1
|
d'Errico P, Früholz I, Meyer-Luehmann M, Vlachos A. Neuroprotective and plasticity promoting effects of repetitive transcranial magnetic stimulation (rTMS): A role for microglia. Brain Stimul 2025; 18:810-821. [PMID: 40118248 DOI: 10.1016/j.brs.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to modulate neocortical excitability, with expanding applications in neurological and psychiatric disorders. However, the cellular and molecular mechanisms underlying its effects, particularly the role of microglia -the resident immune cells of the central nervous system- remain poorly understood. This review synthesizes recent findings on how different rTMS protocols influence microglial function under physiological conditions and in disease models. Emerging evidence indicates that rTMS modulates microglial activation, promoting neuroprotective and plasticity-enhancing processes not only in models of brain disorders, such as Alzheimer's and Parkinson's disease, but also in healthy neural circuits. While much of the current research has focused on the inflammatory profile of microglia, critical aspects such as activity-dependent synaptic remodeling, phagocytic activity, and process motility remain underexplored. Given the substantial heterogeneity of microglial responses across brain regions, age, and sex, as well as their differential roles in health and disease, a deeper understanding of their involvement in rTMS-induced plasticity is essential. Future studies should integrate selective microglial manipulation and advanced structural, functional, and molecular profiling techniques to clarify their causal involvement. Addressing these gaps will be pivotal in optimizing rTMS protocols and maximizing its therapeutic potential across a spectrum of neurological and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Paolo d'Errico
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Iris Früholz
- Department of Neurology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Perez FP, Walker B, Morisaki J, Kanakri H, Rizkalla M. Neurostimulation devices to treat Alzheimer's disease. EXPLORATION OF NEUROSCIENCE 2025; 4:100674. [PMID: 40084342 PMCID: PMC11904933 DOI: 10.37349/en.2025.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
The use of neurostimulation devices for the treatment of Alzheimer's disease (AD) is a growing field. In this review, we examine the mechanism of action and therapeutic indications of these neurostimulation devices in the AD process. Rapid advancements in neurostimulation technologies are providing non-pharmacological relief to patients affected by AD pathology. Neurostimulation therapies include electrical stimulation that targets the circuitry-level connection in important brain areas such as the hippocampus to induce therapeutic neuromodulation of dysfunctional neural circuitry and electromagnetic field (EMF) stimulation that targets anti-amyloid molecular pathways to promote the degradation of beta-amyloid (Aβ). These devices target specific or diffuse cortical and subcortical brain areas to modulate neuronal activity at the electrophysiological or molecular pathway level, providing therapeutic effects for AD. This review attempts to determine the most effective and safe neurostimulation device for AD and provides an overview of potential and current clinical indications. Several EMF devices have shown a beneficial or harmful effect in cell cultures and animal models but not in AD human studies. These contradictory results may be related to the stimulation parameters of these devices, such as frequency, penetration depth, power deposition measured by specific absorption rate, time of exposure, type of cell, and tissue dielectric properties. Based on this, determining the optimal stimulation parameters for EMF devices in AD and understanding their mechanism of action is essential to promote their clinical application, our review suggests that repeated EMF stimulation (REMFS) is the most appropriate device for human AD treatments. Before its clinical application, it is necessary to consider the complicated and interconnected genetic and epigenetic effects of REMFS-biological system interaction. This will move forward the urgently needed therapy of EMF in human AD.
Collapse
Affiliation(s)
- Felipe P. Perez
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brett Walker
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Haitham Kanakri
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Ji Y, Yang C, Pang X, Yan Y, Wu Y, Geng Z, Hu W, Hu P, Wu X, Wang K. Repetitive transcranial magnetic stimulation in Alzheimer's disease: effects on neural and synaptic rehabilitation. Neural Regen Res 2025; 20:326-342. [PMID: 38819037 PMCID: PMC11317939 DOI: 10.4103/nrr.nrr-d-23-01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis. The Alzheimer's disease brain tends to be hyperexcitable and hypersynchronized, thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life, leaving patients incapacitated. Repetitive transcranial magnetic stimulation is a cost-effective, neuro-modulatory technique used for multiple neurological conditions. Over the past two decades, it has been widely used to predict cognitive decline; identify pathophysiological markers; promote neuroplasticity; and assess brain excitability, plasticity, and connectivity. It has also been applied to patients with dementia, because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult. However, its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies. This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment, evaluate its effects on synaptic plasticity, and identify the associated mechanisms. This review essentially focuses on changes in the pathology, amyloidogenesis, and clearance pathways, given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer's disease. Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription, which are closely related to the neural regeneration process, are also highlighted. Finally, we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation, with the aim to highlight future directions for better clinical translations.
Collapse
Affiliation(s)
- Yi Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Chaoyi Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xuerui Pang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Wenjie Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
4
|
Lin GQ, He XF, Liu B, Wei CY, Tao R, Yang P, Pei Z, Mo YM. Continuous theta burst stimulation ameliorates cognitive deficits in microinfarcts mice via inhibiting glial activation and promoting paravascular CSF-ISF exchange. Neuroscience 2024; 561:20-29. [PMID: 39366451 DOI: 10.1016/j.neuroscience.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Microinfarcts are widespread in the elderly, accompanied by varying degrees of cognitive decline. Continuous theta burst stimulation (cTBS) has been demonstrated to be neuroprotective on cognitive dysfunction, but the underlying cellular mechanism has been still not clear. In the present study, we evaluated the effects of cTBS on cognitive function and brain pathological changes in mice model of microinfarcts. The spatial learning and memory was assessed by Morris water maze (MWM), Glymphatic clearance efficiency was evaluated using in vivo two-photon imaging. The loss of neurons, activation of astrocytes and microglia, the expression and polarity distribution of the astrocytic aquaporin-4 (AQP4) were assessed by immunofluorescence staining. Our results showed that cTBS treatment significantly improved the spatial learning and memory, accelerated the efficiency of glymphatic clearance, up-regulated the AQP4 expression and improved the polarity distribution of AQP4 in microinfarcts mice. Besides, cTBS treatment increased the number of surviving neurons, whereas decreased the activated astrocytes and microglia. Our study suggested that cTBS accelerated glymphatic clearance and inhibited the excessive gliogenesis, which ultimately exerted neuroprotective effects on microinfarcts mice.
Collapse
Affiliation(s)
- Gui-Qing Lin
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Xiao-Fei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Liu
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Chun-Ying Wei
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Ran Tao
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Peng Yang
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, SunYat-sen University, Guangzhou 510080, China
| | - Ying-Min Mo
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
5
|
Tang M, Guo JJ, Guo RX, Xu SJ, Lou Q, Hu QX, Li WY, Yu JB, Yao Q, Wang QW. Progress of research and application of non-pharmacologic intervention in Alzheimer's disease. J Alzheimers Dis 2024; 102:275-294. [PMID: 39573867 DOI: 10.1177/13872877241289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid-β (Aβ) deposition and neurofibrillary tangles formed by high phosphorylation of tau protein. At present, drug therapy is the main strategy of AD treatment, but its effects are limited to delaying or alleviating AD. Recently, non-pharmacologic intervention has attracted more attention, and more studies have confirmed that non-pharmacologic intervention in AD can improve the patient's cognitive function and quality of life. This paper summarizes the current non-pharmacologic intervention in AD, to provide useful supplementary means for AD intervention.
Collapse
Affiliation(s)
- Min Tang
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jie-Jie Guo
- The First People's Hospital of Wenling, Taizhou, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Rong-Xia Guo
- School of Teacher Education, Ningbo University, Ningbo, Zhejiang, China
| | - Shu-Jun Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qiong Lou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qiao-Xia Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wan-Yi Li
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jing-Bo Yu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qi Yao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qin-Wen Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Ding S, Li J, Fang Y, Zhuo X, Gu L, Zhang X, Yang Y, Wei M, Liao Z, Li Q. Research progress on the effects and mechanisms of magnetic field on neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:35-45. [PMID: 39277139 DOI: 10.1016/j.pbiomolbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.
Collapse
Affiliation(s)
- Shuxian Ding
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
| | - Xingjie Zhuo
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lili Gu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyue Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuanxiao Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Min Wei
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China
| | - Zhongcai Liao
- Heye Health Technology Co., Ltd, Bamboo Industry Science and Technology Entrepreneurship Center, Huzhou, Zhejiang, China.
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Lanni I, Chiacchierini G, Papagno C, Santangelo V, Campolongo P. Treating Alzheimer's disease with brain stimulation: From preclinical models to non-invasive stimulation in humans. Neurosci Biobehav Rev 2024; 165:105831. [PMID: 39074672 DOI: 10.1016/j.neubiorev.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) is a severe and progressive neurodegenerative condition that exerts detrimental effects on brain function. As of now, there is no effective treatment for AD patients. This review explores two distinct avenues of research. The first revolves around the use of animal studies and preclinical models to gain insights into AD's underlying mechanisms and potential treatment strategies. Specifically, it delves into the effectiveness of interventions such as Optogenetics and Chemogenetics, shedding light on their implications for understanding pathophysiological mechanisms and potential therapeutic applications. The second avenue focuses on non-invasive brain stimulation (NiBS) techniques in the context of AD. Evidence suggests that NiBS can successfully modulate cognitive functions associated with various neurological and neuropsychiatric disorders, including AD, as demonstrated by promising findings. Here, we critically assessed recent findings in AD research belonging to these lines of research and discuss their potential impact on the clinical horizon of AD treatment. These multifaceted approaches offer hope for advancing our comprehension of AD pathology and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Ilenia Lanni
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Chiacchierini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Valerio Santangelo
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Behavioral Neuropharmacology Unit, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
8
|
Guo RW, Xie WJ, Yu B, Song C, Ji XM, Wang XY, Zhang M, Zhang X. Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer's disease mice. Zool Res 2024; 45:924-936. [PMID: 39021081 PMCID: PMC11298676 DOI: 10.24272/j.issn.2095-8137.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 07/20/2024] Open
Abstract
Amyloid beta (Aβ) monomers aggregate to form fibrils and amyloid plaques, which are critical mechanisms in the pathogenesis of Alzheimer's disease (AD). Given the important role of Aβ1-42 aggregation in plaque formation, leading to brain lesions and cognitive impairment, numerous studies have aimed to reduce Aβ aggregation and slow AD progression. The diphenylalanine (FF) sequence is critical for amyloid aggregation, and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings. In this study, we examined the effects of a moderate-intensity rotating magnetic field (RMF) on Aβ aggregation and AD pathogenesis. Results indicated that the RMF directly inhibited Aβ amyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells in vitro. Using the AD mouse model APP/PS1, RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments, including exploration and spatial and non-spatial memory abilities. Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation, attenuated microglial activation, and reduced oxidative stress in the APP/PS1 mouse brain. These findings suggest that RMF holds considerable potential as a non-invasive, high-penetration physical approach for AD treatment.
