1
|
Abdo Qaid EY, Abdullah Z, Zakaria R, Long I. Minocycline attenuates TLR-4, NF-kB, TNF-α and COX-2 protein expression after lipopolysaccharide-induced neuroinflammation in the rat medial prefrontal cortex (mPFC). J Mol Histol 2025; 56:138. [PMID: 40274650 DOI: 10.1007/s10735-025-10419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/05/2025] [Indexed: 04/26/2025]
Abstract
Minocycline has been shown to ameliorate neuroinflammation that was encountered in many neurodegenerative diseases. This study aims to investigate the expression of inflammatory mediators in the rat medial prefrontal cortex (mPFC) after minocycline treatment in a lipopolysaccharide (LPS)- induced neuroinflammation rat model. Adult male Sprague Dawley (SD) rats (N = 50) were divided into 5 groups: (1) control, (2) LPS (5 mg/kg), (3) LPS + minocycline (25 mg/kg), (4) LPS + minocycline (50 mg/kg) and (5) LPS + memantine (10 mg/kg). Intraperitoneal minocycline and memantine were given daily for 14 days, while LPS injection was given once on the 5th day. Western blot and immunohistochemistry were used to assess density and expression of toll-like receptor-4 (TLR-4), nuclear factor kappa-B (NF-kB), tumor necrosis factor (TNF)-α and cyclooxygenase (COX)-2 in the medial prefrontal cortex (mPFC) of rats. Findings displayed that minocycline significantly decreased expression and density of TLR-4, NF-kB, TNF-α and COX-2 proteins that were comparable to memantine in mPFC of SD rat injected with single intraperitoneal LPS. Interestingly, the anti-inflammatory effects of minocycline 50 mg/kg were significantly more than minocycline 25 mg/kg. This study suggested that minocycline can modulate LPS-induced neuroinflammation in dose-dependent manner in the mPFC area. Thus, it is suggested that minocycline can be used as potential preventive-therapeutic drug for neuroinflammatory diseases such as depression and anxiety.
Collapse
Affiliation(s)
- Entesar Yaseen Abdo Qaid
- Department of Physiology, Faculty of Medicine, AIMST University, Bedong, Semeling, Kedah, Malaysia
| | - Zuraidah Abdullah
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia
| | - Idris Long
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
2
|
Chen Z, Liu L, Guo X, Zhang Y, Zhong M, Xu Y, Peng T, Peng T, Zhang Y, Hou Q, Fan D, Gao T, He L, Tang H, Hu H, Xu K. Upregulating mTOR/S6 K Pathway by CASTOR1 Promotes Astrocyte Proliferation and Myelination in Gpam -/--induced mouse model of cerebral palsy. Mol Neurobiol 2025:10.1007/s12035-025-04901-w. [PMID: 40234290 DOI: 10.1007/s12035-025-04901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
GPAM, a key enzyme for lipid synthesis, is predominantly expressed in astrocytes (ASTs), where it facilitates lipid supply for myelin formation. Our previous studies identified GPAM as a novel causative gene for cerebral palsy (CP) and led to the development of a CP mouse model with GPAM deficiency (Gpam-/-). The model closely recapitulated the clinical phenotype of children with CP, due to the restricted proliferation of ASTs in the brain, reduced the amount of lipid, thinner brain white matter, and myelin dysplasia. The mammalian target of rapamycin (mTOR) pathway plays an important role in cell proliferation and lipid synthesis. Cytosolic arginine sensor (CASTOR1) interacts with GATOR2 to regulate mTOR complex 1 (mTORC1). Targeted degradation of CASTOR1 can activate the mTOR pathway. However, it remains unclear the involvement of mTOR pathway in neurological diseases such as CP. In this study, we demonstrated that the mTOR pathway was inhibited in Gpam-/- mice. Notably, CASTOR1 could regulate the activity of mTOR/S6K pathway, functioning as a negative upstream regulator. Furthermore, inhibition of CASTOR1 upregulated mTOR/S6K signaling, promoting astrocyte proliferation and myelination, which in turn enhanced motor function in the Gpam-/--induced CP mouse model. Collectively, these findings reveal the role of astrocytic mTOR in the pathogenesis of CP mice, broaden the therapeutic strategies, and provide a promising candidate target for CP treatment.
