek Kučera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Omar Šerý
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic
| | - Jiří Hudeček
- Psychiatric Clinic, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - András Dinnyés
- BioTalentum Ltd, Godollo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic.
| |
Collapse
|
9
|
Suzuki T, Bono H. A systematic exploration of unexploited genes for oxidative stress in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:160. [PMID: 39154038 PMCID: PMC11330442 DOI: 10.1038/s41531-024-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Human disease-associated gene data are accessible through databases, including the Open Targets Platform, DisGeNET, miRTex, RNADisease, and PubChem. However, missing data entries in such databases are anticipated because of curational errors, biases, and text-mining failures. Additionally, the extensive research on human diseases has led to challenges in registering comprehensive data. The lack of essential data in databases hinders knowledge sharing and should be addressed. Therefore, we propose an analysis pipeline to explore missing entries of unexploited genes in the human disease-associated gene databases. Using this pipeline for genes in Parkinson's disease with oxidative stress revealed two unexploited genes: nuclear protein 1 (NUPR1) and ubiquitin-like with PHD and ring finger domains 2 (UHRF2). This methodology enhances the identification of underrepresented disease-associated genes, facilitating easier access to potential human disease-related functional genes. This study aims to identify unexploited genes for further research and does not include independent experimental validation.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan.
| |
Collapse
|
10
|
Tao W, Yu Z, Han JDJ. Single-cell senescence identification reveals senescence heterogeneity, trajectory, and modulators. Cell Metab 2024; 36:1126-1143.e5. [PMID: 38604170 DOI: 10.1016/j.cmet.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/15/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Cellular senescence underlies many aging-related pathologies, but its heterogeneity poses challenges for studying and targeting senescent cells. We present here a machine learning program senescent cell identification (SenCID), which accurately identifies senescent cells in both bulk and single-cell transcriptome. Trained on 602 samples from 52 senescence transcriptome datasets spanning 30 cell types, SenCID identifies six major senescence identities (SIDs). Different SIDs exhibit different senescence baselines, stemness, gene functions, and responses to senolytics. SenCID enables the reconstruction of senescent trajectories under normal aging, chronic diseases, and COVID-19. Additionally, when applied to single-cell Perturb-seq data, SenCID helps reveal a hierarchy of senescence modulators. Overall, SenCID is an essential tool for precise single-cell analysis of cellular senescence, enabling targeted interventions against senescent cells.
Collapse
Affiliation(s)
- Wanyu Tao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Zhengqing Yu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
11
|
Hattangady NG, Carter K, Maroni-Rana B, Wang T, Ayers JL, Yu M, Grady WM. Mapping the core senescence phenotype of primary human colon fibroblasts. Aging (Albany NY) 2024; 16:3068-3087. [PMID: 38385965 PMCID: PMC10929841 DOI: 10.18632/aging.205577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Advanced age is the largest risk factor for many diseases and several types of cancer, including colorectal cancer (CRC). Senescent cells are known to accumulate with age in various tissues, where they can modulate the surrounding tissue microenvironment through their senescence associated secretory phenotype (SASP). Recently, we showed that there is an increased number of senescent cells in the colons of CRC patients and demonstrated that senescent fibroblasts and their SASP create microniches in the colon that are conducive to CRC onset and progression. However, the composition of the SASP is heterogenous and cell-specific, and the precise senescence profile of colon fibroblasts has not been well-defined. To generate a SASP atlas of human colon fibroblasts, we induced senescence in primary human colon fibroblasts using various in vitro methods and assessed the resulting transcriptome. Using RNASequencing and further validation by quantitative RT-PCR and Luminex assays, we define and validate a 'core senescent profile' that might play a significant role in shaping the colon microenvironment. We also performed KEGG analysis and GO analyses to identify key pathways and biological processes that are differentially regulated in colon fibroblast senescence. These studies provide insights into potential driver proteins involved in senescence-associated diseases, like CRC, which may lead to therapies to improve overall health in the elderly and to prevent CRC.
Collapse
Affiliation(s)
- Namita Ganesh Hattangady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kelly Carter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Brett Maroni-Rana
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ting Wang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jessica Lee Ayers
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ming Yu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - William M. Grady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Zhao J, Han Z, Ding L, Wang P, He X, Lin L. The molecular mechanism of aging and the role in neurodegenerative diseases. Heliyon 2024; 10:e24751. [PMID: 38312598 PMCID: PMC10835255 DOI: 10.1016/j.heliyon.2024.e24751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Aging is a complex and inevitable biological process affected by a combination of external environmental and genetic factors. Humans are currently living longer than ever before, accompanied with aging-related alterations such as diminished autophagy, decreased immunological function, mitochondrial malfunction, stem cell failure, accumulation of somatic and mitochondrial DNA mutations, loss of telomere, and altered nutrient metabolism. Aging leads to a decline in body functions and age-related diseases, for example, Alzheimer's disease, which adversely affects human health and longevity. The quality of life of the elderly is greatly diminished by the increase in their life expectancy rather than healthy life expectancy. With the rise in the age of the global population, aging and related diseases have become the focus of attention worldwide. In this review, we discuss several major mechanisms of aging, including DNA damage and repair, free radical oxidation, telomeres and telomerase, mitochondrial damage, inflammation, and their role in neurodegenerative diseases to provide a reference for the prevention of aging and its related diseases.
Collapse
Affiliation(s)
- Juanli Zhao
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhenjie Han
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Li Ding
- Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ping Wang
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiutang He
- Center for Monitoring and Evaluation of Teaching Quality, Jingchu University of Technology, Jingmen, 448000, China
| | - Li Lin
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
13
|
Gammie SC, Messing A, Hill MA, Kelm-Nelson CA, Hagemann TL. Large-scale gene expression changes in APP/PSEN1 and GFAP mutation models exhibit high congruence with Alzheimer's disease. PLoS One 2024; 19:e0291995. [PMID: 38236817 PMCID: PMC10796008 DOI: 10.1371/journal.pone.0291995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/10/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with both genetic and non-genetic causes. Animal research models are available for a multitude of diseases and conditions affecting the central nervous system (CNS), and large-scale CNS gene expression data exist for many of these. Although there are several models specifically for AD, each recapitulates different aspects of the human disease. In this study we evaluate over 500 animal models to identify those with CNS gene expression patterns matching human AD datasets. Approaches included a hypergeometric based scoring system that rewards congruent gene expression patterns but penalizes discordant gene expression patterns. The top two models identified were APP/PS1 transgenic mice expressing mutant APP and PSEN1, and mice carrying a GFAP mutation that is causative of Alexander disease, a primary disorder of astrocytes in the CNS. The APP/PS1 and GFAP models both matched over 500 genes moving in the same direction as in human AD, and both had elevated GFAP expression and were highly congruent with one another. Also scoring highly were the 5XFAD model (with five mutations in APP and PSEN1) and mice carrying CK-p25, APP, and MAPT mutations. Animals with the APOE3 and 4 mutations combined with traumatic brain injury ranked highly. Bulbectomized rats scored high, suggesting anosmia could be causative of AD-like gene expression. Other matching models included the SOD1G93A strain and knockouts for SNORD116 (Prader-Willi mutation), GRID2, INSM1, XBP1, and CSTB. Many top models demonstrated increased expression of GFAP, and results were similar across multiple human AD datasets. Heatmap and Uniform Manifold Approximation Plot results were consistent with hypergeometric ranking. Finally, some gene manipulation models, including for TYROBP and ATG7, were identified with reversed AD patterns, suggesting possible neuroprotective effects. This study provides insight for the pathobiology of AD and the potential utility of available animal models.
Collapse
Affiliation(s)
- Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Albee Messing
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mason A. Hill
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tracy L. Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
14
|
Li X, Li Y, Jin Y, Zhang Y, Wu J, Xu Z, Huang Y, Cai L, Gao S, Liu T, Zeng F, Wang Y, Wang W, Yuan TF, Tian H, Shu Y, Guo F, Lu W, Mao Y, Mei X, Rao Y, Peng B. Transcriptional and epigenetic decoding of the microglial aging process. NATURE AGING 2023; 3:1288-1311. [PMID: 37697166 PMCID: PMC10570141 DOI: 10.1038/s43587-023-00479-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/03/2023] [Indexed: 09/13/2023]
Abstract
As important immune cells, microglia undergo a series of alterations during aging that increase the susceptibility to brain dysfunctions. However, the longitudinal characteristics of microglia remain poorly understood. In this study, we mapped the transcriptional and epigenetic profiles of microglia from 3- to 24-month-old mice. We first discovered unexpected sex differences and identified age-dependent microglia (ADEM) genes during the aging process. We then compared the features of aging and reactivity in female microglia at single-cell resolution and epigenetic level. To dissect functions of aged microglia excluding the influence from other aged brain cells, we established an accelerated microglial turnover model without directly affecting other brain cells. By this model, we achieved aged-like microglia in non-aged brains and confirmed that aged-like microglia per se contribute to cognitive decline. Collectively, our work provides a comprehensive resource for decoding the aging process of microglia, shedding light on how microglia maintain brain functions.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Yuxiao Jin
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuheng Zhang
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Jingchuan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yubin Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lin Cai
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Gao
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Taohui Liu
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Fanzhuo Zeng
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yafei Wang
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Wenxu Wang
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengli Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yousheng Shu
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Feifan Guo
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Wei Lu
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Bo Peng
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China.