Collapse
Affiliation(s)
- Ruo-Wen Guo
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Wen-Jing Xie
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Biao Yu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin-Miao Ji
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin-Yu Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Mei Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China. E-mail:
| |
Collapse
|
9
|
Xu Y, Xu M, Zhou C, Sun L, Cai W, Li X. Ferroptosis and its implications in treating cognitive impairment caused by aging: A study on the mechanism of repetitive transcranial magnetic stimulation. Exp Gerontol 2024; 192:112443. [PMID: 38697556 DOI: 10.1016/j.exger.2024.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE Ferroptosis has been recognized as being closely associated with cognitive impairment. Research has established that Alzheimer's disease (AD)-associated proteins, such as amyloid precursor protein (APP) and phosphorylated tau, are involved in brain iron metabolism. These proteins are found in high concentrations within senile plaques and neurofibrillary tangles. Repetitive transcranial magnetic stimulation (rTMS) offers a non-pharmacological approach to AD treatment. This study aims to explore the potential therapeutic effects of rTMS on cognitive impairment through the modulation of the ferroptosis pathway, thereby laying both a theoretical and experimental groundwork for the application of rTMS in treating Alzheimer's disease. METHODS The study utilized senescence-accelerated mouse prone 8 (SAMP8) mice to model brain aging-related cognitive impairment, with senescence-accelerated-mouse resistant 1 (SAMR1) mice acting as controls. The SAMP8 mice were subjected to high-frequency rTMS at 25 Hz for durations of 14 and 28 days. Cognitive function was evaluated using behavioral tests. Resting-state functional magnetic resonance imaging (rs-fMRI) assessed alterations in cerebral activity by measuring the fractional amplitude of low-frequency fluctuations (fALFF) of the blood oxygen level-dependent signal. Neuronal recovery post-rTMS in the SAMP8 model was examined via HE and Nissl staining. Immunohistochemistry was employed to detect the expression of APP and Phospho-Tau (Thr231). Oxidative stress markers were quantified using biochemical assay kits. ELISA methods were utilized to measure hippocampal levels of Fe2+ and Aβ1-42. Finally, the expression of proteins related to the ferroptosis pathway was determined through western blot analysis. RESULTS The findings indicate that 25 Hz rTMS enhances cognitive function and augments cerebral activity in SAMP8 model mice. Treatment with rTMS in these mice resulted in diminished oxidative stress and safeguarded neurons against damage. Additionally, iron accumulation was mitigated, and the expression of ferroptosis pathway proteins Gpx4, system Xc-, and Nrf2 was elevated. CONCLUSIONS The Tau/APP-Fe-GPX4/system Xc-/Nrf2 pathway is implicated in the remedial effects of rTMS on cognitive dysfunction, offering a theoretical and experimental basis for employing rTMS in AD treatment.
Collapse
Affiliation(s)
- Yuya Xu
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Mengrong Xu
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Chengyu Zhou
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Ling Sun
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Wenqiang Cai
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China
| | - Xuling Li
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang 150001, China.
| |
Collapse
|
10
|
Zhang Z, Ding C, Fu R, Wang J, Zhao J, Zhu H. Low-frequency rTMS modulated the excitability and high-frequency firing in hippocampal neurons of the Alzheimer's disease mouse model. Brain Res 2024; 1831:148822. [PMID: 38408558 DOI: 10.1016/j.brainres.2024.148822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, holds potential for applications in the treatment of Alzheimer's disease (AD). This study aims to compare the therapeutic effects of rTMS at different frequencies on Alzheimer's disease and explore the alterations in neuronal electrophysiological properties throughout this process. APP/PS1 AD mice were subjected to two rTMS treatments at 0.5 Hz and 20 Hz, followed by assessments of therapeutic outcomes through the Novel Object Recognition (NOR) and Morris Water Maze (MWM) tests. Following this, whole-cell patch-clamp techniques were used to record action potential, voltage-gated sodium channel currents, and voltage-gated potassium channel currents in dentate gyrus granule neurons. The results show that AD mice exhibit significant cognitive decline compared to normal mice, along with a pronounced reduction in neuronal excitability and ion channel activity. Both frequencies of rTMS treatment partially reversed these changes, demonstrating similar therapeutic efficacy. Furthermore, the investigation indicates that low-frequency magnetic stimulation inhibited the concentrated firing of early action potentials in AD.
Collapse
Affiliation(s)
- Ze Zhang
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Chong Ding
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin 300130, China.
| | - Rui Fu
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Jiale Wang
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Junqiao Zhao
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Haijun Zhu
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
11
|
Jung YH, Jang H, Park S, Kim HJ, Seo SW, Kim GB, Shon YM, Kim S, Na DL. Effectiveness of Personalized Hippocampal Network-Targeted Stimulation in Alzheimer Disease: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e249220. [PMID: 38709534 PMCID: PMC11074813 DOI: 10.1001/jamanetworkopen.2024.9220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/01/2024] [Indexed: 05/07/2024] Open
Abstract
Importance Repetitive transcranial magnetic stimulation (rTMS) has emerged as a safe and promising intervention for Alzheimer disease (AD). Objective To investigate the effect of a 4-week personalized hippocampal network-targeted rTMS on cognitive and functional performance, as well as functional connectivity in AD. Design, Setting, and Participants This randomized clinical trial, which was sham-controlled and masked to participants and evaluators, was conducted between May 2020 and April 2022 at a single Korean memory clinic. Eligible participants were between ages 55 and 90 years and had confirmed early AD with evidence of an amyloid biomarker. Participants who met the inclusion criteria were randomly assigned to receive hippocampal network-targeted rTMS or sham stimulation. Participants received 4-week rTMS treatment, with assessment conducted at weeks 4 and 8. Data were analyzed between April 2022 and January 2024. Interventions Each patient received 20 sessions of personalized rTMS targeting the left parietal area, functionally connected to the hippocampus, based on fMRI connectivity analysis over 4 weeks. The sham group underwent the same procedure, excluding actual magnetic stimulation. A personalized 3-dimensional printed frame to fix the TMS coil to the optimal target site was produced. Main Outcomes and Measures The primary outcome was the change in the AD Assessment Scale-Cognitive Subscale test (ADAS-Cog) after 8 weeks from baseline. Secondary outcomes included changes in the Clinical Dementia Rating-Sum of Boxes (CDR-SOB) and Seoul-Instrumental Activity Daily Living (S-IADL) scales, as well as resting-state fMRI connectivity between the hippocampus and cortical areas. Results Among 30 participants (18 in the rTMS group; 12 in the sham group) who completed the 8-week trial, the mean (SD) age was 69.8 (9.1) years; 18 (60%) were female. As the primary outcome, the change in ADAS-Cog at the eighth week was significantly different between the rTMS and sham groups (coefficient [SE], -5.2 [1.6]; P = .002). The change in CDR-SOB (-4.5 [1.4]; P = .007) and S-IADL (1.7 [0.7]; P = .004) were significantly different between the groups favoring rTMS groups. The fMRI connectivity analysis revealed that rTMS increased the functional connectivity between the hippocampus and precuneus, with its changes associated with improvements in ADAS-Cog (r = -0.57; P = .005). Conclusions and Relevance This randomized clinical trial demonstrated the positive effects of rTMS on cognitive and functional performance, and the plastic changes in the hippocampal-cortical network. Our results support the consideration of rTMS as a potential treatment for AD. Trial Registration ClinicalTrials.gov Identifier: NCT04260724.