Collapse
Affiliation(s)
- Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaolin Guo
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Yage Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mengru Zhong
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yi Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, 510500, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuan Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Qingfen Hou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, 510500, China
| | - Danxia Fan
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Ting Gao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
3
|
Jasim MH, Saadoon Abbood R, Sanghvi G, Roopashree R, Uthirapathy S, Kashyap A, Sabarivani A, Ray S, Mustafa YF, Yasin HA. Flavonoids in the regulation of microglial-mediated neuroinflammation; focus on fisetin, rutin, and quercetin. Exp Cell Res 2025; 447:114537. [PMID: 40147710 DOI: 10.1016/j.yexcr.2025.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Neuroinflammation is a critical mechanism in central nervous system (CNS) inflammatory disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), traumatic brain injury (TBI), encephalitis, spinal cord injury (SCI), and cerebral stroke. Neuroinflammation is characterized by increased blood vessel permeability, leukocyte infiltration, glial cell activation, and elevated production of inflammatory mediators, such as chemokines and cytokines. Microglia act as the resident macrophages of the central nervous system, serving as the principal defense mechanism in brain tissue. After CNS injury, microglia modify their morphology and downregulate genes that promote homeostatic functions. Despite comprehensive transcriptome analyses revealing specific gene modifications in "pathological" microglia, microglia's precise protective or harmful functions in neurological disorders remain insufficiently comprehended. Accumulating data suggests that the polarization of microglia into the M1 proinflammatory phenotype or the M2 antiinflammatory phenotype may serve as a sensible therapeutic strategy for neuroinflammation. Flavonoids, including rutin, fisetin, and quercetin, function as crucial chemical reservoirs with unique structures and diverse actions and are extensively used to modulate microglial polarization in treating neuroinflammation. This paper highlights the detrimental effects of neuroinflammation seen in neurological disorders such as stroke. Furthermore, we investigate their therapeutic benefits in alleviating neuroinflammation via the modulation of macrophage polarization.
Collapse
Affiliation(s)
- Mohannad Hamid Jasim
- Biology Department, College of Education, University of Fallujah, Fallujah, Iraq.
| | - Rosull Saadoon Abbood
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - A Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq.
| |
Collapse
|
4
|
Huang Z, Du X, Li F, Lan Z, Guo L, Pan L. Gut microbiota and blood metabolites: unveiling their roles in hippocampal volume changes through Mendelian randomization and mediation analysis. Metab Brain Dis 2025; 40:178. [PMID: 40220127 DOI: 10.1007/s11011-025-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Changes in hippocampal volume (HV) are linked to various neuropsychiatric disorders. Observational studies suggest associations of gut microbiota (GM) and blood metabolites (BM) with changes in HV; however, their causal relationships remain unclear. We aimed to use Mendelian randomization (MR) to investigate the causal associations of GM and BM with changes in HV and to explore the potential mediating role of BM. Using two-sample MR (TSMR) analysis, we examined 412 GM traits and 1,400 BM traits with a focus on their causal relationships with age-independent/dependent longitudinal changes in HV, primarily using the inverse variance weighted method. Furthermore, we explored the mediating role of BM through a two-step MR design. We identified 44 GM traits and 175 BM traits having nominally significant causal associations with age-independent/dependent longitudinal changes in HV. In addition, the glycine-to-pyridoxal ratio (mediation proportion: 7.38%) and the phosphate-to-citrate ratio (mediation proportion: 12.55%) mediated the effect of the pathway of L-arginine degradation II on the reduction of age-independent longitudinal changes in HV. Our study reveals the causal effects of GM and BM on longitudinal changes in HV and identifies BM traits with mediating roles. These findings offer valuable insights for the prevention and treatment of the related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zijin Huang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xueke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Fangzhou Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhixuan Lan
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, People's Republic of China
| | - Liang Guo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
5
|
Kulkarni R, Kumari S, Dhapola R, Sharma P, Singh SK, Medhi B, HariKrishnaReddy D. Association Between the Gut Microbiota and Alzheimer's Disease: An Update on Signaling Pathways and Translational Therapeutics. Mol Neurobiol 2025; 62:4499-4519. [PMID: 39460901 DOI: 10.1007/s12035-024-04545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Alzheimer's disease (AD) is a cognitive disease with high morbidity and mortality. In AD patients, the diversity of the gut microbiota is altered, which influences pathology through the gut-brain axis. Probiotic therapy alleviates pathological and psychological consequences by restoring the diversity of the gut microbial flora. This study addresses the role of altered gut microbiota in the progression of neuroinflammation, which is a major hallmark of AD. This process begins with the activation of glial cells, leading to the release of proinflammatory cytokines and the modulation of cholinergic anti-inflammatory pathways. Short-chain fatty acids, which are bacterial metabolites, provide neuroprotective effects and maintain blood‒brain barrier integrity. Furthermore, the gut microbiota stimulates oxidative stress and mitochondrial dysfunction, which promote AD progression. The signaling pathways involved in gut dysbiosis-mediated neuroinflammation-mediated promotion of AD include cGAS-STING, C/EBPβ/AEP, RAGE, TLR4 Myd88, and the NLRP3 inflammasome. Preclinical studies have shown that natural extracts such as Ganmaidazao extract, isoorentin, camelia oil, Sparassis crispa-1, and xanthocerasides improve gut health and can delay the worsening of AD. Clinical studies using probiotics such as Bifidobacterium spp., yeast beta-glucan, and drugs such as sodium oligomannate and rifaximine have shown improvements in gut health, resulting in the amelioration of AD symptoms. This study incorporates the most current research on the pathophysiology of AD involving the gut microbiota and highlights the knowledge gaps that need to be filled to develop potent therapeutics against AD.