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
- Co-Innovation Center of Neurodegeneration, Nantong University, Nantong, China.
| |
Collapse
|
15
|
Mukem S, Sayoh I, Maungchanburi S, Thongbuakaew T. Ebselen, Iron Uptake Inhibitor, Alleviates Iron Overload-Induced Senescence-Like Neuronal Cells SH-SY5Y via Suppressing the mTORC1 Signaling Pathway. Adv Pharmacol Pharm Sci 2023; 2023:6641347. [PMID: 37731679 PMCID: PMC10509000 DOI: 10.1155/2023/6641347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
Increasing evidence highlights that excessive iron accumulation in the brain plays a vital role in neuronal senescence and is implicated in the pathogenesis of age-related neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Therefore, the chemical compounds that eliminate an iron overload may provide better protection against oxidative stress conditions that cause the accumulation of senescent cells during brain aging. Ebselen has been identified as a strongly useful compound in the research on redox biology mechanisms. We hypothesized that ebselen could alleviate an iron overload-induced oxidative stress and consequently reverses the senescence-like phenotypes in the neuronal cells. In the present study, SH-SY5Y cells were treated with ferric ammonium citrate (FAC) before ebselen, and the evaluation of the cellular iron homeostasis, the indicators of oxidative stress, and the onset of senescence phenotypes and mechanisms were carried out accordingly. Our findings showed that ebselen ameliorated the FAC-mediated iron overload by decreasing the expression of divalent metal transporter 1 (DMT1) and ferritin light chain (FT-L) proteins. In contrast, it increased the expression of ferroportin 1 (FPN1) protein and its correlation led to a decrease in the expression of the cytosolic labile iron pool (LIP). Furthermore, ebselen significantly reduced reactive oxygen species (ROS) and rescued the mitochondrial membrane potential (ΔΨm). Notably, ebselen restored the biomarkers of cellular senescence by reducing the number of senescence-associated β-galactosidase (SA-β-gal) positive cells and senescence-associated secretory phenotypes (SASP). This also suppressed the expression of p53 protein targeting DNA damage response (DDR)/p21 cyclin-dependent kinase (CDK) inhibitor through a mTORC1 signaling pathway. Potentially, ebselen could be a therapeutic agent for treating brain aging and AD by mitigating iron accumulation and restoring senescence in SH-SY5Y cells.
Collapse
Affiliation(s)
- Sirirak Mukem
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ibrahim Sayoh
- Department of Anatomy, Faculty of Science and Technology, Princess of Naradhiwas University, Narathiwat 96000, Thailand
| | - Saowanee Maungchanburi
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | |
Collapse
|
16
|
Carvalho D, Diaz-Amarilla P, Dapueto R, Santi MD, Duarte P, Savio E, Engler H, Abin-Carriquiry JA, Arredondo F. Transcriptomic Analyses of Neurotoxic Astrocytes Derived from Adult Triple Transgenic Alzheimer's Disease Mice. J Mol Neurosci 2023; 73:487-515. [PMID: 37318736 DOI: 10.1007/s12031-023-02105-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease have been classically studied from a purely neuronocentric point of view. More recent evidences support the notion that other cell populations are involved in disease progression. In this sense, the possible pathogenic role of glial cells like astrocytes is increasingly being recognized. Once faced with tissue damage signals and other stimuli present in disease environments, astrocytes suffer many morphological and functional changes, a process referred as reactive astrogliosis. Studies from murine models and humans suggest that these complex and heterogeneous responses could manifest as disease-specific astrocyte phenotypes. Clear understanding of disease-associated astrocytes is a necessary step to fully disclose neurodegenerative processes, aiding in the design of new therapeutic and diagnostic strategies. In this work, we present the transcriptomics characterization of neurotoxic astrocytic cultures isolated from adult symptomatic animals of the triple transgenic mouse model of Alzheimer's disease (3xTg-AD). According to the observed profile, 3xTg-AD neurotoxic astrocytes show various reactivity features including alteration of the extracellular matrix and release of pro-inflammatory and proliferative factors that could result in harmful effects to neurons. Moreover, these alterations could be a consequence of stress responses at the endoplasmic reticulum and mitochondria as well as of concomitant metabolic adaptations. Present results support the hypothesis that adaptive changes of astrocytic function induced by a stressed microenvironment could later promote harmful astrocyte phenotypes and further accelerate or induce neurodegenerative processes.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Rosina Dapueto
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - María Daniela Santi
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, 10010, USA
| | - Pablo Duarte
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Eduardo Savio
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Henry Engler
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- Facultad de Medicina, Universidad de la República, 1800, Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Laboratorio de Biofármacos, Institut Pasteur de Montevideo, 11600, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay.
| |
Collapse
|
17
|
Rojas-Cruz AF, Martín-Jiménez CA, González J, González-Giraldo Y, Pinzón AM, Barreto GE, Aristizábal-Pachón AF. Palmitic Acid Upregulates Type I Interferon-Mediated Antiviral Response and Cholesterol Biosynthesis in Human Astrocytes. Mol Neurobiol 2023; 60:4842-4854. [PMID: 37184765 PMCID: PMC10293381 DOI: 10.1007/s12035-023-03366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Chronic intake of a high-fat diet increases saturated fatty acids in the brain causing the progression of neurodegenerative diseases. Palmitic acid is a free fatty acid abundant in the diet that at high concentrations may penetrate the blood-brain barrier and stimulate the production of pro-inflammatory cytokines, leading to inflammation in astrocytes. The use of the synthetic neurosteroid tibolone in protection against fatty acid toxicity is emerging, but its transcriptional effects on palmitic acid-induced lipotoxicity remain unclear. Herein, we performed a transcriptome profiling of normal human astrocytes to investigate the molecular mechanisms by which palmitic acid causes cellular damage to astrocytes, and whether tibolone could reverse its detrimental effects. Astrocytes undergo a profound transcriptional change at 2 mM palmitic acid, affecting the expression of 739 genes, 366 upregulated and 373 downregulated. However, tibolone at 10 nM does not entirely reverse palmitic acid effects. Additionally, the protein-protein interaction reveals two novel gene clustering modules. The first module involves astrocyte defense responses by upregulation of pathways associated with antiviral innate immunity, and the second is linked to lipid metabolism. Our data suggest that activation of viral response signaling pathways might be so far, the initial molecular mechanism of astrocytes in response to a lipotoxic insult by palmitic acid, triggered particularly upon increased expression levels of IFIT2, IRF1, and XAF1. Therefore, this novel approach using a global gene expression analysis may shed light on the pleiotropic effects of palmitic acid on astrocytes, and provide a basis for future studies addressed to elucidate these responses in neurodegenerative conditions, which is highly valuable for the design of therapeutic strategies.