Collapse
Affiliation(s)
- Young Hee Jung
- Department of Neurology, Myongji Hospital, Hanyang University, Goyang, Korea
| | - Hyemin Jang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
- Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Sungbeen Park
- Department of Artificial Intelligence, Hanyang University, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
- Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
- Samsung Alzheimer Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea
| | | | - Young-Min Shon
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea
- Smart Healthcare Research Institute, Samsung Medical Center, Seoul, Korea
| | - Sungshin Kim
- Department of Artificial Intelligence, Hanyang University, Seoul, Korea
- Department of Data Science, Hanyang University, Seoul, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
- Department of Healthcare Digital Engineering, Hanyang University, Seoul, Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
- Happymind Clinic, Seoul, Korea
| |
Collapse
|
12
|
Zhu Y, Liao L, Gao S, Tao Y, Huang H, Fang X, Yuan C, Gao C. Neuroprotective effects of repetitive transcranial magnetic stimulation on Alzheimer's disease: Undetermined therapeutic protocols and mechanisms. NEUROPROTECTION 2024; 2:16-32. [DOI: 10.1002/nep3.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/24/2024] [Indexed: 01/03/2025]
Abstract
AbstractAlzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by gradual deterioration of cognitive functions, for which an effective treatment is currently unavailable. Repetitive transcranial magnetic stimulation (rTMS), a well‐established noninvasive brain stimulation method, is utilized in clinical settings to address various neuropsychiatric conditions, such as depression, neuropathic pain, and poststroke dysfunction. Increasing evidence suggests that rTMS may enhance cognitive abilities in individuals with AD. However, its optimal therapeutic protocols and precise mechanisms are currently unknown, impeding its clinical implementation. In the present review, we aimed to summarize and discuss the efficacy‐related parameters in rTMS treatment, encompassing stimulus frequency, stimulus pattern, stimulus intensity, and the configuration of the stimulus coil. Furthermore, we reviewed promising rTMS therapeutic protocols involving various combinations of these factors, that were examined in clinical studies. Based on our analysis, we propose that a multisite high‐frequency rTMS (HF‐rTMS) regimen has value in AD therapy, and that promising single‐site protocols, such as HF‐rTMS, applied over the left dorsolateral prefrontal cortex, precuneus, or cerebellum are required to be validated in larger clinical studies. Lastly, we provide a comprehensive review of the potential mechanisms underlying the neuroprotective effects of rTMS on cognition in AD in terms of brain network modulation as well as cellular and molecular reactions. In conclusion, the interaction of diverse mechanisms may be responsible for the total therapeutic effect of rTMS on AD. This review provides theoretical and practical evidence for the future clinical application and scientific research of rTMS in AD.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Lingyi Liao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Shihao Gao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
- Department of Rehabilitation Medicine General Hospital of Southern Theatre Command of PLA Guangzhou China
| | - Xiangqin Fang
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Changyan Yuan
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| | - Changyue Gao
- Department of Rehabilitation Medicine, Daping Hospital Army Medical University Chongqing China
| |
Collapse
|
13
|
Kim SK, Lee GY, Kim SK, Kwon YJ, Seo EB, Lee H, Lee SH, Kim SJ, Lee S, Ye SK. Protective Effects of Repetitive Transcranial Magnetic Stimulation Against Streptozotocin-Induced Alzheimer's Disease. Mol Neurobiol 2024; 61:1687-1703. [PMID: 37755583 PMCID: PMC10896897 DOI: 10.1007/s12035-023-03573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/07/2023] [Indexed: 09/28/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation under investigation for treatment of a wide range of neurological disorders. In particular, the therapeutic application of rTMS for neurodegenerative diseases such as Alzheimer's disease (AD) is attracting attention. However, the mechanisms underlying the therapeutic efficacy of rTMS have not yet been elucidated, and few studies have systematically analyzed the stimulation parameters. In this study, we found that treatment with rTMS contributed to restoration of memory deficits by activating genes involved in synaptic plasticity and long-term memory. We evaluated changes in several intracellular signaling pathways in response to rTMS stimulation; rTMS treatment activated STAT, MAPK, Akt/p70S6K, and CREB signaling. We also systematically investigated the influence of rTMS parameters. We found an effective range of applications for rTMS and determined the optimal combination to achieve the highest efficiency. Moreover, application of rTMS inhibited the increase in cell death induced by hydrogen peroxide. These results suggest that rTMS treatment exerts a neuroprotective effect on cellular damage induced by oxidative stress, which plays an important role in the pathogenesis of neurological disorders. rTMS treatment attenuated streptozotocin (STZ)-mediated cell death and AD-like pathology in neuronal cells. In an animal model of sporadic AD caused by intracerebroventricular STZ injection, rTMS application improved cognitive decline and showed neuroprotective effects on hippocampal histology. Overall, this study will help in the design of stimulation protocols for rTMS application and presents a novel mechanism that may explain the therapeutic effects of rTMS in neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Geun Yong Lee
- Remed Co. Ltd., 21-7, Weeleseoilo 1, Seongnam, Korea
| | - Su Kang Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Korea
| | - Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Song-Hee Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung Joon Kim
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sangsik Lee
- Department of Biomedical Engineering, Catholic Kwandong University College of Medical Convergence, Gangneung, 25601, Republic of Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
14
|
Sleem T, Decourt B, Sabbagh MN. Nonmedication Devices in Development for the Treatment of Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:241-255. [PMID: 38405349 PMCID: PMC10894612 DOI: 10.3233/adr-230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
Huge investments continue to be made in treatment for Alzheimer's disease (AD), with more than one hundred drugs currently in development. Pharmacological approaches and drug development, particularly those targeting amyloid-β, have dominated the therapeutic landscape. At the same time, there is also a growing interest in devices for treating AD. This review aimed to identify and describe devices under development for AD treatment. In this review, we queried the devices that are in development for the treatment of AD. PubMed was searched through the end of 2021 using the terms "device," "therapeutics," and "Alzheimer's" for articles that report on devices to treat AD. Ten devices with 31 references were identified as actively being developed for the treatment of AD. Many of these devices are far along in development. Device-based therapies are often overlooked when evaluating treatment approaches to AD. However, many devices for treating AD are in development and some show promising results.
Collapse
Affiliation(s)
- Tamara Sleem
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
15
|
Zhu Y, Huang H, Chen Z, Tao Y, Liao LY, Gao SH, Wang YJ, Gao CY. Intermittent Theta Burst Stimulation Attenuates Cognitive Deficits and Alzheimer's Disease-Type Pathologies via ISCA1-Mediated Mitochondrial Modulation in APP/PS1 Mice. Neurosci Bull 2024; 40:182-200. [PMID: 37578635 PMCID: PMC10838862 DOI: 10.1007/s12264-023-01098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 08/15/2023] Open
Abstract
Intermittent theta burst stimulation (iTBS), a time-saving and cost-effective repetitive transcranial magnetic stimulation regime, has been shown to improve cognition in patients with Alzheimer's disease (AD). However, the specific mechanism underlying iTBS-induced cognitive enhancement remains unknown. Previous studies suggested that mitochondrial functions are modulated by magnetic stimulation. Here, we showed that iTBS upregulates the expression of iron-sulfur cluster assembly 1 (ISCA1, an essential regulatory factor for mitochondrial respiration) in the brain of APP/PS1 mice. In vivo and in vitro studies revealed that iTBS modulates mitochondrial iron-sulfur cluster assembly to facilitate mitochondrial respiration and function, which is required for ISCA1. Moreover, iTBS rescues cognitive decline and attenuates AD-type pathologies in APP/PS1 mice. The present study uncovers a novel mechanism by which iTBS modulates mitochondrial respiration and function via ISCA1-mediated iron-sulfur cluster assembly to alleviate cognitive impairments and pathologies in AD. We provide the mechanistic target of iTBS that warrants its therapeutic potential for AD patients.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhi Chen
- Department of Special Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shi-Hao Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Chang-Yue Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
16
|
Wang T, Yan S, Lu J. The effects of noninvasive brain stimulation on cognitive function in patients with mild cognitive impairment and Alzheimer's disease using resting-state functional magnetic resonance imaging: A systematic review and meta-analysis. CNS Neurosci Ther 2023; 29:3160-3172. [PMID: 37349974 PMCID: PMC10580344 DOI: 10.1111/cns.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE The aim of this systematic review and meta-analysis was to evaluate the efficacy of noninvasive brain stimulation (NIBS) on cognition using functional magnetic resonance imaging (fMRI) in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD), thus providing the neuroimaging mechanism of cognitive intervention. METHODS English articles published up to April 30, 2023 were searched in the PubMed, Web of Science, Embase, and Cochrane Library databases. We included randomized controlled trials where resting-state fMRI was used to observe the effect of NIBS in patients with MCI or AD. RevMan software was used to analyze the continuous variables, and SDM-PSI software was used to perform an fMRI data analysis. RESULTS A total of 17 studies comprising 258 patients in the treatment group and 256 in the control group were included. After NIBS, MCI patients in the treatment group showed hyperactivation in the right precuneus and decreased activity in the left cuneus and right supplementary motor area. In contrast, patients in the control group showed decreased activity in the right middle frontal gyrus and no hyperactivation. The clinical cognitive scores in MCI patients were significantly improved by NIBS, while not in AD. Some evidence regarding the modulation of NIBS in resting-state brain activity and functional brain networks in patients with AD was found. CONCLUSIONS NIBS could improve cognitive function in patients with MCI and AD. fMRI evaluations could be added to evaluate the contribution of specific NIBS treatment therapeutic effectiveness.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| |
Collapse
|
17
|
Huang H, Zhu Y, Liao L, Gao S, Tao Y, Fang X, Lian Y, Gao C. The long-term effects of intermittent theta burst stimulation on Alzheimer's disease-type pathologies in APP/PS1 mice. Brain Res Bull 2023; 202:110735. [PMID: 37586425 DOI: 10.1016/j.brainresbull.2023.110735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Intermittent theta burst stimulation (iTBS), an emerging and highly efficient paradigm of repetitive transcranial magnetic stimulation (rTMS), has been demonstrated to mitigate cognitive impairment in Alzheimer's disease. Previous clinical studies have shown that the cognitive improvement of iTBS could last several weeks after treatment. Nonetheless, it is largely uncertain how the long-term effects of iTBS treatment are sustained. To investigate whether iTBS has a long-term effect on AD-type pathologies, 6-month-old APP/PS1 mice are administrated with 30 consecutive days of iTBS treatment. After a 2-month interval, morphological alterations in the brain are examined by immunohistochemistry and immunofluorescence staining, while levels of associated proteins are assessed by Western blot at the age of 9 months. We find that iTBS treatment significantly diminishes Aβ burden in the cerebral cortex and hippocampus of APP/PS1 mice. Moreover, we observe that iTBS treatment inhibits the expression of BACE1 and elevates the level of IDE, suggesting that the reduction of Aβ load could be attributed to the inhibition of Aβ production and facilitation of Aβ degradation. Furthermore, iTBS treatment attenuates neuroinflammation, neuronal apoptosis, and synaptic loss in APP/PS1 mice. Collectively, these data indicate that 1 month of iTBS treatment ameliorates pathologies in the brain of AD mice for at least 2 months. We provide the novel evidence that iTBS may exert after-effects on AD-type pathologies via inhibition of Aβ production and facilitation of Aβ degradation.