Collapse
Affiliation(s)
- Rutweek Kulkarni
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sunil K Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
6
|
Honda K, Awazu A. Potential multiple disease progression pathways in female patients with Alzheimer's disease inferred from transcriptome and epigenome data of the dorsolateral prefrontal cortex. PLoS One 2025; 20:e0313733. [PMID: 40100818 PMCID: PMC11918443 DOI: 10.1371/journal.pone.0313733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025] Open
Abstract
Late-onset Alzheimer's disease (AD) is a typical type of dementia for which therapeutic strategies have not yet been established. The database of the Rush Alzheimer's Disease study by the ENCODE consortium contains transcriptome and various epigenome data. Although the Rush AD database may contain a satisfactory amount of data for women, the amount of data for men remains insufficient. Here, based on an analysis of publicly available data from female patients, this study found that AD pathology appears to be nonuniform; AD patients were divided into several groups with differential gene expression patterns, including those related to cognitive function. First, cluster analysis was performed on individuals diagnosed with "No Cognitive Impairment (NCI)," "Mild Cognitive Impairment (MCI)," and "Alzheimer's Disease (AD)" stages in clinical trials using gene expression, and multiple substages were identified across AD progression. The epigenome data, in particular genome-wide H3k4me3 distribution data, also supported the existence of multiple AD substages. However, APOE gene polymorphisms of individuals seemed to not correlate with disease stage. An inference of adjacency networks among substages, evaluated via partition-based graph abstraction using the gene expression profiles of individuals, suggested the possibility of multiple typical disease progression pathways from NCI to different AD substages through various MCI substages. These findings could refine biomarker discovery or inform personalized therapeutic approaches.
Collapse
Affiliation(s)
- Kousei Honda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
7
|
Singh Solorzano C, Festari C, Mirabelli P, Mombelli E, Coppola L, Luongo D, Naviglio D, Soricelli A, Quattrini G, Salvatore M, Pievani M, Cattaneo A, Frisoni GB, Marizzoni M. Association between cognitive functioning and microbiota-gut-brain axis mediators in a memory clinic population. Front Cell Neurosci 2025; 19:1550333. [PMID: 40144018 PMCID: PMC11936893 DOI: 10.3389/fncel.2025.1550333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
IntroductionA growing body of evidence recognises the role of signaling molecule of the microbiota-gut-brain axis (MGBA) in cognitive impairment (CI), but data on the link with alterations in specific cognitive domains are limited. We compared the functioning in several cognitive domains (i.e., memory, visuo-constructional, executive, and language) among cognitively unimpaired (CU) subjects, patients with CI due to Alzheimer’s disease (CI-AD) and not due to AD (CI-NAD). Then, we investigated the association of these cognitive domains with the gut microbiota (GM), MGBA mediators, and neurodegeneration-related markers.Materials and methodsThe study included 34 CI-AD, 38 CI-NAD, and 13 CU. Memory, visuo-constructional, executive, and language domains were assessed using composite measures. Faecal GM composition was inferred using 16S rRNA gene sequencing. MGBA mediators included the blood quantification of bacterial products (lipolysaccharide, LPS), cell adhesion molecules indicative of endothelial damage, vascular changes or overexpressed in response to infections, and pro- and anti-inflammatory cytokines. Neurodegeneration-related markers included plasma phosphorylated tau (p-tau181), neurofilament light chain (NfL), and glial fibrillary protein (GFAP).ResultsThe CI-NAD and CI-AD groups had significantly lower scores than the CU group for all cognitive domains (p < 0.043). Associations of MGBA modulators with cognitive functioning included pro-inflammatory cytokines, markers of endothelial dysfunction or overexpressed in response to infection in both groups of patients (|ρ| > 0.33, ps < 0.042). In the CU and CI-AD pooled group, lower cognitive functioning was specifically associated with higher abundance of Dialister and Clostridia_UCG-014, higher levels of LPS and with all neurodegeneration markers (|ρ| > 0.32, p < 0.048 for all). In the CU and CI-NAD pooled group, lower cognitive performance was associated with lower abundance of Acetonema, higher abundance of Bifidobacterium, [Eubacterium]_coprostanoligenes_group and Collinsella, and higher levels of vascular changes (|ρ| > 0.30, p < 0.049).DiscussionThese results support the hypothesis that gut dysbiosis and MGBA mediators may have distinct effects on cognitive functioning and different mechanisms of action depending on the disease.