Collapse
Affiliation(s)
- Alexis Felipe Rojas-Cruz
- Departamento de Nutrición Y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | | | - Janneth González
- Departamento de Nutrición Y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición Y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Andrés Mauricio Pinzón
- Laboratorio de Bioinformática Y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá, 110231, Colombia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX, Limerick, Ireland
| | | |
Collapse
|
18
|
Mitroshina EV, Krivonosov MI, Pakhomov AM, Yarullina LE, Gavrish MS, Mishchenko TA, Yarkov RS, Vedunova MV. Unravelling the Collective Calcium Dynamics of Physiologically Aged Astrocytes under a Hypoxic State In Vitro. Int J Mol Sci 2023; 24:12286. [PMID: 37569663 PMCID: PMC10419080 DOI: 10.3390/ijms241512286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Astrocytes serve many functions in the brain related to maintaining nerve tissue homeostasis and regulating neuronal function, including synaptic transmission. It is assumed that astrocytes are crucial players in determining the physiological or pathological outcome of the brain aging process and the development of neurodegenerative diseases. Therefore, studies on the peculiarities of astrocyte physiology and interastrocytic signaling during aging are of utmost importance. Calcium waves are one of the main mechanisms of signal transmission between astrocytes, and in the present study we investigated the features of calcium dynamics in primary cultures of murine cortical astrocytes in physiological aging and hypoxia modeling in vitro. Specifically, we focused on the assessment of calcium network dynamics and the restructuring of the functional network architecture in primary astrocytic cultures. Calcium imaging was performed on days 21 ("young" astrocyte group) and 150 ("old" astrocyte group) of cultures' development in vitro. While the number of active cells and frequency of calcium events were decreased, we observed a reduced degree of correlation in calcium dynamics between neighboring cells, which was accompanied by a reduced number of functionally connected cells with fewer and slower signaling events. At the same time, an increase in the mRNA expression of anti-apoptotic factor Bcl-2 and connexin 43 was observed in "old" astrocytic cultures, which can be considered as a compensatory response of cells with a decreased level of intercellular communication. A hypoxic episode aggravates the depression of the connectivity of calcium dynamics of "young" astrocytes rather than that of "old" ones.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Mikhail I. Krivonosov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Alexander M. Pakhomov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), 603950 Nizhny Novgorod, Russia
| | - Laysan E. Yarullina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Maria S. Gavrish
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Roman S. Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| |
Collapse
|
19
|
Wong-Guerra M, Calfio C, Maccioni RB, Rojo LE. Revisiting the neuroinflammation hypothesis in Alzheimer's disease: a focus on the druggability of current targets. Front Pharmacol 2023; 14:1161850. [PMID: 37361208 PMCID: PMC10288808 DOI: 10.3389/fphar.2023.1161850] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease and disability in the elderly; it is estimated to account for 60%-70% of all cases of dementia worldwide. The most relevant mechanistic hypothesis to explain AD symptoms is neurotoxicity induced by aggregated amyloid-β peptide (Aβ) and misfolded tau protein. These molecular entities are seemingly insufficient to explain AD as a multifactorial disease characterized by synaptic dysfunction, cognitive decline, psychotic symptoms, chronic inflammatory environment within the central nervous system (CNS), activated microglial cells, and dysfunctional gut microbiota. The discovery that AD is a neuroinflammatory disease linked to innate immunity phenomena started in the early nineties by several authors, including the ICC´s group that described, in 2004, the role IL-6 in AD-type phosphorylation of tau protein in deregulating the cdk5/p35 pathway. The "Theory of Neuroimmunomodulation", published in 2008, proposed the onset and progression of degenerative diseases as a multi-component "damage signals" phenomena, suggesting the feasibility of "multitarget" therapies in AD. This theory explains in detail the cascade of molecular events stemming from microglial disorder through the overactivation of the Cdk5/p35 pathway. All these knowledge have led to the rational search for inflammatory druggable targets against AD. The accumulated evidence on increased levels of inflammatory markers in the cerebrospinal fluid (CSF) of AD patients, along with reports describing CNS alterations caused by senescent immune cells in neuro-degenerative diseases, set out a conceptual framework in which the neuroinflammation hypothesis is being challenged from different angles towards developing new therapies against AD. The current evidence points to controversial findings in the search for therapeutic candidates to treat neuroinflammation in AD. In this article, we discuss a neuroimmune-modulatory perspective for pharmacological exploration of molecular targets against AD, as well as potential deleterious effects of modifying neuroinflammation in the brain parenchyma. We specifically focus on the role of B and T cells, immuno-senescence, the brain lymphatic system (BLS), gut-brain axis alterations, and dysfunctional interactions between neurons, microglia and astrocytes. We also outline a rational framework for identifying "druggable" targets for multi-mechanistic small molecules with therapeutic potential against AD.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile (CBA-USACH), Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Camila Calfio
- International Center for Biomedicine (ICC), Santiago, Chile
- Laboratory of Cellular and Molecular Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ricardo B. Maccioni
- International Center for Biomedicine (ICC), Santiago, Chile
- Laboratory of Cellular and Molecular Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Leonel E. Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile (CBA-USACH), Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| |
Collapse
|
20
|
Lu KJ, Sheu JR, Teng RD, Jayakumar T, Chung CL, Hsieh CY. Ability of Local Clearance of Senescent Cells in Ipsilateral Hemisphere to Mitigate Acute Ischemic Brain Injury in Mice. Int J Biol Sci 2023; 19:2835-2847. [PMID: 37324944 PMCID: PMC10266088 DOI: 10.7150/ijbs.84060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Senolytic treatment has potential therapeutic efficacy for acute ischemic stroke (AIS). However, the systemic treatment of senolytics may produce off-target side effects and a toxic profile, which affect analysis of the role of acute senescence of neuronal cells in pathogenesis of AIS. We constructed a novel lenti-INK-ATTAC viral vector to introduce INK-ATTAC genes to the ipsilateral brain and locally eliminate senescent brain cells by administering AP20187 to activate caspase-8 apoptotic cascade. In this study, we have found that acute senescence is triggered by middle cerebral artery occlusion (MCAO) surgery, particularly in astrocytes and cerebral endothelial cells (CECs). The upregulation of p16INK4a and senescence-associated secretory phenotype (SASP) factors including matrix metalloproteinase-3, interleukin-1 alpha and -6 were observed in oxygen-glucose deprivation-treated astrocytes and CECs. The systemic administration of a senolytic, ABT-263, prevented the impairment of brain activity from hypoxic brain injury in mice, and significantly improved the neurological severity score, rotarod performance, locomotor activity, and weight loss. The treatment of ABT-263 reduced senescence of astrocytes and CECs in MCAO mice. Furthermore, the localized removal of senescent cells in the injured brain through the stereotaxical injection of lenti-INK-ATTAC viruses generates neuroprotective effects, protecting against acute ischemic brain injury in mice. The content of SASP factors and mRNA level of p16INK4a in the brain tissue of MCAO mice were significantly reduced by the infection of lenti-INK-ATTAC viruses. These results indicate that local clearance of senescent brain cells is a potential therapy on AIS, and demonstrate the correlation between neuronal senescence and pathogenesis of AIS.
Collapse
Affiliation(s)
- Kuan-Jung Lu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Dun Teng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tanasekar Jayakumar
- Department of Ecology & Environmental Sciences, School of Life Science, Pondicherry University, Kalapet, India
| | - Chi-Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
21
|
Meldolesi J. Role of Senescent Astrocytes in Health and Disease. Int J Mol Sci 2023; 24:ijms24108498. [PMID: 37239843 DOI: 10.3390/ijms24108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
For many decades after their discovery, astrocytes, the abundant glial cells of the brain, were believed to work as a glue, supporting the structure and metabolic functions of neurons. A revolution that started over 30 years ago revealed many additional functions of these cells, including neurogenesis, gliosecretion, glutamate homeostasis, assembly and function of synapses, neuronal metabolism with energy production, and others. These properties have been confirmed, limited however, to proliferating astrocytes. During their aging or following severe brain stress lesions, proliferating astrocytes are converted into their no-longer-proliferating, senescent forms, similar in their morphology but profoundly modified in their functions. The changed specificity of senescent astrocytes is largely due to their altered gene expression. The ensuing effects include downregulation of many properties typical of proliferating astrocytes, and upregulation of many others, concerned with neuroinflammation, release of pro-inflammatory cytokines, dysfunction of synapses, etc., specific to their senescence program. The ensuing decrease in neuronal support and protection by astrocytes induces the development, in vulnerable brain regions, of neuronal toxicity together with cognitive decline. Similar changes, ultimately reinforced by astrocyte aging, are also induced by traumatic events and molecules involved in dynamic processes. Senescent astrocytes play critical roles in the development of many severe brain diseases. The first demonstration, obtained for Alzheimer's disease less than 10 years ago, contributed to the elimination of the previously predominant neuro-centric amyloid hypothesis. The initial astrocyte effects, operating a considerable time before the appearance of known Alzheimer's symptoms evolve with the severity of the disease up to their proliferation during the final outcome. Involvement of astrocytes in other neurodegenerative diseases and cancer is now intensely investigated.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- San Raffaele Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
- CNR Institute of Neuroscience, Milano-Bicocca University, Vedano al Lambro, 20854 Milan, Italy
| |
Collapse
|
22
|
Dai L, Gao F, Wang Q, Lv X, Cheng Z, Wu Y, Chai X, Zetterberg H, Blennow K, Levey AI, Shi J, Shen Y. Molecules of senescent glial cells differentiate Alzheimer's disease from ageing. J Neurol Neurosurg Psychiatry 2023:jnnp-2022-330743. [PMID: 37012067 DOI: 10.1136/jnnp-2022-330743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Ageing is a major risk factor for Alzheimer's disease (AD), which is accompanied by cellular senescence and thousands of transcriptional changes in the brain. OBJECTIVES To identify the biomarkers in the cerebrospinal fluid (CSF) that could help differentiate healthy ageing from neurodegenerative processes. METHODS Cellular senescence and ageing-related biomarkers were assessed in primary astrocytes and postmortem brains by immunoblotting and immunohistochemistry. The biomarkers were measured in CSF samples from the China Ageing and Neurodegenerative Disorder Initiative cohort using Elisa and the multiplex Luminex platform. RESULTS The cyclin-dependent kinase inhibitors p16/p21-positive senescent cells in human postmortem brains were predominantly astrocytes and oligodendrocyte lineage cells, which accumulated in AD brains. CCL2, YKL-40, HGF, MIF, S100B, TSP2, LCN2 and serpinA3 are biomarkers closely related to human glial senescence. Moreover, we discovered that most of these molecules, which were upregulated in senescent glial cells, were significantly elevated in the AD brain. Notably, CSF YKL-40 (β=0.5412, p<0.0001) levels were markedly elevated with age in healthy older individuals, whereas HGF (β=0.2732, p=0.0001), MIF (β=0.33714, p=0.0017) and TSP2 (β=0.1996, p=0.0297) levels were more susceptible to age in older individuals with AD pathology. We revealed that YKL-40, TSP2 and serpinA3 were useful biomarkers for discriminating patients with AD from CN individuals and non-AD patients. DISCUSSION Our findings demonstrated the different patterns of CSF biomarkers related to senescent glial cells between normal ageing and AD, implicating these biomarkers could identify the road node in healthy path off to neurodegeneration and improve the accuracy of clinical AD diagnosis, which would help promote healthy ageing.