Collapse
Affiliation(s)
- Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China; Department of Rehabilitation Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Yang Zhu
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lingyi Liao
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Shihao Gao
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiangqin Fang
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yan Lian
- Department of Preventive Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - Changyue Gao
- Department of Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
18
|
Du Y, Li J, Wang M, Tian Q, Pang Y, Wen Y, Wu D, Wang YT, Dong Z. Genetic inhibition of glutamate allosteric potentiation of GABA ARs in mice results in hyperexcitability, leading to neurobehavioral abnormalities. MedComm (Beijing) 2023; 4:e235. [PMID: 37101797 PMCID: PMC10123808 DOI: 10.1002/mco2.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 04/28/2023] Open
Abstract
The imbalance between neuronal excitation and inhibition (E/I) in neural circuit has been considered to be at the root of numerous brain disorders. We recently reported a novel feedback crosstalk between the excitatory neurotransmitter glutamate and inhibitory γ-aminobutyric acid type A receptor (GABAAR)-glutamate allosteric potentiation of GABAAR functions through a direct binding of glutamate to the GABAAR itself. Here, we investigated the physiological significance and pathological implications of this cross-talk by generating the β3E182G knock-in (KI) mice. We found that β3E182G KI, while had little effect on basal GABAAR-mediated synaptic transmission, significantly reduced glutamate potentiation of GABAAR-mediated responses. These KI mice displayed lower thresholds for noxious stimuli, higher susceptibility to seizures and enhanced hippocampus-related learning and memory. Additionally, the KI mice exhibited impaired social interactions and decreased anxiety-like behaviors. Importantly, hippocampal overexpression of wild-type β3-containing GABAARs was sufficient to rescue the deficits of glutamate potentiation of GABAAR-mediated responses, hippocampus-related behavioral abnormalities of increased epileptic susceptibility, and impaired social interactions. Our data indicate that the novel crosstalk among excitatory glutamate and inhibitory GABAAR functions as a homeostatic mechanism in fine-tuning neuronal E/I balance, thereby playing an essential role in ensuring normal brain functioning.
Collapse
Affiliation(s)
- Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Junjie Li
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Maoju Wang
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Qiuyun Tian
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yayan Pang
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Ya Wen
- Brain Research Centre and Department of MedicineVancouver Coastal Health Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Dongchuan Wu
- Translational Medicine Research CenterChina Medical University HospitalGraduate Institutes of Biomedical SciencesTaichungChina
| | - Yu Tian Wang
- Brain Research Centre and Department of MedicineVancouver Coastal Health Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence CenterPediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and DisordersChina International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Institute for Brain Science and Disease of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
19
|
Yang Z, Zhou Y. The repetitive transcranial magnetic stimulation in Alzheimer's disease patients with behavioral and psychological symptoms of dementia: a case report. BMC Psychiatry 2023; 23:354. [PMID: 37221495 DOI: 10.1186/s12888-023-04864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation is a noninvasive intervention, can significantly reduce behavioral and psychological symptoms and cognitive impairment in AD patients. Only few cases have been reported the adverse reactions after the treatment. This report described the different adverse reactions after repetitive transcranial magnetic stimulation with different parameters. PATIENT PRESENTATION This article reports a patient with dementia complicated with mental behavior disorder who was treated with repetitive transcranial magnetic stimulation (rTMS) in spite of poor drug response. First, 1 Hz rTMS was initiated. After 1 month, the patient showed improved symptoms of mental behavior, decreased cognitive function and prolonged sleep duration. After switched to 10 Hz rTMS, the patient's cognitive function and mental behavior abnormalities improved, and the sleep time returned to normal. However, epilepsy occurred after one session and was changed to 0.8 Hz rTMS treatment. The patient's symptoms improved and did not have seizure. CONCLUSION Repetitive transcranial magnetic stimulation has a positive effect on cognitive function and Behavioral And Psychological Symptoms Of Dementia, and adverse reactions are inevitable. Playing personalized treatment according to the patients can reduce occurrence of adverse reactions.
Collapse
Affiliation(s)
- Zhen Yang
- University of South China, Heng Yang, 421001, China
| | - Ying Zhou
- Neurology Department, The First Hospital Of Chang Sha, Chang Sha City, 410000, China.
| |
Collapse
|
20
|
Brabenec L, Simko P, Sejnoha Minsterova A, Kostalova M, Rektorova I. Repetitive transcranial magnetic stimulation for hypokinetic dysarthria in Parkinson's disease enhances white matter integrity of the auditory-motor loop. Eur J Neurol 2023; 30:881-886. [PMID: 36529528 DOI: 10.1111/ene.15665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE In our previous study, repeated sessions of repetitive transcranial magnetic stimulation (rTMS) over the auditory feedback area were shown to improve hypokinetic dysarthria (HD) in Parkinson's disease (PD) and led to changes in functional connectivity within the left-sided articulatory networks. We analyzed data from this previous study and assessed the effects of rTMS for HD in PD on the diffusion parameters of the left anterior arcuate fasciculus (AAF), which connects the auditory feedback area with motor regions involved in articulation. METHODS Patients were assigned to 10 sessions of real or sham 1-Hz stimulation over the right posterior superior temporal gyrus. Stimulation effects were evaluated using magnetic resonance diffusion tensor imaging and by a speech therapist using a validated tool (Phonetics score of the Dysarthric Profile) at baseline, immediately after 2 weeks of stimulation, and at follow-up visits at Weeks 6 and 10 after the baseline. RESULTS Altogether, data from 33 patients were analyzed. A linear mixed model revealed significant time-by-group interaction (p = 0.006) for the relative changes of fractional anisotropy of the AAF; the value increases were associated with the temporal evolution of the Phonetics score (R = 0.367, p = 0.028) in the real stimulation group. CONCLUSIONS Real rTMS treatment for HD in PD as compared to sham stimulation led to increases of white matter integrity of the auditory-motor loop during the 2-month follow-up period. The changes were related to motor speech improvements.
Collapse
Affiliation(s)
- Lubos Brabenec
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alzbeta Sejnoha Minsterova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Milena Kostalova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| |
Collapse
|
21
|
Glutamate and GABA A receptor crosstalk mediates homeostatic regulation of neuronal excitation in the mammalian brain. Signal Transduct Target Ther 2022; 7:340. [PMID: 36184627 PMCID: PMC9527238 DOI: 10.1038/s41392-022-01148-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/29/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Maintaining a proper balance between the glutamate receptor-mediated neuronal excitation and the A type of GABA receptor (GABAAR) mediated inhibition is essential for brain functioning; and its imbalance contributes to the pathogenesis of many brain disorders including neurodegenerative diseases and mental illnesses. Here we identify a novel glutamate-GABAAR interaction mediated by a direct glutamate binding of the GABAAR. In HEK293 cells overexpressing recombinant GABAARs, glutamate and its analog ligands, while producing no current on their own, potentiate GABA-evoked currents. This potentiation is mediated by a direct binding at a novel glutamate binding pocket located at the α+/β− subunit interface of the GABAAR. Moreover, the potentiation does not require the presence of a γ subunit, and in fact, the presence of γ subunit significantly reduces the potency of the glutamate potentiation. In addition, the glutamate-mediated allosteric potentiation occurs on native GABAARs in rat neurons maintained in culture, as evidenced by the potentiation of GABAAR-mediated inhibitory postsynaptic currents and tonic currents. Most importantly, we found that genetic impairment of this glutamate potentiation in knock-in mice resulted in phenotypes of increased neuronal excitability, including decreased thresholds to noxious stimuli and increased seizure susceptibility. These results demonstrate a novel cross-talk between excitatory transmitter glutamate and inhibitory GABAAR. Such a rapid and short feedback loop between the two principal excitatory and inhibitory neurotransmission systems may play a critical homeostatic role in fine-tuning the excitation-inhibition balance (E/I balance), thereby maintaining neuronal excitability in the mammalian brain under both physiological and pathological conditions.
Collapse
|
22
|
Cao H, Zuo C, Gu Z, Huang Y, Yang Y, Zhu L, Jiang Y, Wang F. High frequency repetitive transcranial magnetic stimulation alleviates cognitive deficits in 3xTg-AD mice by modulating the PI3K/Akt/GLT-1 axis. Redox Biol 2022; 54:102354. [PMID: 35660628 PMCID: PMC9168605 DOI: 10.1016/j.redox.2022.102354] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Glutamate mediated excitotoxicity, such as oxidative stress, neuroinflammation, synaptic loss and neuronal death, is ubiquitous in Alzheimer's disease (AD). Our previous study found that 15 Hz repetitive transcranial magnetic stimulation (rTMS) could reduce cortical excitability. The purpose of this study was to explore the therapeutic effect of higher frequency rTMS on 3xTg-AD model mice and further explore the mechanisms of rTMS. METHODS First, WT and 3xTg-AD model mice received 25 Hz rTMS treatment for 21 days. The Morris water maze test was used to evaluate the cognitive function. The levels of Aβ and neuroinflammation were assessed by ELISA and immunofluorescence. Oxidative stress was quantified by biochemical assay kits. Brain glucose metabolism was assessed by 18F-FDG PET. Apoptosis was assessed by western blot and TUNEL staining. Synaptic plasticity and PI3K/Akt/GLT-1 pathway related protein expression were assessed by western blot. Next, to explore the activity of PI3K/Akt in the therapeutic effect of rTMS, 3xTg-AD model mice were given LY294002 intervention and rTMS treatment for 21 days, the experimental method was the same as before. RESULTS We found that 25 Hz rTMS could improve cognitive function of 3xTg-AD model mice, reduce hippocampal Aβ1-42 levels, ameliorate oxidative stress and improve glucose metabolism. rTMS alleviated neuroinflammatory response, enhanced synaptic plasticity and reduced neuronal loss and cell apoptosis, accompanied by activation of PI3K/Akt/GLT-1 pathway. After administration of PI3K/Akt inhibitor LY294002, 25 Hz rTMS could not improve the cognitive function and reduce neuron damage of 3xTg-AD model mice, nor could it upregulate the expression of GLT-1, indicating that its therapeutic and protective effects required the involvement of PI3K/Akt/GLT-1 pathway. CONCLUSION rTMS exerts protective role for AD through regulating multiple pathological processes. Meanwhile, this study revealed the key role of PI3K/Akt/GLT-1 pathway in the treatment of AD by rTMS, which might be a new target.