Collapse
Affiliation(s)
- Claudio Singh Solorzano
- Laboratory of Neuroimaging and Alzheimer’s Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristina Festari
- Laboratory of Neuroimaging and Alzheimer’s Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Peppino Mirabelli
- AORN Santobono-Pausilipon, UOS Laboratori di Ricerca e Biobanca, Naples, Italy
| | - Elisa Mombelli
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Delia Luongo
- Istituto Di Biostrutture E Bioimmagini (I.B.B.) - CNR, Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Andrea Soricelli
- IRCCS SYNLAB SDN, Naples, Italy
- Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | - Giulia Quattrini
- Laboratory of Neuroimaging and Alzheimer’s Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Michela Pievani
- Laboratory of Neuroimaging and Alzheimer’s Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giovanni B. Frisoni
- Memory Centre, Division of Geriatrics and Rehabilitation, University Hospitals of Geneva, Geneva, Switzerland
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
8
|
Puthia M, Marzinek JK, Vesela K, Larsson A, Schmidtchen A, Bond PJ, Petrlova J. Apolipoprotein E3 and E4 isoforms exhibit differing effects in countering endotoxins. J Biol Chem 2025; 301:108236. [PMID: 39880097 PMCID: PMC11879696 DOI: 10.1016/j.jbc.2025.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Apolipoprotein E (APOE) is distributed across various human tissues and plays a crucial role in lipid metabolism. Recent investigations have uncovered an additional facet of APOE's functionality, revealing its role in host defense against bacterial infections. To assess the antibacterial attributes of APOE3 and APOE4, we conducted antibacterial assays using Pseudomonas aeruginosa and Escherichia coli. Exploring the interaction between APOE isoforms and lipopolysaccharides (LPSs) from E. coli, we conducted several experiments, including gel shift assays, CD, and fluorescence spectroscopy. Furthermore, the interaction between APOE isoforms and LPS was further substantiated through atomic resolution molecular dynamics simulations. The presence of LPS induced the aggregation of APOE isoforms, a phenomenon confirmed through specific amyloid staining, as well as fluorescence and electron microscopy. The scavenging effects of APOE3/4 isoforms were studied through both in vitro and in vivo experiments. In summary, our study established that APOE isoforms exhibit binding to LPS, with a more pronounced affinity and complex formation observed for APOE4 compared with APOE3. Furthermore, our data suggest that APOE isoforms neutralize LPS through aggregation, leading to a reduction of local inflammation in experimental animal models. In addition, both isoforms demonstrated inhibitory effects on the growth of P. aeruginosa and E. coli. These findings provide new insights into the multifunctionality of APOE in the human body, particularly its role in innate immunity during bacterial infections.
Collapse
Affiliation(s)
- Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Katerina Vesela
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Axel Larsson
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden; Dermatology, Skåne University Hospital, Lund, Sweden
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Biological Sciences National University of Singapore, Singapore, Singapore
| | - Jitka Petrlova
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden.
| |
Collapse
|
9
|
Tao W, Zhang Y, Wang B, Nie S, Fang L, Xiao J, Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J Adv Res 2025; 69:261-278. [PMID: 38579985 PMCID: PMC11954836 DOI: 10.1016/j.jare.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUD Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.