Collapse
Affiliation(s)
- Linbin Dai
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, People's Republic of China
| | - Feng Gao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Qiong Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xinyi Lv
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zhaozhao Cheng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yan Wu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xianliang Chai
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease,UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, People's Republic of China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Allan I Levey
- Department of Neurology, Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, USA
| | - Jiong Shi
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yong Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology, Hefei, Anhui, China
- Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Villablanca C, Vidal R, Gonzalez-Billault C. Are cytoskeleton changes observed in astrocytes functionally linked to aging? Brain Res Bull 2023; 196:59-67. [PMID: 36935053 DOI: 10.1016/j.brainresbull.2023.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Astrocytes are active participants in the performance of the Central Nervous System (CNS) in both health and disease. During aging, astrocytes are susceptible to reactive astrogliosis, a molecular state characterized by functional changes in response to pathological situations, and cellular senescence, characterized by loss of cell division, apoptosis resistance, and gain of proinflammatory functions. This results in two different states of astrocytes, which can produce proinflammatory phenotypes with harmful consequences in chronic conditions. Reactive astrocytes and senescent astrocytes share morpho-functional features that are dependent on the organization of the cytoskeleton. However, such changes in the cytoskeleton have yet to receive the necessary attention to explain their role in the alterations of astrocytes that are associated with aging and pathologies. In this review, we summarize all the available findings that connect changes in the cytoskeleton of the astrocytes with aging. In addition, we discuss future avenues that we believe will guide such a novel topic.
Collapse
Affiliation(s)
- Cristopher Villablanca
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - René Vidal
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Nutrition and Food Technologies, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
24
|
Konstantinidis E, Dakhel A, Beretta C, Erlandsson A. Long-term effects of amyloid-beta deposits in human iPSC-derived astrocytes. Mol Cell Neurosci 2023; 125:103839. [PMID: 36907531 DOI: 10.1016/j.mcn.2023.103839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Growing evidence indicates that astrocytes are tightly connected to Alzheimer's disease (AD) pathogenesis. However, the way in which astrocytes participate in AD initiation and progression remains to be clarified. Our previous data show that astrocytes engulf large amounts of aggregated amyloid-beta (Aβ) but are unable to successfully degrade the material. In this study, we aimed to evaluate how intracellular Aβ-accumulation affects the astrocytes over time. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated Aβ-fibrils and then cultured further for one week or ten weeks in Aβ-free medium. Cells from both time points were analyzed for lysosomal proteins and astrocyte reactivity markers and the media were screened for inflammatory cytokines. In addition, the overall health of cytoplasmic organelles was investigated by immunocytochemistry and electron microscopy. Our data demonstrate that long-term astrocytes retained frequent Aβ-inclusions that were enclosed within LAMP1-positive organelles and sustained markers associated with reactivity. Furthermore, Aβ-accumulation resulted in endoplasmic reticulum and mitochondrial swelling, increased secretion of the cytokine CCL2/MCP-1 and formation of pathological lipid structures. Taken together, our results provide valuable information of how intracellular Aβ-deposits affect astrocytes, and thereby contribute to the understanding of the role of astrocytes in AD progression.
Collapse
Affiliation(s)
- Evangelos Konstantinidis
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Abdulkhalek Dakhel
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Chiara Beretta
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden
| | - Anna Erlandsson
- Uppsala University, Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala, Sweden.
| |
Collapse
|
25
|
Mendes-Silva AP, Prevot TD, Banasr M, Sibille E, Diniz BS. Abnormal expression of cortical cell cycle regulators underlying anxiety and depressive-like behavior in mice exposed to chronic stress. Front Cell Neurosci 2022; 16:999303. [PMID: 36568887 PMCID: PMC9772437 DOI: 10.3389/fncel.2022.999303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The cell cycle is a critical mechanism for proper cellular growth, development and viability. The p16INK4a and p21Waf1/Cip1 are important regulators of the cell cycle progression in response to internal and external stimuli (e.g., stress). Accumulating evidence indicates that the prefrontal cortex (PFC) is particularly vulnerable to stress, where stress induces, among others, molecular and morphological alterations, reflecting behavioral changes. Here, we investigated if the p16INK4a and p21Waf1/Cip1 expression are associated with behavioral outcomes. Methods Prefrontal cortex mRNA and protein levels of p16INK4A and p21Waf1/Cip1 of mice (six independent groups of C57BL/6J, eight mice/group, 50% female) exposed from 0 to 35 days of chronic restraint stress (CRS) were quantified by qPCR and Western Blot, respectively. Correlation analyses were used to investigate the associations between cyclin-dependent kinase inhibitors (CKIs) expression and anxiety- and depression-like behaviors. Results Our results showed that the PFC activated the cell cycle regulation pathways mediated by both CKIs p16INK4A and p21Waf1/Cip1 in mice exposed to CRS, with overall decreased mRNA expression and increased protein expression. Moreover, correlation analysis revealed that mRNA and protein levels are statistically significant correlated with anxiety and depressive-like behavior showing a greater effect in males than females. Conclusion Our present study extends the existing literature providing evidence that PFC cells respond to chronic stress exposure by overexpressing CKIs. Furthermore, our findings indicated that abnormal expression of p16INK4A and p21Waf1/Cip1 may significantly contribute to non-adaptive behavioral responses.
Collapse
Affiliation(s)
- Ana Paula Mendes-Silva
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,*Correspondence: Ana Paula Mendes-Silva,
| | - Thomas Damien Prevot
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mounira Banasr
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Breno Satler Diniz
- School of Medicine, Center on Aging, University of Connecticut Health Center, Farmington, CT, United States,Department of Psychiatry, School of Medicine, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
26
|
Anggraini DR, Ilyas S, Hasibuan PAZ, Machrina Y, Purba A, Munir D, Putra IB, Betty. Anti-Aging Activity of Andaliman (Zanthoxylum Acanthopodium DC) Fruit Ethanol Extract on Brain Weight and p16INK4a Expression of Hippocampus in Aging Model Rats. Acta Inform Med 2022; 30:283-286. [PMID: 36467322 PMCID: PMC9665423 DOI: 10.5455/aim.2022.30.283-286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Physiological aging and due to oxidative stress in long term will have an impact on cellular response disorders, can caused aging of hippocampus and senility. Brain weight is known to decrease with age and p16INK4a as aging biomarkers have been investigated. Andaliman is one of typical herbal plants from North Sumatra has been widely used as an antioxidant, anti-inflammatory and anti-aging. OBJECTIVE This study was evaluated effect of andaliman (Zanthoxylum acanthopodium DC) fruit ethanol extract (AEE) on brain weight and p16INK4a expression in aging model rats. METHODS This study was carried out experimentally of 24 male wistar rats. The treatment group consisted of 4 groups; KN= negatif control (normal), KP= positif control (aging model rat), P1 and P2= aging model rat + AEE at dose 150 and 300mg/kgbw, respectively. The aging model rats were D-galactose-induced at dose of 150mg/kgbw for 8 weeks. Brain weigth were recorded by digital scales. p16INK4a expression using immunohistochemical methods. The data analysis with Anova test. RESULTS This study showed differences brain weight between groups (p=0.523). Brain weight in P1 (1.34±0,06) and P2 (1.30±0.09) tendency increased than KP (1.29±0.62). The p16INK4a expression between groups significant difference (p=0.041), continued with post hoc Least Significant Difference (LSD) showed p16INK4a expression in KN significant decreased than KP (p=0.027). Likewise, p16INK4a expression in P2 was significant decreased than KP (p=0.010). CONCLUSION Andaliman ethanol extract at a dose 300mg/kgbw for 8 weeks was improved aging process caused D-galactose induced.
Collapse
Affiliation(s)
- Dwi Rita Anggraini
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Yetty Machrina
- Department of Physiology, Faculty of Medicine,Universitas Sumatera Utara, Medan, Indonesia
| | - Ambrosius Purba
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Delfitri Munir
- Department of Ear, Nose & Throat, Head & Neck, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Imam Budi Putra
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Betty
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
27
|
Donohue LK, Guo MG, Zhao Y, Jung N, Bussat RT, Kim DS, Neela PH, Kellman LN, Garcia OS, Meyers RM, Altman RB, Khavari PA. A cis-regulatory lexicon of DNA motif combinations mediating cell-type-specific gene regulation. CELL GENOMICS 2022; 2:100191. [PMID: 36742369 PMCID: PMC9894309 DOI: 10.1016/j.xgen.2022.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene expression is controlled by transcription factors (TFs) that bind cognate DNA motif sequences in cis-regulatory elements (CREs). The combinations of DNA motifs acting within homeostasis and disease, however, are unclear. Gene expression, chromatin accessibility, TF footprinting, and H3K27ac-dependent DNA looping data were generated and a random-forest-based model was applied to identify 7,531 cell-type-specific cis-regulatory modules (CRMs) across 15 diploid human cell types. A co-enrichment framework within CRMs nominated 838 cell-type-specific, recurrent heterotypic DNA motif combinations (DMCs), which were functionally validated using massively parallel reporter assays. Cancer cells engaged DMCs linked to neoplasia-enabling processes operative in normal cells while also activating new DMCs only seen in the neoplastic state. This integrative approach identifies cell-type-specific cis-regulatory combinatorial DNA motifs in diverse normal and diseased human cells and represents a general framework for deciphering cis-regulatory sequence logic in gene regulation.