Collapse
Affiliation(s)
- Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yuyan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Liudi Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
23
|
Toprak G, Hanoglu L, Cakir T, Guntekin B, Velioglu HA, Yulug B. DLPF Targeted Repetitive Transcranial Magnetic Stimulation Improves Brain Glucose Metabolism Along with the Clinical and Electrophysiological Parameters in CBD Patients. Endocr Metab Immune Disord Drug Targets 2022; 22:415-424. [PMID: 35100961 DOI: 10.2174/1871530322666220131120349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Corticobasal Degeneration (CBD) is a rare neurological disease caused by the pathological accumulation of tau protein. The primary pathological features of CBD include progressive neurodegenerative processes resulting in remarkable frontoparietal and basal ganglia atrophy. OBJECTIVE Like in many other neurodegenerative disorders, there is still no effective disease-modifying drug therapy in CBD. Therefore, the development of new treatment methods is of great importance. In this study, we aimed to assess the stimulating effects of high-frequency DLPFC rTMS on the motor, cognitive and behavioral disturbances in four CBD patients. METHODS Four (three females, one male) CBD patients who had been diagnosed as CBD were enrolled in this study. Patients were evaluated before and after the rTMS procedure regarding the motor, neuropsychometric and behavioral tests. The results of statistical analysis of behavioral and neuropsychometric evaluation were assessed via SPSS 18.0 package program. Data are expressed as mean, standard deviation. Before and after values of the groups were compared with the Wilcoxon sign rank test, and p<0.05 was considered significant. RESULTS We have provided strong preliminary evidence that the improvement in clinical parameters was associated with the normalizations of the theta activity and glucose metabolism. CONCLUSION Our current results are consistent with some previous trials showing a strong association between DLPFC targeted rTMS and electrophysiological normalizations in the left DLPFC.
Collapse
Affiliation(s)
- Guven Toprak
- Department of Clinical Electrophysiology, Neuroimaging and Neuromodulation, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Tansel Cakir
- Department of Nuclear Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Guntekin
- Department of Clinical Electrophysiology, Neuroimaging and Neuromodulation, Istanbul Medipol University, Istanbul, Turkey
| | - Halil Aziz Velioglu
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul Medipol University, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, Alanya Alaaddin Keykubat University School of Medicine, Alanya/Antalya, Turkey
| |
Collapse
|
24
|
Repetitive transcranial magnetic stimulation (rTMS) for multiple neurological conditions in rodent animal models: A systematic review. Neurochem Int 2022; 157:105356. [DOI: 10.1016/j.neuint.2022.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
|
25
|
Bashir S, Uzair M, Abualait T, Arshad M, Khallaf RA, Niaz A, Thani Z, Yoo WK, Túnez I, Demirtas-Tatlidede A, Meo SA. Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's disease (Review). Mol Med Rep 2022; 25:109. [PMID: 35119081 PMCID: PMC8845030 DOI: 10.3892/mmr.2022.12625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and brain neuronal loss. A pioneering field of research in AD is brain stimulation via electromagnetic fields (EMFs), which may produce clinical benefits. Noninvasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS), have been developed to treat neurological and psychiatric disorders. The purpose of the present review is to identify neurobiological changes, including inflammatory, neurodegenerative, apoptotic, neuroprotective and genetic changes, which are associated with repetitive TMS (rTMS) treatment in patients with AD. Furthermore, it aims to evaluate the effect of TMS treatment in patients with AD and to identify the associated mechanisms. The present review highlights the changes in inflammatory and apoptotic mechanisms, mitochondrial enzymatic activities, and modulation of gene expression (microRNA expression profiles) associated with rTMS or sham procedures. At the molecular level, it has been suggested that EMFs generated by TMS may affect the cell redox status and amyloidogenic processes. TMS may also modulate gene expression by acting on both transcriptional and post‑transcriptional regulatory mechanisms. TMS may increase brain cortical excitability, induce specific potentiation phenomena, and promote synaptic plasticity and recovery of impaired functions; thus, it may re‑establish cognitive performance in patients with AD.
Collapse
Affiliation(s)
- Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Roaa A. Khallaf
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Asim Niaz
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Ziyad Thani
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, Gyeonggi-do 24252, Republic of Korea
| | - Isaac Túnez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing/ Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Cordoba, Cordoba 14071, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Ministry for Economy, Industry and Competitiveness, 28046 Madrid, Spain
| | | | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
Mano T. RETRACTED: Application of Repetitive Transcranial Magnetic Stimulation over the Dorsolateral Prefrontal Cortex in Alzheimer's Disease: A Pilot Study. J Clin Med 2022; 11:798. [PMID: 35160250 PMCID: PMC8836442 DOI: 10.3390/jcm11030798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is reportedly a potential tool to understand the neural network; however, the pathophysiological mechanisms underlying cognitive function change remain unclear. This study aimed to explore the cognitive function changes by rTMS over the bilateral dorsolateral prefrontal cortex (DLPFC) in Alzheimer's disease (AD). We evaluated the feasibility of rTMS application for mild cognitive dysfunction in patients with AD in an open-label trial (UMIN000027013). An rTMS session involved 15 trains at 120% resting motor threshold on each side (40 pulses/train at 10 Hz). Efficacy outcome measures were changes from baseline in cognitive function, assessed based on the AD Assessment Scale-cognitive subscale, Mini-Mental State Examination, Japanese version of Montreal Cognitive Assessment (MoCA-J), Behavioral and Psychological Symptom of Dementia, and Instrumental Activity of Daily Living scores. Sixteen patients with AD underwent five daily sessions of high-frequency rTMS over the bilateral DLPFC for 2 weeks. All participants completed the study; no major adverse effects were recorded. The MoCA-J score increased by 1.4 points (±0.15%) following 2 weeks of stimulation. At 1 month following rTMS cessation, all cognitive functional scores returned to the original state. Our findings suggest that the DLPFC plays an important role in the neural network in AD.
Collapse
Affiliation(s)
- Tomoo Mano
- Department of Rehabilitation Medicine, Nara Medical University, Nara 634-8521, Japan; ; Tel.: +81-744-22-3051
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Heath AM, Brewer M, Yesavage J, McNerney MW. Improved object recognition memory using post-encoding repetitive transcranial magnetic stimulation. Brain Stimul 2022; 15:78-86. [PMID: 34785386 PMCID: PMC10612530 DOI: 10.1016/j.brs.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Brain stimulation is known to affect canonical pathways and proteins involved in memory. However, there are conflicting results on the ability of brain stimulation to improve to memory, which may be due to variations in timing of stimulation. HYPOTHESIS We hypothesized that repetitive transcranial magnetic stimulation (rTMS) given following a learning task and within the time period before retrieval could help improve memory. METHODS We implanted male B6129SF2/J mice (n = 32) with a cranial attachment to secure the rTMS coil so that the mice could be given consistent stimulation to the frontal area whilst freely moving. Mice then underwent the object recognition test sampling phase and given treatment +3, +24, +48 h following the test. Treatment consisted of 10 min 10 Hz rTMS stimulation (TMS, n = 10), sham treatment (SHAM, n = 11) or a control group which did not do the behavior test or receive rTMS (CONTROL n = 11). At +72 h mice were tested for their exploration of the novel vs familiar object. RESULTS At 72-h's, only the mice which received rTMS had greater exploration of the novel object than the familiar object. We further show that promoting synaptic GluR2 and maintaining synaptic connections in the perirhinal cortex and hippocampal CA1 are important for this effect. In addition, we found evidence that these changes were linked to CAMKII and CREB pathways in hippocampal neurons. CONCLUSION By linking the known biological effects of rTMS to memory pathways we provide evidence that rTMS is effective in improving memory when given during the consolidation and maintenance phases.
Collapse
Affiliation(s)
- A M Heath
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA.
| | - M Brewer
- Stanford University, Stanford, CA, 94305, USA
| | - J Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| | - M W McNerney
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| |
Collapse
|
28
|
Stoiljkovic M, Horvath TL, Hajós M. Therapy for Alzheimer's disease: Missing targets and functional markers? Ageing Res Rev 2021; 68:101318. [PMID: 33711510 PMCID: PMC8131215 DOI: 10.1016/j.arr.2021.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The development of the next generation therapy for Alzheimer's disease (AD) presents a huge challenge given the number of promising treatment candidates that failed in trials, despite recent advancements in understanding of genetic, pathophysiologic and clinical characteristics of the disease. This review reflects some of the most current concepts and controversies in developing disease-modifying and new symptomatic treatments. It elaborates on recent changes in the AD research strategy for broadening drug targets, and potentials of emerging non-pharmacological treatment interventions. Established and novel biomarkers are discussed, including emerging cerebrospinal fluid and plasma biomarkers reflecting tau pathology, neuroinflammation and neurodegeneration. These fluid biomarkers together with neuroimaging findings can provide innovative objective assessments of subtle changes in brain reflecting disease progression. A particular emphasis is given to neurophysiological biomarkers which are well-suited for evaluating the brain overall neural network integrity and function. Combination of multiple biomarkers, including target engagement and outcome biomarkers will empower translational studies and facilitate successful development of effective therapies.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Pharmacology, University of Nis School of Medicine, Nis, Serbia.