Collapse
Affiliation(s)
- Laura K.H. Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA,Synthego, Redwood City, CA, USA,These authors contributed equally
| | - Margaret G. Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA,These authors contributed equally
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Synthego, Redwood City, CA, USA
| | - Namyoung Jung
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Rose T. Bussat
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,23andMe, Inc., Sunnyvale, CA, USA
| | - Daniel S. Kim
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Poornima H. Neela
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Fauna Bio, Emeryville, CA, USA
| | - Laura N. Kellman
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Omar S. Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin M. Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Russ B. Altman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Paul A. Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA,Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA,Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA,Lead contact,Correspondence:
| |
Collapse
|
28
|
Zhang W, Yang X, Liu J, Pan Y, Zhang M, Chen L. Senescent Phenotype of Astrocytes Leads to Activation of BV2 Microglia and N2a Neuronal Cells Death. Molecules 2022; 27:molecules27185925. [PMID: 36144658 PMCID: PMC9506220 DOI: 10.3390/molecules27185925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
(1) Background: Astrocytes, the most abundant cell type in the central nervous system, are essential to tune individual-to-network neuronal activity. Senescence in astrocytes has been discovered as a crucial contributor to several age-related neurological diseases. Here, we aim to observe if astrocytes demonstrate senescence in the process of brain aging, and whether they bring adverse factors, especially harm to neuronal cells. (2) Methods: In vivo, mice were housed for four, 18, and 26 months. An in vitro cell model of aged astrocytes was constructed by serial passaging until passage 20–25, and those within 1–5 were invoked as young astrocytes. Meanwhile, an oxidative induced astrocyte senescence model was constructed by H2O2 induction. (3) Results: In vitro aged astrocytes all showed manifest changes in several established markers of cellular senescence, e.g., P53, P21, and the release of inflammatory cytokine IL-6 and SA-β-gal positive cells. Results also showed mitochondrial dysfunction in the oxidative stress-induced astrocyte senescence model and treatment of berberine could ameliorate these alterations. Two types of senescent astrocytes’ conditioned medium could impact on neuron apoptosis in direct or indirect ways. (4) Conclusions: Senescent astrocyte might affect neurons directly or indirectly acting on the regulation of normal and pathological brain aging.
Collapse
Affiliation(s)
- Wenyou Zhang
- Nanomedicine Engineering Laboratory of Jilin Province, Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xuehan Yang
- Nanomedicine Engineering Laboratory of Jilin Province, Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jingyue Liu
- Nanomedicine Engineering Laboratory of Jilin Province, Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yichen Pan
- School of Life Sciences, Jilin University, Changchun 130021, China
| | - Ming Zhang
- Nanomedicine Engineering Laboratory of Jilin Province, Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (M.Z.); (L.C.)
| | - Li Chen
- Nanomedicine Engineering Laboratory of Jilin Province, Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- School of Nursing, Jilin University, Changchun 130021, China
- Correspondence: (M.Z.); (L.C.)
| |
Collapse
|
29
|
Involvement of astrocyte senescence in Alzheimer's disease. Curr Opin Neurobiol 2022; 76:102594. [PMID: 35779313 DOI: 10.1016/j.conb.2022.102594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 01/10/2023]
|
30
|
Tüzer F, Chinta SJ, Viel TA. Editorial: Role of Senescence in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:907670. [PMID: 35656539 PMCID: PMC9152670 DOI: 10.3389/fnagi.2022.907670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ferit Tüzer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Ferit Tüzer
| | - Shankar J. Chinta
- Department of Biological and Pharmaceutical Sciences, Touro University California, Vallejo, CA, United States
| | - Tania Araujo Viel
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Singha SP, Memon S, Bano U, Isaac AD, Shahani MY. Evaluation of p21 expression and related autism-like behavior in Bisphenol-A exposed offspring of Wistar albino rats. Birth Defects Res 2022; 114:536-550. [PMID: 35560535 DOI: 10.1002/bdr2.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Bisphenol A (BPA), an endocrine disruptor, may be involved in the etiology of autism spectrum disorders (ASD); however, the mechanism of neuronal and astrocytic damage remains ambiguous. A possible role of altered expression of p21 in autistic-like behavior in rat offspring was examined with prenatal and postnatal BPA exposure. METHODS Wistar albino dams were exposed to BPA (5 mg/kg) intraperitoneally throughout pregnancy and until the third postnatal day (PND). Pups were examined on 21st PND for behavioral test. Blood samples were collected for serum lactate levels and pups were sacrificed. Right frontal cortices were dissected out and processed for H&E, immunohistochemical analysis, and gene expression. RESULTS Anxiety like behavior and thigmotaxis along with reduction in serum lactate concentrations were observed in pups exposed to BPA. Decline in neuronal number and decreased astrocytic population with reduced dendritic spines were revealed by H&E and immunohistochemical analysis, respectively, in right frontal cortices. Over expression of p21 was also detected in BPA-exposed offspring. CONCLUSIONS Over expression of p21 may be associated with autistic behavior. Further studies are recommended to explore the structural alterations in other white matter pathways in frontal cortices.
Collapse
Affiliation(s)
| | - Samreen Memon
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Umbreen Bano
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Amir Derick Isaac
- Department of Oral Biology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Muhammad Yaqoob Shahani
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
32
|
Lazic A, Balint V, Stanisavljevic Ninkovic D, Peric M, Stevanovic M. Reactive and Senescent Astroglial Phenotypes as Hallmarks of Brain Pathologies. Int J Mol Sci 2022; 23:ijms23094995. [PMID: 35563385 PMCID: PMC9100382 DOI: 10.3390/ijms23094995] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes, as the most abundant glial cells in the central nervous system, are tightly integrated into neural networks and participate in numerous aspects of brain physiology and pathology. They are the main homeostatic cells in the central nervous system, and the loss of astrocyte physiological functions and/or gain of pro-inflammatory functions, due to their reactivation or cellular senescence, can have profound impacts on the surrounding microenvironment with pathological outcomes. Although the importance of astrocytes is generally recognized, and both senescence and reactive astrogliosis have been extensively reviewed independently, there are only a few comparative overviews of these complex processes. In this review, we summarize the latest data regarding astrocyte reactivation and senescence, and outline similarities and differences between these phenotypes from morphological, functional, and molecular points of view. A special focus has been given to neurodegenerative diseases, where these phenotypic alternations of astrocytes are significantly implicated. We also summarize current perspectives regarding new advances in model systems based on astrocytes as well as data pointing to these glial cells as potential therapeutic targets.
Collapse
Affiliation(s)
- Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
- Correspondence:
| | - Vanda Balint
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Mina Peric
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11001 Belgrade, Serbia
| |
Collapse
|
33
|
Miller SJ, Campbell CE, Jimenez-Corea HA, Wu GH, Logan R. Neuroglial Senescence, α-Synucleinopathy, and the Therapeutic Potential of Senolytics in Parkinson’s Disease. Front Neurosci 2022; 16:824191. [PMID: 35516803 PMCID: PMC9063319 DOI: 10.3389/fnins.2022.824191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder and the second most prevalent neurodegenerative disease after Alzheimer’s disease. Despite decades of research, there is still no cure for PD and the complicated intricacies of the pathology are still being worked out. Much of the research on PD has focused on neurons, since the disease is characterized by neurodegeneration. However, neuroglia has become recognized as key players in the health and disease of the central nervous system. This review provides a current perspective on the interactive roles that α-synuclein and neuroglial senescence have in PD. The self-amplifying and cyclical nature of oxidative stress, neuroinflammation, α-synucleinopathy, neuroglial senescence, neuroglial chronic activation and neurodegeneration will be discussed. Finally, the compelling role that senolytics could play as a therapeutic avenue for PD is explored and encouraged.
Collapse
Affiliation(s)
- Sean J. Miller
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
| | | | | | - Guan-Hui Wu
- Department of Neurology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Robert Logan
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
- *Correspondence: Robert Logan,
| |
Collapse
|
34
|
Kiss T, Nyúl-Tóth Á, DelFavero J, Balasubramanian P, Tarantini S, Faakye J, Gulej R, Ahire C, Ungvari A, Yabluchanskiy A, Wiley G, Garman L, Ungvari Z, Csiszar A. Spatial transcriptomic analysis reveals inflammatory foci defined by senescent cells in the white matter, hippocampi and cortical grey matter in the aged mouse brain. GeroScience 2022; 44:661-681. [PMID: 35098444 PMCID: PMC9135953 DOI: 10.1007/s11357-022-00521-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
There is strong evidence that aging is associated with an increased presence of senescent cells in the brain. The finding that treatment with senolytic drugs improves cognitive performance of aged laboratory mice suggests that increased cellular senescence is causally linked to age-related cognitive decline. The relationship between senescent cells and their relative locations within the brain is critical to understanding the pathology of age-related cognitive decline and dementia. To assess spatial distribution of cellular senescence in the aged mouse brain, spatially resolved whole transcriptome mRNA expression was analyzed in sections of brains derived from young (3 months old) and aged (28 months old) C57BL/6 mice while capturing histological information in the same tissue section. Using this spatial transcriptomics (ST)-based method, microdomains containing senescent cells were identified on the basis of their senescence-related gene expression profiles (i.e., expression of the senescence marker cyclin-dependent kinase inhibitor p16INK4A encoded by the Cdkn2a gene) and were mapped to different anatomical brain regions. We confirmed that brain aging is associated with increased cellular senescence in the white matter, the hippocampi and the cortical grey matter. Transcriptional analysis of the senescent cell-containing ST spots shows that presence of senescent cells is associated with a gene expression signature suggestive of neuroinflammation. GO enrichment analysis of differentially expressed genes in the outer region of senescent cell-containing ST spots ("neighboring ST spots") also identified functions related to microglia activation and neuroinflammation. In conclusion, senescent cells accumulate with age in the white matter, the hippocampi and cortical grey matter and likely contribute to the genesis of inflammatory foci in a paracrine manner.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary.
- First Department of Pediatrics, Semmelweis University, HU, 1083, Budapest, Hungary.
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Janet Faakye
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Graham Wiley
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK, USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Theoretical Medicine Doctoral School, International Training Program in Geroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
35
|
Bouvier DS, Fixemer S, Heurtaux T, Jeannelle F, Frauenknecht KBM, Mittelbronn M. The Multifaceted Neurotoxicity of Astrocytes in Ageing and Age-Related Neurodegenerative Diseases: A Translational Perspective. Front Physiol 2022; 13:814889. [PMID: 35370777 PMCID: PMC8969602 DOI: 10.3389/fphys.2022.814889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
In a healthy physiological context, astrocytes are multitasking cells contributing to central nervous system (CNS) homeostasis, defense, and immunity. In cell culture or rodent models of age-related neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), numerous studies have shown that astrocytes can adopt neurotoxic phenotypes that could enhance disease progression. Chronic inflammatory responses, oxidative stress, unbalanced phagocytosis, or alteration of their core physiological roles are the main manifestations of their detrimental states. However, if astrocytes are directly involved in brain deterioration by exerting neurotoxic functions in patients with NDDs is still controversial. The large spectrum of NDDs, with often overlapping pathologies, and the technical challenges associated with the study of human brain samples complexify the analysis of astrocyte involvement in specific neurodegenerative cascades. With this review, we aim to provide a translational overview about the multi-facets of astrocyte neurotoxicity ranging from in vitro findings over mouse and human cell-based studies to rodent NDDs research and finally evidence from patient-related research. We also discuss the role of ageing in astrocytes encompassing changes in physiology and response to pathologic stimuli and how this may prime detrimental responses in NDDs. To conclude, we discuss how potentially therapeutic strategies could be adopted to alleviate or reverse astrocytic toxicity and their potential to impact neurodegeneration and dementia progression in patients.
Collapse
Affiliation(s)
- David S. Bouvier
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- *Correspondence: David S. Bouvier,
| | - Sonja Fixemer
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Systems Biology Group, Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Félicia Jeannelle
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Katrin B. M. Frauenknecht
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Institute of Neuropathology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Faculty of Science, Technology, and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Michel Mittelbronn,
| |
Collapse
|
36
|
Chan M, Yuan H, Soifer I, Maile TM, Wang RY, Ireland A, O'Brien JJ, Goudeau J, Chan LJ, Vijay T, Freund A, Kenyon C, Bennett BD, McAllister FE, Kelley DR, Roy M, Cohen RL, Levinson AD, Botstein D, Hendrickson DG. Novel insights from a multiomics dissection of the hayflick limit. eLife 2022; 11:70283. [PMID: 35119359 PMCID: PMC8933007 DOI: 10.7554/elife.70283] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
The process wherein dividing cells exhaust proliferative capacity and enter into replicative senescence has become a prominent model for cellular aging in vitro. Despite decades of study, this cellular state is not fully understood in culture and even much less so during aging. Here, we revisit Leonard Hayflick’s original observation of replicative senescence in WI-38 human lung fibroblasts equipped with a battery of modern techniques including RNA-seq, single-cell RNA-seq, proteomics, metabolomics, and ATAC-seq. We find evidence that the transition to a senescent state manifests early, increases gradually, and corresponds to a concomitant global increase in DNA accessibility in nucleolar and lamin associated domains. Furthermore, we demonstrate that senescent WI-38 cells acquire a striking resemblance to myofibroblasts in a process similar to the epithelial to mesenchymal transition (EMT) that is regulated by t YAP1/TEAD1 and TGF-β2. Lastly, we show that verteporfin inhibition of YAP1/TEAD1 activity in aged WI-38 cells robustly attenuates this gene expression program.
Collapse
Affiliation(s)
- Michelle Chan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Han Yuan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Ilya Soifer
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Tobias M Maile
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Rebecca Y Wang
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Andrea Ireland
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - Jérôme Goudeau
- Calico Life Sciences LLC, South San Francisco, United States
| | - Leanne Jg Chan
- Calico Life Sciences LLC, South San Francisco, United States
| | - Twaritha Vijay
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Adam Freund
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Cynthia Kenyon
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - David R Kelley
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Margaret Roy
- Calico Life Sciences LLC, South San Francisco, United States
| | - Robert L Cohen
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - David Botstein
- Calico Life Sciences, LLC, South San Francisco, United States
| | | |
Collapse
|
37
|
Contribution of senescent and reactive astrocytes on central nervous system inflammaging. Biogerontology 2022; 23:21-33. [PMID: 35084630 DOI: 10.1007/s10522-022-09952-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023]
Abstract
Astrocytes, the most predominant cells in the central nervous system (CNS), have well-recognized neuroprotective functions. However, during the CNS aging, astrocytes can become neurotoxic and contribute to chronic inflammation in age-associated brain deterioration and disease. Astrocytes are known to become senescent or reactive due to the exposure to stressful stimuli, in both cases they contribute to an impaired cognitive function through the production of pro-inflammatory mediators. Although both scenarios (senescence and reactive gliosis) have been studied independently, there are no direct studies comparing their secretomes simultaneously in the aging-brain. In this review we discuss the most recent studies in that respect, in order to analyze their simultaneous participation in brain aging.
Collapse
|
38
|
Meharena HS, Marco A, Dileep V, Lockshin ER, Akatsu GY, Mullahoo J, Watson LA, Ko T, Guerin LN, Abdurob F, Rengarajan S, Papanastasiou M, Jaffe JD, Tsai LH. Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell 2022; 29:116-130.e7. [PMID: 34995493 PMCID: PMC8805993 DOI: 10.1016/j.stem.2021.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/30/2021] [Accepted: 12/09/2021] [Indexed: 01/09/2023]
Abstract
Down syndrome (DS) is a genetic disorder driven by the triplication of chromosome 21 (T21) and characterized by a wide range of neurodevelopmental and physical disabilities. Transcriptomic analysis of tissue samples from individuals with DS has revealed that T21 induces a genome-wide transcriptional disruption. However, the consequences of T21 on the nuclear architecture and its interplay with the transcriptome remain unknown. In this study, we find that unlike human induced pluripotent stem cells (iPSCs), iPSC-derived neural progenitor cells (NPCs) exhibit genome-wide "chromosomal introversion," disruption of lamina-associated domains, and global chromatin accessibility changes in response to T21, consistent with the transcriptional and nuclear architecture changes characteristic of senescent cells. Treatment of T21-harboring NPCs with senolytic drugs alleviates the transcriptional, molecular, and cellular dysfunctions associated with DS. Our findings provide a mechanistic link between T21 and global transcriptional disruption and indicate that senescence-associated phenotypes may play a key role in the neurodevelopmental pathogenesis of DS.
Collapse
Affiliation(s)
- Hiruy S. Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| | - Asaf Marco
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elana R. Lockshin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace Y. Akatsu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James Mullahoo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - L. Ashley Watson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tak Ko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lindsey N. Guerin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fatema Abdurob
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shruthi Rengarajan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Jacob D. Jaffe
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| |
Collapse
|
39
|
Wang QQ, Yin G, Huang JR, Xi SJ, Qian F, Lee RX, Peng XC, Tang FR. Ionizing Radiation-Induced Brain Cell Aging and the Potential Underlying Molecular Mechanisms. Cells 2021; 10:3570. [PMID: 34944078 PMCID: PMC8700624 DOI: 10.3390/cells10123570] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023] Open
Abstract
Population aging is occurring rapidly worldwide, challenging the global economy and healthcare services. Brain aging is a significant contributor to various age-related neurological and neuropsychological disorders, including Alzheimer's disease and Parkinson's disease. Several extrinsic factors, such as exposure to ionizing radiation, can accelerate senescence. Multiple human and animal studies have reported that exposure to ionizing radiation can have varied effects on organ aging and lead to the prolongation or shortening of life span depending on the radiation dose or dose rate. This paper reviews the effects of radiation on the aging of different types of brain cells, including neurons, microglia, astrocytes, and cerebral endothelial cells. Further, the relevant molecular mechanisms are discussed. Overall, this review highlights how radiation-induced senescence in different cell types may lead to brain aging, which could result in the development of various neurological and neuropsychological disorders. Therefore, treatment targeting radiation-induced oxidative stress and neuroinflammation may prevent radiation-induced brain aging and the neurological and neuropsychological disorders it may cause.
Collapse
Affiliation(s)
- Qin-Qi Wang
- Laboratory of Oncology, Center for Molecular Medicine, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou 434023, China; (Q.-Q.W.); (S.-J.X.)
- Health Science Center, Department of Pathophysiology, School of Basic Medicine, Yangtze University, Jingzhou 434023, China
| | - Gang Yin
- Department of Neurology, Jingzhou Central Hospital, Jingzhou 434023, China;
| | - Jiang-Rong Huang
- Health Science Center, Department of Integrative Medicine, School of Health Sciences, Yangtze University, Jingzhou 434023, China;
| | - Shi-Jun Xi
- Laboratory of Oncology, Center for Molecular Medicine, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou 434023, China; (Q.-Q.W.); (S.-J.X.)
- Health Science Center, Department of Pathophysiology, School of Basic Medicine, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Health Science Center, Department of Physiology, School of Basic Medicine, Yangtze University, Jingzhou 434023, China;
| | - Rui-Xue Lee
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore;
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou 434023, China; (Q.-Q.W.); (S.-J.X.)