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Cognito Therapeutics, Cambridge, MA, 02138, USA
| |
Collapse
|
29
|
Lin Y, Jin J, Lv R, Luo Y, Dai W, Li W, Tang Y, Wang Y, Ye X, Lin WJ. Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:102. [PMID: 34078467 PMCID: PMC8170932 DOI: 10.1186/s40478-021-01198-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high prevalence rate among the elderly population. A large number of clinical studies have suggested repetitive transcranial magnetic stimulation (rTMS) as a promising non-invasive treatment for patients with mild to moderate AD. However, the underlying cellular and molecular mechanisms remain largely uninvestigated. In the current study, we examined the effect of high frequency rTMS treatment on the cognitive functions and pathological changes in the brains of 4- to 5-month old 5xFAD mice, an early pathological stage with pronounced amyloidopathy and cognitive deficit. Our results showed that rTMS treatment effectively prevented the decline of long-term memories of the 5xFAD mice for novel objects and locations. Importantly, rTMS treatment significantly increased the drainage efficiency of brain clearance pathways, including the glymphatic system in brain parenchyma and the meningeal lymphatics, in the 5xFAD mouse model. Significant reduction of Aβ deposits, suppression of microglia and astrocyte activation, and prevention of decline of neuronal activity as indicated by the elevated c-FOS expression, were observed in the prefrontal cortex and hippocampus of the rTMS-treated 5xFAD mice. Collectively, these findings provide a novel mechanistic insight of rTMS in regulating brain drainage system and β-amyloid clearance in the 5xFAD mouse model, and suggest the potential use of the clearance rate of contrast tracer in cerebrospinal fluid as a prognostic biomarker for the effectiveness of rTMS treatment in AD patients.
Collapse
Affiliation(s)
- Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Rongke Lv
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiping Dai
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wenchang Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yamei Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojing Ye
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Early intervention attenuates synaptic plasticity impairment and neuroinflammation in 5xFAD mice. J Psychiatr Res 2021; 136:204-216. [PMID: 33618062 DOI: 10.1016/j.jpsychires.2021.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND As an increasing population of Alzheimer's disease (AD) patients year by year, which is a serious threat to human health, an effective approach to prevent and treat AD is required. Biomarker changes relevant to β-amyloid (Aβ) 20 years or more in advance of cognitive impairment, so early intervention is a feasible idea for AD therapy. Repetitive transcranial magnetic stimulation (rTMS) as a non-invasive technique offers the possibility of early intervention. OBJECTIVE To explore the effect of high-frequency rTMS on the pathological symptoms of AD transgenic mice and its mechanisms, a figure-of-eight coil was placed 2 mm above the head of mouse to apply 20 Hz high-intensity rTMS for 14 consecutive days. METHODS In vivo electrophysiological recording, behavioral test, Western blots assay and immunofluorescence were used to measure the pathological symptoms of AD. RESULTS Our data showed that early intervention effectively reduced Aβ levels and the activation of microglia on the one hand, and decreased levels of pro-inflammatory cytokines including IL-6 and TNF-α as well as regulated PI3K/Akt/NF-κB signaling pathway on the other hand, which created a favorable brain environment. Thus, it increased the expression of synapse-associated proteins and improved neuronal synaptic plasticity in brain of early-stage of 5xFAD transgenic mice. CONCLUSIONS This study is the first to suggest that early intervention of 20 Hz rTMS ameliorates neuroinflammation to improve synaptic plasticity of early-stage of 5xFAD mice through PI3K/Akt/NF-κB signaling pathway.
Collapse
|
31
|
Brabenec L, Klobusiakova P, Simko P, Kostalova M, Mekyska J, Rektorova I. Non-invasive brain stimulation for speech in Parkinson's disease: A randomized controlled trial. Brain Stimul 2021; 14:571-578. [PMID: 33781956 DOI: 10.1016/j.brs.2021.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Hypokinetic dysarthria is a common but difficult-to-treat symptom of Parkinson's disease (PD). OBJECTIVES We evaluated the long-term effects of multiple-session repetitive transcranial magnetic stimulation on hypokinetic dysarthria in PD. Neural mechanisms of stimulation were assessed by functional MRI. METHODS A randomized parallel-group sham stimulation-controlled design was used. Patients were randomly assigned to ten sessions (2 weeks) of real (1 Hz) or sham stimulation over the right superior temporal gyrus. Stimulation effects were evaluated at weeks 2, 6, and 10 after the baseline assessment. Articulation, prosody, and speech intelligibility were quantified by speech therapist using a validated tool (Phonetics score of the Dysarthric Profile). Activations of the speech network regions and intrinsic connectivity were assessed using 3T MRI. Linear mixed models and post-hoc tests were utilized for data analyses. RESULTS Altogether 33 PD patients completed the study (20 in the real stimulation group and 13 in the sham stimulation group). Linear mixed models revealed significant effects of time (F(3, 88.1) = 22.7, p < 0.001) and time-by-group interactions: F(3, 88.0) = 2.8, p = 0.040) for the Phonetics score. Real as compared to sham stimulation led to activation increases in the orofacial sensorimotor cortex and caudate nucleus and to increased intrinsic connectivity of these regions with the stimulated area. CONCLUSIONS This is the first study to show the long-term treatment effects of non-invasive brain stimulation for hypokinetic dysarthria in PD. Neural mechanisms of the changes are discussed.
Collapse
Affiliation(s)
- Lubos Brabenec
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
| | - Patricia Klobusiakova
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic; Surgeon General Office of the Slovak Armed Forces, Ružomberok, Slovak Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milena Kostalova
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Neurology, Faculty Hospital and Masaryk University, Brno, Czech Republic
| | - Jiri Mekyska
- Department of Telecommunications, Brno University of Technology, Brno, Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic; First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
32
|
Li X, Qi G, Yu C, Lian G, Zheng H, Wu S, Yuan TF, Zhou D. Cortical plasticity is correlated with cognitive improvement in Alzheimer's disease patients after rTMS treatment. Brain Stimul 2021; 14:503-510. [PMID: 33581283 DOI: 10.1016/j.brs.2021.01.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/12/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) has been widely used in non-invasive treatments for different neurological disorders. Few biomarkers are available for treatment response prediction. This study aims to analyze the correlation between changes in long-term potentiation (LTP)-like cortical plasticity and cognitive function in patients with Alzheimer's disease (AD) that underwent rTMS treatment. METHODS A total of 75 AD patients were randomized into either 20 Hz rTMS treatment at the dorsolateral prefrontal cortex (DLPFC) group (n = 37) or a sham treatment group (n = 38) for 30 sessions over six weeks (five days per week) with a three-month follow-up. Neuropsychological assessments were conducted using the Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment-Cognitive Component (ADAS-Cog). The cortical plasticity reflected by the motor-evoked potential (MEP) before and after high-frequency repetitive TMS to the primary motor cortex (M1) was also examined prior to and after the treatment period. RESULTS The results showed that the cognitive ability of patients who underwent the MMSE and ADAS-Cog assessments showed small but significant improvement after six weeks of rTMS treatment compared with the sham group. The cortical plasticity improvement correlated to the observed cognition change. CONCLUSIONS Cortical LTP-like plasticity could predict the treatment responses of cognitive improvements in AD patients receiving rTMS intervention. This warrants future clinical trials using cortical LTP as a predictive marker.
Collapse
Affiliation(s)
- Xingxing Li
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Gangqiao Qi
- Taizhou Second People's Hospital, Taizhou, Zhejiang, China
| | - Chang Yu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Guomin Lian
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Hong Zheng
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Shaochang Wu
- The Second People's Hospital of Lishui, Lishui, Zhejiang, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| | | |
Collapse
|
33
|
Perez FP, Maloney B, Chopra N, Morisaki JJ, Lahiri DK. Repeated electromagnetic field stimulation lowers amyloid-β peptide levels in primary human mixed brain tissue cultures. Sci Rep 2021; 11:621. [PMID: 33436686 PMCID: PMC7804462 DOI: 10.1038/s41598-020-77808-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Late Onset Alzheimer's Disease is the most common cause of dementia, characterized by extracellular deposition of plaques primarily of amyloid-β (Aβ) peptide and tangles primarily of hyperphosphorylated tau protein. We present data to suggest a noninvasive strategy to decrease potentially toxic Aβ levels, using repeated electromagnetic field stimulation (REMFS) in primary human brain (PHB) cultures. We examined effects of REMFS on Aβ levels (Aβ40 and Aβ42, that are 40 or 42 amino acid residues in length, respectively) in PHB cultures at different frequencies, powers, and specific absorption rates (SAR). PHB cultures at day in vitro 7 (DIV7) treated with 64 MHz, and 1 hour daily for 14 days (DIV 21) had significantly reduced levels of secreted Aβ40 (p = 001) and Aβ42 (p = 0.029) peptides, compared to untreated cultures. PHB cultures (DIV7) treated at 64 MHz, for 1 or 2 hour during 14 days also produced significantly lower Aβ levels. PHB cultures (DIV28) treated with 64 MHz 1 hour/day during 4 or 8 days produced a similar significant reduction in Aβ40 levels. 0.4 W/kg was the minimum SAR required to produce a biological effect. Exposure did not result in cellular toxicity nor significant changes in secreted Aβ precursor protein-α (sAPPα) levels, suggesting the decrease in Aβ did not likely result from redirection toward the α-secretase pathway. EMF frequency and power used in our work is utilized in human magnetic resonance imaging (MRI, thus suggesting REMFS can be further developed in clinical settings to modulate Aβ deposition.