- Health Science Center, Department of Pathophysiology, School of Basic Medicine, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore;
| |
Collapse
|
40
|
Thorin-Trescases N, Labbé P, Mury P, Lambert M, Thorin E. Angptl2 is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence. Int J Mol Sci 2021; 22:12232. [PMID: 34830112 PMCID: PMC8624568 DOI: 10.3390/ijms222212232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a cell fate primarily induced by DNA damage, characterized by irreversible growth arrest in an attempt to stop the damage. Senescence is a cellular response to a stressor and is observed with aging, but also during wound healing and in embryogenic developmental processes. Senescent cells are metabolically active and secrete a multitude of molecules gathered in the senescence-associated secretory phenotype (SASP). The SASP includes inflammatory cytokines, chemokines, growth factors and metalloproteinases, with autocrine and paracrine activities. Among hundreds of molecules, angiopoietin-like 2 (angptl2) is an interesting, although understudied, SASP member identified in various types of senescent cells. Angptl2 is a circulatory protein, and plasma angptl2 levels increase with age and with various chronic inflammatory diseases such as cancer, atherosclerosis, diabetes, heart failure and a multitude of age-related diseases. In this review, we will examine in which context angptl2 was identified as a SASP factor, describe the experimental evidence showing that angptl2 is a marker of senescence in vitro and in vivo, and discuss the impact of angptl2-related senescence in both physiological and pathological conditions. Future work is needed to demonstrate whether the senescence marker angptl2 is a potential clinical biomarker of age-related diseases.
Collapse
Affiliation(s)
- Nathalie Thorin-Trescases
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
| | - Pauline Labbé
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Pauline Mury
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Eric Thorin
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
41
|
Balint V, Ninkovic DS, Anastasov N, Lazic S, Kovacevic-Grujicic N, Stevanovic M, Lazic A. Inhibition of miR-21 Promotes Cellular Senescence in NT2-Derived Astrocytes. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1434-1445. [PMID: 34906045 DOI: 10.1134/s0006297921110079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
Astrocytes are the main homeostatic cells in the central nervous system (CNS) that provide mechanical, metabolic, and trophic support to neurons. Disruption of their physiological role or acquisition of senescence-associated phenotype can contribute to the CNS dysfunction and pathology. However, molecular mechanisms underlying the complex physiology of astrocytes are explored insufficiently. Recent studies have shown that miRNAs are involved in the regulation of astrocyte function through different mechanisms. Although miR-21 has been reported as an astrocytic miRNA with an important role in astrogliosis, no link between this miRNA and cellular senescence of astrocytes has been identified. To address the role of miR-21 in astrocytes, with special focus on cellular senescence, we used NT2/A (astrocytes derived from NT2/D1 cells). Downregulation of miR-21 expression in both immature and mature NT2/A by the antisense technology induced the arrest of cell growth and premature cellular senescence, as indicated by senescence hallmarks such as increased expression of cell cycle inhibitors p21 and p53 and augmented senescence-associated β-galactosidase activity. Additionally, in silico analysis predicted many of the genes, previously shown to be upregulated in astrocytes with the irradiation-induced senescence, as miR-21 targets. Taken together, our results point to miR-21 as a potential regulator of astrocyte senescence. To the best of our knowledge, these are the first data showing the link between miR-21 and cellular senescence of astrocytes. Since senescent astrocytes are associated with different CNS pathologies, development of novel therapeutic strategies based on miRNA manipulation could prevent senescence and may improve the physiological outcome.
Collapse
Affiliation(s)
- Vanda Balint
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia
| | - Natasa Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Biological and Medical Imaging, Neuherberg, 85764, Germany
| | - Stefan Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia
| | - Natasa Kovacevic-Grujicic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, 11158, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia.
| |
Collapse
|
42
|
Iatrou A, Clark EM, Wang Y. Nuclear dynamics and stress responses in Alzheimer's disease. Mol Neurodegener 2021; 16:65. [PMID: 34535174 PMCID: PMC8447732 DOI: 10.1186/s13024-021-00489-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
In response to extracellular and intracellular stressors, the nucleus and nuclear compartments undergo distinct molecular changes to maintain cell homeostasis. In the context of Alzheimer’s disease, misfolded proteins and various cellular stressors lead to profound structural and molecular changes at the nucleus. This review summarizes recent research on nuclear alterations in AD development, from the nuclear envelope changes to chromatin and epigenetic regulation and then to common nuclear stress responses. Finally, we provide our thoughts on the importance of understanding cell-type-specific changes and identifying upstream causal events in AD pathogenesis and highlight novel sequencing and gene perturbation technologies to address those challenges.
Collapse
Affiliation(s)
- Artemis Iatrou
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA
| | - Eric M Clark
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA.
| |
Collapse
|
43
|
Licochalcone D Ameliorates Oxidative Stress-Induced Senescence via AMPK Activation. Int J Mol Sci 2021; 22:ijms22147324. [PMID: 34298945 PMCID: PMC8304008 DOI: 10.3390/ijms22147324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
Increased oxidative stress is a crucial factor for the progression of cellular senescence and aging. The present study aimed to investigate the effects of licochalcone D (Lico D) on oxidative stress-induced senescence, both in vitro and in vivo, and explore its potential mechanisms. Hydrogen peroxide (200 µM for double time) and D-galactose (D-Gal) (150 mg/kg) were used to induce oxidative stress in human bone marrow-mesenchymal stem cells (hBM-MSCs) and mice, respectively. We performed the SA-β-gal assay and evaluated the senescence markers, activation of AMPK, and autophagy. Lico D potentially reduced oxidative stress-induced senescence by upregulating AMPK-mediated activation of autophagy in hBM-MSCs. D-Gal treatment significantly increased the expression levels of senescence markers, such as p53 and p21, in the heart and hippocampal tissues, while this effect was reversed in the Lico D-treated animals. Furthermore, a significant increase in AMPK activation was observed in both tissues, while the activation of autophagy was only observed in the heart tissue. Interestingly, we found that Lico D significantly reduced the expression levels of the receptors for advanced glycation end products (RAGE) in the hippocampal tissue. Taken together, our findings highlight the antioxidant, anti-senescent, and cardioprotective effects of Lico D and suggest that the activation of AMPK and autophagy ameliorates the oxidative stress-induced senescence.
Collapse
|
44
|
Decoding the Transcriptional Response to Ischemic Stroke in Young and Aged Mouse Brain. Cell Rep 2021; 31:107777. [PMID: 32553170 DOI: 10.1016/j.celrep.2020.107777] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is a well-recognized disease of aging, yet it is unclear how the age-dependent vulnerability occurs and what are the underlying mechanisms. To address these issues, we perform a comprehensive RNA-seq analysis of aging, ischemic stroke, and their interaction in 3- and 18-month-old mice. We assess differential gene expression across injury status and age, estimate cell type proportion changes, assay the results against a range of transcriptional signatures from the literature, and perform unsupervised co-expression analysis, identifying modules of genes with varying response to injury. We uncover downregulation of axonal and synaptic maintenance genetic program, and increased activation of type I interferon (IFN-I) signaling following stroke in aged mice. Together, these results paint a picture of ischemic stroke as a complex age-related disease and provide insights into interaction of aging and stroke on cellular and molecular level.
Collapse
|
45
|
Oyefeso FA, Muotri AR, Wilson CG, Pecaut MJ. Brain organoids: A promising model to assess oxidative stress-induced central nervous system damage. Dev Neurobiol 2021; 81:653-670. [PMID: 33942547 DOI: 10.1002/dneu.22828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Oxidative stress (OS) is one of the most significant propagators of systemic damage with implications for widespread pathologies such as vascular disease, accelerated aging, degenerative disease, inflammation, and traumatic injury. OS can be induced by numerous factors such as environmental conditions, lifestyle choices, disease states, and genetic susceptibility. It is tied to the accumulation of free radicals, mitochondrial dysfunction, and insufficient antioxidant protection, which leads to cell aging and tissue degeneration over time. Unregulated systemic increase in reactive species, which contain harmful free radicals, can lead to diverse tissue-specific OS responses and disease. Studies of OS in the brain, for example, have demonstrated how this state contributes to neurodegeneration and altered neural plasticity. As the worldwide life expectancy has increased over the last few decades, the prevalence of OS-related diseases resulting from age-associated progressive tissue degeneration. Unfortunately, vital translational research studies designed to identify and target disease biomarkers in human patients have been impeded by many factors (e.g., limited access to human brain tissue for research purposes and poor translation of experimental models). In recent years, stem cell-derived three-dimensional tissue cultures known as "brain organoids" have taken the spotlight as a novel model for studying central nervous system (CNS) diseases. In this review, we discuss the potential of brain organoids to model the responses of human neural cells to OS, noting current and prospective limitations. Overall, brain organoids show promise as an innovative translational model to study CNS susceptibility to OS and elucidate the pathophysiology of the aging brain.