Collapse
Affiliation(s)
- Felipe P Perez
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bryan Maloney
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, 320 W. 15th St, Indianapolis, IN, 46201, USA
| | - Nipun Chopra
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, 320 W. 15th St, Indianapolis, IN, 46201, USA
| | - Jorge J Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Debomoy K Lahiri
- Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Psychiatry, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, 320 W. 15th St, Indianapolis, IN, 46201, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
34
|
Choung JS, Kim JM, Ko MH, Cho DS, Kim M. Therapeutic efficacy of repetitive transcranial magnetic stimulation in an animal model of Alzheimer's disease. Sci Rep 2021; 11:437. [PMID: 33432077 PMCID: PMC7801521 DOI: 10.1038/s41598-020-80147-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 12/14/2020] [Indexed: 12/02/2022] Open
Abstract
Previous studies on repetitive transcranial magnetic stimulation (rTMS) suggested potential neurorestorative properties in Alzheimer's disease (AD). This study aimed to investigate therapeutic effects of rTMS on an AD mouse model at high and low frequencies. The subject mice were allocated into the AD model group (AD induced by intracerebroventricular amyloid beta 42 oligomer [Aβ42] injection) and the saline-injected control group. Each group was subdivided according to rTMS treatment: high frequency (20 Hz), low frequency (1 Hz), and not rTMS-treated. Behavioural assessments with Y-maze test and novel object recognition task were performed; the results indicated cognition recovery by both the frequencies of rTMS after treatment in the AD model (Ps < 0.01). Tendency of further effects by high frequency compared to low frequency rTMS was also shown in Y-maze test. Neurotransmitter assay showed increment in dopamine concentration and upregulation of dopamine-receptor 4 (DR4) by rTMS in AD mice with higher response by high frequency stimulation (Ps < 0.05). Only high-frequency rTMS induced an elevation of brain-derived neurotrophic factor (BDNF) levels and enhanced the expression of Nestin and NeuN in the brain tissue (Ps < 0.05). Under in vitro conditions, Aβ42 incubated mouse hippocampal cell showed an increase in dopamine levels and BDNF by application of high-frequency rTMS treatment. In conclusion, rTMS might have a potential therapeutic effect on AD, and it seems to be related with dopaminergic activation. High frequency of stimulation seems to induce higher efficacy than that induced by low frequency, with elevated expressions of DR4 gene and neurogenic proteins.
Collapse
Affiliation(s)
- Jin Seung Choung
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea
| | - Jong Moon Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Republic of Korea
| | - Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Dong Sik Cho
- R&D Center, Remed Co., Ltd., Seongnam, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea.
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
35
|
Romanella SM, Roe D, Tatti E, Cappon D, Paciorek R, Testani E, Rossi A, Rossi S, Santarnecchi E. The Sleep Side of Aging and Alzheimer's Disease. Sleep Med 2021; 77:209-225. [PMID: 32912799 PMCID: PMC8364256 DOI: 10.1016/j.sleep.2020.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/23/2023]
Abstract
As we age, sleep patterns undergo significant modifications in micro and macrostructure, worsening cognition and quality of life. These are associated with remarkable brain changes, like deterioration in synaptic plasticity, gray and white matter, and significant modifications in hormone levels. Sleep alterations are also a core component of mild cognitive impairment (MCI) and Alzheimer's Disease (AD). AD night time is characterized by a gradual decrease in slow-wave activity and a substantial reduction of REM sleep. Sleep abnormalities can accelerate AD pathophysiology, promoting the accumulation of amyloid-β (Aβ) and phosphorylated tau. Thus, interventions that target sleep disturbances in elderly people and MCI patients have been suggested as a possible strategy to prevent or decelerate conversion to dementia. Although cognitive-behavioral therapy and pharmacological medications are still first-line treatments, despite being scarcely effective, new interventions have been proposed, such as sensory stimulation and Noninvasive Brain Stimulation (NiBS). The present review outlines the current state of the art of the relationship between sleep modifications in healthy aging and the neurobiological mechanisms underlying age-related changes. Furthermore, we provide a critical analysis showing how sleep abnormalities influence the prognosis of AD pathology by intensifying Aβ and tau protein accumulation. We discuss potential therapeutic strategies to target sleep disruptions and conclude that there is an urgent need for testing new therapeutic sleep interventions.
Collapse
Affiliation(s)
- S M Romanella
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - D Roe
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - E Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, USA
| | - D Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - R Paciorek
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - E Testani
- Sleep Medicine Center, Department of Neurology, Policlinico Santa Maria Le Scotte, Siena, Italy
| | - A Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - S Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - E Santarnecchi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Turriziani P, Smirni D, Mangano GR, Zappalà G, Giustiniani A, Cipolotti L, Oliveri M. Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Right Dorsolateral Prefrontal Cortex Enhances Recognition Memory in Alzheimer's Disease. J Alzheimers Dis 2020; 72:613-622. [PMID: 31609693 DOI: 10.3233/jad-190888] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The lack of effective pharmacological or behavioral interventions for memory impairments associated with Alzheimer's disease (AD) emphasizes the need for the investigation of approaches based on neuromodulation. OBJECTIVE This study examined the effects of inhibitory repetitive transcranial magnetic stimulation (rTMS) of prefrontal cortex on recognition memory in AD patients. METHODS In a first experiment, 24 mild AD patients received sham and real 1Hz rTMS over the left and right dorsolateral prefrontal cortex (DLPFC), in different sessions, between encoding and retrieval phases of a non-verbal recognition memory task. In a second experiment, another group of 14 AD patients underwent sham controlled repeated sessions of 1Hz rTMS of the right DLPFC across a two week treatment. Non-verbal recognition memory task was performed at baseline, at the end of the two weeks period and at a follow up of 1 month. RESULTS Right real rTMS significantly improved memory performance compared to right sham rTMS (p = 0.001). Left real rTMS left the memory performance unchanged as compared with left sham rTMS (p = 0.46). The two sham conditions did not differ between each other (p = 0.24). In the second experiment, AD patients treated with real rTMS showed an improvement of memory performance at the end of the two weeks treatment (p = 0.0009), that persisted at 1-month follow-up (p = 0.002). CONCLUSION These findings provide evidence that inhibitory rTMS over the right DLPFC can improve recognition memory function in AD patients. They also suggest the importance of a new approach of non-invasive brain stimulation as a promising treatment in AD.
Collapse
Affiliation(s)
- Patrizia Turriziani
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy.,NeuroTeam Life and Science, Palermo, Italy
| | - Daniela Smirni
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy.,NeuroTeam Life and Science, Palermo, Italy
| | - Giuseppa Renata Mangano
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy.,NeuroTeam Life and Science, Palermo, Italy
| | - Giuseppe Zappalà
- Unità di Neurologia Cognitiva e Riabilitazione, ARNAS Garibaldi, Catania, Italy
| | - Andreina Giustiniani
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy.,NEUROFARBA Department, University of Firenze, Firenze, Italy
| | - Lisa Cipolotti
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Massimiliano Oliveri
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy.,NeuroTeam Life and Science, Palermo, Italy
| |
Collapse
|
37
|
Chen X, Dong GY, Wang LX. High-frequency transcranial magnetic stimulation protects APP/PS1 mice against Alzheimer's disease progress by reducing APOE and enhancing autophagy. Brain Behav 2020; 10:e01740. [PMID: 32592331 PMCID: PMC7428505 DOI: 10.1002/brb3.1740] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/16/2020] [Accepted: 06/07/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The repetitive transcranial magnetic stimulation (rTMS) has clinically wide application prospect of psychiatry and neuroscience, for its painless, noninvasive, and high efficiency. So far, rTMS has been used in the treatment of Alzheimer's disease (AD) but the underlying mechanism is not clear. METHODS AND RESULTS The APP/PS1 mice at 3-month-old were treated by 5 Hz high-frequency (HF) rTMS for two weeks. After rTMS treatment, the AD-like cognitive impairments of APP/PS1 mice were investigated subsequently, and molecular mechanisms underlying was further explored. The study showed that the 2-week rTMS at 5Hz frequency improved cognitive impairments and AD-like pathology (including a decrease in p-Tau, APP, Aβ, and PP2A expression) of APP/PS1 mice. Although BDNF-TrkB signaling was significantly enhanced, no differences of SYN, PSD95 and p-AKT were observed in the brain of APP/PS1 mice. On the contrary, the LC3Ⅱ/LC3Ⅰ ratio was elevated with a significant reduction of ApoE and p62 in mice. CONCLUSIONS rTMS exerts a potentially protective role in the prevention and treatment of AD by reducing ApoE expression and promoting autophagic flux, which provides a new insight into the mechanism of rTMS.
Collapse
Affiliation(s)
- Xia Chen
- Department of Neurology, Laboratory of Neurological Diseases, Reproductive Medicine Centre, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Guo-Ying Dong
- Department of Neurology, Laboratory of Neurological Diseases, Reproductive Medicine Centre, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Lin-Xiao Wang
- Department of Neurology, Laboratory of Neurological Diseases, Reproductive Medicine Centre, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
38
|
Du Y, Fu M, Huang Z, Tian X, Li J, Pang Y, Song W, Tian Wang Y, Dong Z. TRPV1 activation alleviates cognitive and synaptic plasticity impairments through inhibiting AMPAR endocytosis in APP23/PS45 mouse model of Alzheimer's disease. Aging Cell 2020; 19:e13113. [PMID: 32061032 PMCID: PMC7059138 DOI: 10.1111/acel.13113] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/25/2019] [Accepted: 01/25/2020] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of neurodegenerative diseases in the elderly. The accumulation of amyloid‐β (Aβ) peptides is one of the pathological hallmarks of AD and leads to the impairments of synaptic plasticity and cognitive function. The transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel, is involved in synaptic plasticity and memory. However, the role of TRPV1 in AD pathogenesis remains largely elusive. Here, we reported that the expression of TRPV1 was decreased in the brain of APP23/PS45 double transgenic AD model mice. Genetic upregulation of TRPV1 by adeno‐associated virus (AAV) inhibited the APP processing and Aβ deposition in AD model mice. Meanwhile, upregulation of TRPV1 ameliorated the deficits of hippocampal CA1 long‐term potentiation (LTP) and spatial learning and memory through inhibiting GluA2‐containing α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) endocytosis. Furthermore, pharmacological activation of TRPV1 by capsaicin (1 mg/kg, i.p.), an agonist of TRPV1, dramatically reversed the impairments of hippocampal CA1 LTP and spatial learning and memory in AD model mice. Taken together, these results indicate that TRPV1 activation effectively ameliorates cognitive and synaptic functions through inhibiting AMPAR endocytosis in AD model mice and could be a novel molecule for AD treatment.