Collapse
Affiliation(s)
- Foluwasomi A Oyefeso
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics/Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Christopher G Wilson
- Lawrence D. Longo, MD, Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Michael J Pecaut
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
46
|
Alternative Targets to Fight Alzheimer's Disease: Focus on Astrocytes. Biomolecules 2021; 11:biom11040600. [PMID: 33921556 PMCID: PMC8073475 DOI: 10.3390/biom11040600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
The available treatments for patients affected by Alzheimer’s disease (AD) are not curative. Numerous clinical trials have failed during the past decades. Therefore, scientists need to explore new avenues to tackle this disease. In the present review, we briefly summarize the pathological mechanisms of AD known so far, based on which different therapeutic tools have been designed. Then, we focus on a specific approach that is targeting astrocytes. Indeed, these non-neuronal brain cells respond to any insult, injury, or disease of the brain, including AD. The study of astrocytes is complicated by the fact that they exert a plethora of homeostatic functions, and their disease-induced changes could be context-, time-, and disease specific. However, this complex but fervent area of research has produced a large amount of data targeting different astrocytic functions using pharmacological approaches. Here, we review the most recent literature findings that have been published in the last five years to stimulate new hypotheses and ideas to work on, highlighting the peculiar ability of palmitoylethanolamide to modulate astrocytes according to their morpho-functional state, which ultimately suggests a possible potential disease-modifying therapeutic approach for AD.
Collapse
|
47
|
Common genes and pathways involved in the response to stressful stimuli by astrocytes: A meta-analysis of genome-wide expression studies. Genomics 2021; 113:669-680. [PMID: 33485956 DOI: 10.1016/j.ygeno.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/05/2020] [Accepted: 01/17/2021] [Indexed: 11/20/2022]
Abstract
Astrocytes play pivotal roles in the brain and they become reactive under stress conditions. Here, we carried out, for the first time, an integrative meta-analysis of genome-wide expression profiling of astrocytes from human and mouse exposed to different stressful stimuli (hypoxia, infections by virus and bacteria, cytokines, ethanol, among others). We identified common differentially expressed genes and pathways in human and murine astrocytes. Our results showed that astrocytes induce expression of genes associated with stress response and immune system regulation when they are exposed to stressful stimuli, whereas genes related to neurogenesis are found as downregulated. Several of the identified genes showed to be important hubs in the protein-protein interaction analysis (TRAF2, CDC37 and PAX6). This work demonstrates that despite astrocytes are highly heterogeneous and complex, there are common gene expression signatures that can be triggered under distinct detrimental stimuli, which opens an opportunity for exploring other possible markers of reactivity.
Collapse
|
48
|
Cheng X, Shihabudeen Haider Ali MS, Moran M, Viana MP, Schlichte SL, Zimmerman MC, Khalimonchuk O, Feinberg MW, Sun X. Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biol 2021; 40:101863. [PMID: 33508742 PMCID: PMC7844131 DOI: 10.1016/j.redox.2021.101863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 01/10/2023] Open
Abstract
Obesity-induced insulin resistance is a risk factor for diabetes and cardiovascular disease. However, the mechanisms underlying endothelial senescence in obesity, and how it impacts obesity-induced insulin resistance remain incompletely understood. In this study, transcriptome analysis revealed that the long non-coding RNA (lncRNA) Maternally expressed gene 3 (Meg3) is one of the top differentially expressed lncRNAs in the vascular endothelium in diet-induced obese mice. Meg3 knockdown induces cellular senescence of endothelial cells characterized by increased senescence-associated β–galactosidase activity, increased levels of endogenous superoxide, impaired mitochondrial structure and function, and impaired autophagy. Moreover, Meg3 knockdown causes cellular senescence of hepatic endothelium in diet-induced obese mice. Furthermore, Meg3 expression is elevated in human nonalcoholic fatty livers and nonalcoholic steatohepatitis livers, which positively correlates with the expression of CDKN2A encoding p16, an important hallmark of cellular senescence. Meg3 knockdown potentiates obesity-induced insulin resistance and impairs glucose homeostasis. Insulin signaling is reduced by Meg3 knockdown in the liver and, to a lesser extent, in the skeletal muscle, but not in the visceral fat of obese mice. We found that the attenuation of cellular senescence of hepatic endothelium by ablating p53 expression in vascular endothelium can restore impaired glucose homeostasis and insulin signaling in obesity. In conclusion, our data demonstrate that cellular senescence of hepatic endothelium promotes obesity-induced insulin resistance, which is tightly regulated by the expression of Meg3. Our results suggest that manipulation of Meg3 expression may represent a novel approach to managing obesity-associated hepatic endothelial senescence and insulin resistance. •LncRNA Meg3 is a top differentially expressed lncRNA in the vascular endothelium in obese mice. •Meg3 knockdown causes cellular senescence of HUVECs and of hepatic endothelium in obese mice. •Meg3 expression is elevated in human NAFLD and NASH Nlivers, and correlates with CDKN2A expression -a senescent marker. •Meg3 knockdown impairs glucose homeostasis and insulin signaling in obese mice. •Attenuation of hepatic endothelial senescence improves glucose homeostasis and insulin signaling in obese mice.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | | | - Matthew Moran
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Sarah L Schlichte
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA; Nebraska Redox Biology Center, University of Nebraska - Lincoln, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA; Nebraska Redox Biology Center, University of Nebraska - Lincoln, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, USA; Nebraska Center for the Prevention of Obesity Diseases Through Dietary Molecules, University of Nebraska - Lincoln, USA.
| |
Collapse
|
49
|
Ung MC, Garrett L, Dalke C, Leitner V, Dragosa D, Hladik D, Neff F, Wagner F, Zitzelsberger H, Miller G, de Angelis MH, Rößler U, Vogt Weisenhorn D, Wurst W, Graw J, Hölter SM. Dose-dependent long-term effects of a single radiation event on behaviour and glial cells. Int J Radiat Biol 2020; 97:156-169. [PMID: 33264576 DOI: 10.1080/09553002.2021.1857455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The increasing use of low-dose ionizing radiation in medicine requires a systematic study of its long-term effects on the brain, behaviour and its possible association with neurodegenerative disease vulnerability. Therefore, we analysed the long-term effects of a single low-dose irradiation exposure at 10 weeks of age compared to medium and higher doses on locomotor, emotion-related and sensorimotor behaviour in mice as well as on hippocampal glial cell populations. MATERIALS AND METHODS We determined the influence of radiation dose (0, 0.063, 0.125 or 0.5 Gy), time post-irradiation (4, 12 and 18 months p.i.), sex and genotype (wild type versus mice with Ercc2 DNA repair gene point mutation) on behaviour. RESULTS The high dose (0.5 Gy) had early-onset adverse effects at 4 months p.i. on sensorimotor recruitment and late-onset negative locomotor effects at 12 and 18 months p.i. Notably, the low dose (0.063 Gy) produced no early effects but subtle late-onset (18 months) protective effects on sensorimotor recruitment and exploratory behaviour. Quantification and morphological characterization of the microglial and the astrocytic cells of the dentate gyrus 24 months p.i. indicated heightened immune activity after high dose irradiation (0.125 and 0.5 Gy) while conversely, low dose (0.063 Gy) induced more neuroprotective features. CONCLUSION This is one of the first studies demonstrating such long-term and late-onset effects on brain and behaviour after a single radiation event in adulthood.
Collapse
Affiliation(s)
- Marie-Claire Ung
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Institute of Pathology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | | | - Daniel Dragosa
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Daniela Hladik
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Florian Wagner
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Gregor Miller
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Martin Hrabĕ de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Department of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ute Rößler
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, Neuherberg, Germany
| | - Daniela Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Chair of Developmental Genetics, Faculty of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
50
|
Janubova M, Hatok J, Konarikova K, Zitnanova I. γ- and δ-Tocotrienols interfere with senescence leading to decreased viability of cells. Mol Cell Biochem 2020; 476:897-908. [PMID: 33128213 DOI: 10.1007/s11010-020-03954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
Senescence is an irreversible permanent cell cycle arrest accompanied by changes in cell morphology and physiology. Bioactive compounds including tocotrienols (vitamin E) can affect important biological functions. The aim of this study was to investigate how γ- and δ-tocotrienols can affect stress-induced premature senescence. We established two different models of premature stress senescence by induction of senescence with either hydrogen peroxide or etoposide in human lung fibroblasts MRC-5 (ECACC, England). We observed increased percentage of cells with increased SA-β-galactosidase activity, decreased cell viability/proliferation and increased level of p21 in both models. In addition, γ-tocotrienol or δ-tocotrienol (both at concentrations of 150, 200 and 300 μM) were added to the cells along with the inductor of senescence (cotreatment). We have found that this cotreatment led to the decrease of cell viability/proliferation in both models of premature stress senescence, but did not change the percentage of senescent cells. Moreover, we detected no expression of caspase-3 or apoptotic DNA fragmentation in any models of premature stress senescence after the cotreatment with γ- as well as δ-tocotrienols. However, an increased level of autophagic protein LC-3 II was detected in cells with hydrogen peroxide-induced senescence after the cotreatment with γ-tocotrienol as well as δ-tocotrienol. In case of etoposide-induced senescence only δ-tocotrienol cotreatment led to an increased level of LC-3 II protein in cells. According to our work δ-tocotrienol is more effective compound than γ-tocotrienol.
Collapse
Affiliation(s)
- Maria Janubova
- Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Bratislava, Slovakia.
| | - Jozef Hatok
- Jessenius Faculty of Medicine, Department of Medical Biochemistry, Comenius University, Bratislava, Martin, Slovakia
| | - Katarina Konarikova
- Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Bratislava, Slovakia
| | - Ingrid Zitnanova
- Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Bratislava, Slovakia
| |
Collapse
|