Collapse
Affiliation(s)
- Yehong Du
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Min Fu
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Zhilin Huang
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Xin Tian
- Department of Neurology Chongqing Key Laboratory of Neurology First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Junjie Li
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Yayan Pang
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Weihong Song
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
- Department of Psychiatry Townsend Family Laboratories University of British Columbia Vancouver BC Canada
| | - Yu Tian Wang
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
- Brain Research Centre University of British Columbia Vancouver BCCanada
| | - Zhifang Dong
- Pediatric Research Institute Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
39
|
Chou YH, Ton That V, Sundman M. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging 2020; 86:1-10. [PMID: 31783330 PMCID: PMC6995441 DOI: 10.1016/j.neurobiolaging.2019.08.020] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation technique, has emerged as a promising treatment for mild cognitive impairment (MCI) and Alzheimer's disease (AD). Currently, however, the effectiveness of this therapy is unclear because of the low statistical power and heterogeneity of previous trials. The purpose of the meta-analysis was to systematically characterize the effectiveness of various combinations of rTMS parameters on different cognitive domains in patients with MCI and AD. Thirteen studies comprising 293 patients with MCI or AD were included in this analysis. Random-effects analysis revealed an overall medium-to-large effect size (0.77) favoring active rTMS over sham rTMS in the improvement of cognitive functions. Subgroup analyses revealed that (1) high-frequency rTMS over the left dorsolateral prefrontal cortex and low-frequency rTMS at the right dorsolateral prefrontal cortex significantly improved memory functions; (2) high-frequency rTMS targeting the right inferior frontal gyrus significantly enhanced executive performance; and (3) the effects of 5-30 consecutive rTMS sessions could last for 4-12 weeks. Potential mechanisms of rTMS effects on cognitive functions are discussed.
Collapse
Affiliation(s)
- Ying-Hui Chou
- Department of Psychology, Brain Imaging and TMS Laboratory, University of Arizona, Tucson, USA; Everlyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, USA.
| | - Viet Ton That
- Department of Psychology, Brain Imaging and TMS Laboratory, University of Arizona, Tucson, USA
| | - Mark Sundman
- Department of Psychology, Brain Imaging and TMS Laboratory, University of Arizona, Tucson, USA
| |
Collapse
|
40
|
Chou YH, Ton That V, Sundman M. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging 2020; 86:1-10. [PMID: 31783330 DOI: 10.1016/j.neurobiolaging.201908.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 05/26/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation technique, has emerged as a promising treatment for mild cognitive impairment (MCI) and Alzheimer's disease (AD). Currently, however, the effectiveness of this therapy is unclear because of the low statistical power and heterogeneity of previous trials. The purpose of the meta-analysis was to systematically characterize the effectiveness of various combinations of rTMS parameters on different cognitive domains in patients with MCI and AD. Thirteen studies comprising 293 patients with MCI or AD were included in this analysis. Random-effects analysis revealed an overall medium-to-large effect size (0.77) favoring active rTMS over sham rTMS in the improvement of cognitive functions. Subgroup analyses revealed that (1) high-frequency rTMS over the left dorsolateral prefrontal cortex and low-frequency rTMS at the right dorsolateral prefrontal cortex significantly improved memory functions; (2) high-frequency rTMS targeting the right inferior frontal gyrus significantly enhanced executive performance; and (3) the effects of 5-30 consecutive rTMS sessions could last for 4-12 weeks. Potential mechanisms of rTMS effects on cognitive functions are discussed.
Collapse
Affiliation(s)
- Ying-Hui Chou
- Department of Psychology, Brain Imaging and TMS Laboratory, University of Arizona, Tucson, USA; Everlyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, USA.
| | - Viet Ton That
- Department of Psychology, Brain Imaging and TMS Laboratory, University of Arizona, Tucson, USA
| | - Mark Sundman
- Department of Psychology, Brain Imaging and TMS Laboratory, University of Arizona, Tucson, USA
| |
Collapse
|
41
|
Weiler M, Stieger KC, Long JM, Rapp PR. Transcranial Magnetic Stimulation in Alzheimer's Disease: Are We Ready? eNeuro 2020; 7:ENEURO.0235-19.2019. [PMID: 31848209 PMCID: PMC6948923 DOI: 10.1523/eneuro.0235-19.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is among a growing family of noninvasive brain stimulation techniques being developed to treat multiple neurocognitive disorders, including Alzheimer's disease (AD). Although small clinical trials in AD have reported positive effects on cognitive outcome measures, significant knowledge gaps remain, and little attention has been directed at examining the potential influence of TMS on AD pathogenesis. Our review briefly outlines some of the proposed neurobiological mechanisms of TMS benefits in AD, with particular emphasis on the modulatory effects on excitatory/inhibitory balance. On the basis of converging evidence from multiple fields, we caution that TMS therapeutic protocols established in young adults may have unexpected detrimental effects in older individuals or in the brain compromised by AD pathology. Our review surveys clinical studies of TMS in AD alongside basic research as a guide for moving this important area of work forward toward effective treatment development.
Collapse
Affiliation(s)
- Marina Weiler
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, Maryland 21224
| | - Kevin C Stieger
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, Maryland 21224
| | - Jeffrey M Long
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, Maryland 21224
| | - Peter R Rapp
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, Maryland 21224
| |
Collapse
|
42
|
Du Y, Du Y, Zhang Y, Huang Z, Fu M, Li J, Pang Y, Lei P, Wang YT, Song W, He G, Dong Z. MKP-1 reduces Aβ generation and alleviates cognitive impairments in Alzheimer's disease models. Signal Transduct Target Ther 2019; 4:58. [PMID: 31840000 PMCID: PMC6895219 DOI: 10.1038/s41392-019-0091-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is an essential negative regulator of MAPKs by dephosphorylating MAPKs at both tyrosine and threonine residues. Dysregulation of the MAPK signaling pathway has been associated with Alzheimer's disease (AD). However, the role of MKP-1 in AD pathogenesis remains elusive. Here, we report that MKP-1 levels were decreased in the brain tissues of patients with AD and an AD mouse model. The reduction in MKP-1 gene expression appeared to be a result of transcriptional inhibition via transcription factor specificity protein 1 (Sp1) cis-acting binding elements in the MKP-1 gene promoter. Amyloid-β (Aβ)-induced Sp1 activation decreased MKP-1 expression. However, upregulation of MKP-1 inhibited the expression of both Aβ precursor protein (APP) and β-site APP-cleaving enzyme 1 by inactivating the extracellular signal-regulated kinase 1/2 (ERK)/MAPK signaling pathway. Furthermore, upregulation of MKP-1 reduced Aβ production and plaque formation and improved hippocampal long-term potentiation (LTP) and cognitive deficits in APP/PS1 transgenic mice. Our results demonstrate that MKP-1 impairment facilitates the pathogenesis of AD, whereas upregulation of MKP-1 plays a neuroprotective role to reduce Alzheimer-related phenotypes. Thus, this study suggests that MKP-1 is a novel molecule for AD treatment.
Collapse
Affiliation(s)
- Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Yexiang Du
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016 PR China
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Zhilin Huang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Min Fu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Junjie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Yayan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Peng Lei
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan China
| | - Yu Tian Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
- Brain Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5 Canada
| | - Weihong Song
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Guiqiong He
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016 PR China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| |
Collapse
|
43
|
Ma Q, Geng Y, Wang HL, Han B, Wang YY, Li XL, Wang L, Wang MW. High Frequency Repetitive Transcranial Magnetic Stimulation Alleviates Cognitive Impairment and Modulates Hippocampal Synaptic Structural Plasticity in Aged Mice. Front Aging Neurosci 2019; 11:235. [PMID: 31619982 PMCID: PMC6759649 DOI: 10.3389/fnagi.2019.00235] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/14/2019] [Indexed: 01/11/2023] Open
Abstract
Normal aging is accompanied by hippocampus-dependent cognitive impairment, which is a risk factor of Alzheimer’s disease. This study aims to investigate the effect of high frequency-repetitive transcranial magnetic stimulation (HF-rTMS) on hippocampus-dependent learning and memory in aged mice and explore its underlying mechanisms. Forty-five male Kunming mice (15 months old) were randomly divided into three groups: aged sham, 5 Hz rTMS, and 25 Hz rTMS. Two sessions of 5 Hz or 25 Hz rTMS comprising 1,000 pulses in 10 trains were delivered once a day for 14 consecutive days. The aged sham group was treated by the reverse side of the coil. In the adult sham group, 15 male Kunming mice (3 months old) were treated the same way as the aged sham group. A Morris water maze (MWM) was conducted following the stimulation, and synaptic ultrastructure was observed through a transmission electron microscope. HF-rTMS improved spatial learning and memory impairment in the aged mice, and 5 Hz was more significant than 25 Hz. Synaptic plasticity-associated gene profiles were modified by HF-rTMS, especially neurotrophin signaling pathways and cyclic adenosine monophosphate response element binding protein (CREB) cofactors. Compared to the aged sham group, synaptic plasticity-associated proteins, i.e., synaptophysin (SYN) and postsynaptic density (PSD)-95 were increased; brain-derived neurotrophic factor (BDNF) and phosphorylated CREB (pCREB) significantly increased after the 5 Hz HF-rTMS treatment. Collectively, our results suggest that HF-rTMS ameliorated cognitive deficits in naturally aged mice. The 5 Hz rTMS treatment significantly enhanced synaptic structural plasticity and activated the BDNF/CREB pathway in the hippocampus.
Collapse
Affiliation(s)
- Qinying Ma
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| | - Yuan Geng
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| | - Hua-Long Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| | - Bing Han
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| | - Yan-Yong Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| | - Xiao-Li Li
- Department of Neurology, the First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Lin Wang
- Emergency Department, CNPC Central Hospital, Langfang, China
| | - Ming-Wei Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| |
Collapse
|
44
|
rTMS pre-treatment effectively protects against cognitive and synaptic plasticity impairments induced by simulated microgravity in mice. Behav Brain Res 2019; 359:639-647. [DOI: 10.1016/j.bbr.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022]
|