Collapse
Affiliation(s)
- Wei Tao
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Grahl MVC, Hohl KS, Smaniotto T, Carlini CR. Microbial Trojan Horses: Virulence Factors as Key Players in Neurodegenerative Diseases. Molecules 2025; 30:687. [PMID: 39942791 PMCID: PMC11820544 DOI: 10.3390/molecules30030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in population demographics indicate that the elderly population will reach 2.1 billion worldwide by 2050. In parallel, there will be an increase in neurodegenerative diseases such as Alzheimer's and Parkinson's. This review explores dysbiosis occurring in these pathologies and how virulence factors contribute to the worsening or development of clinical conditions, and it summarizes existing and potential ways to combat microorganisms related to these diseases. Microbiota imbalances can contribute to the progression of neurodegenerative diseases by increasing intestinal permeability, exchanging information through innervation, and even acting as a Trojan horse affecting immune cells. The microorganisms of the microbiota produce virulence factors to protect themselves from host defenses, many of which contribute to neurodegenerative diseases. These virulence factors are expressed according to the genetic composition of each microorganism, leading to a wide range of factors to be considered. Among the main virulence factors are LPS, urease, curli proteins, amyloidogenic proteins, VacA, and CagA. These factors can also be packed into bacterial outer membrane vesicles, which transport proteins, RNA, and DNA, enabling distal communication that impacts various diseases, including Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Matheus V. C. Grahl
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | - Kelvin Siqueira Hohl
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Thiago Smaniotto
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Célia R. Carlini
- Center of Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Graduate Program of Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
11
|
Jiang X, Zheng Y, Sun H, Dang Y, Yin M, Xiao M, Wu T. Fecal Microbiota Transplantation Improves Cognitive Function of a Mouse Model of Alzheimer's Disease. CNS Neurosci Ther 2025; 31:e70259. [PMID: 39957504 PMCID: PMC11831070 DOI: 10.1111/cns.70259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND A growing body of evidence suggests a link between the gut microbiota and Alzheimer's disease (AD), although the underlying mechanisms remain elusive. This study aimed to investigate the impact of fecal microbiota transplantation (FMT) on cognitive function in a mouse model of AD. METHODS Four-month-old 5 × FAD (familial Alzheimer's disease) mice underwent antibiotic treatment to deplete their native gut microbiota. Subsequently, they received FMT either weekly or every other day. After 8 weeks, cognitive function and β-amyloid (Aβ) load were assessed through behavioral testing and pathological analysis, respectively. The composition of the gut microbiota was analyzed using 16S rRNA sequencing. RESULTS Initial weekly FMT failed to alleviate memory deficits or reduce brain Aβ pathology in 5 × FAD mice. In contrast, FMT administered every other day effectively restored gut dysbiosis in 5 × FAD mice and decreased Aβ pathology and lipopolysaccharide levels in the colon and hippocampus. Mechanistically, FMT reduced the expression of amyloid β precursor protein, β-site APP cleaving enzyme 1, and presenilin-1, potentially by inhibiting the Toll-like receptor 4/inhibitor of kappa B kinase β/nuclear factor kappa-B signaling pathway. However, the cognitive benefits of FMT on 5 × FAD mice diminished over time. CONCLUSION These findings demonstrate the dose- and time-dependent efficacy of FMT in mitigating AD-like pathology, underscoring the potential of targeting the gut microbiota for AD treatment.
Collapse
Affiliation(s)
- Xueqin Jiang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Yu Zheng
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Huaiqing Sun
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Yini Dang
- Department of GastroenterologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mengmei Yin
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Ming Xiao
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
- Brain Institute, Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Ting Wu
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| |
Collapse
|
12
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
13
|
Ensandoust T, Khakpour-Taleghani B, Jafari A, Rostampour M, Rohampour K, Ch MH. Effect of simultaneous application of adenosine A1 receptor agonist and A2A receptor antagonist on memory, inflammatory factors, and PSD-95 in lipopolysaccharide-induced memory impairment. Behav Brain Res 2025; 476:115210. [PMID: 39159786 DOI: 10.1016/j.bbr.2024.115210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The potential role of adenosine, a natural neuroprotective agent, and its receptors in the pathogenesis of Alzheimer's disease has been proposed. The present study aims to examine the effect of administering both an A1 receptor agonist and an A2A adenosine receptor antagonist simultaneously on memory, inflammatory factors, and PSD-95 in an LPS-induced Alzheimer's disease model in rats. Fifty-six male Wistar rats were randomly divided into seven groups: Saline, LPS, Saline + Vehicle, LPS + Vehicle, LPS + SCH58261 (A2A receptor antagonist), LPS + CPA (A1 receptor agonist), LPS + SCH58261+CPA. LPS (3 mg/kg/ip) was used to cause memory impairment. Treatment was performed by intraventricular injection of CPA at a dose of 700 μg and SCH-58261 at 40 μg for ten days. Passive avoidance and Y-maze tests were performed to examine animals' memories. IL-10, TNF-α, and PSD-95 levels were measured in the brain using ELISA and western blot, respectively. Compared to the groups receiving each medication separately, the simultaneous administration of CPA and SCH58261 improved memory (P<0.05). Additionally, compared to the single medication groups, there was a significant increase in IL-10, PSD-95, and a significant decrease in TNF-α in the brain tissue (P<0.05). These findings suggest that the activation of A1 receptors along with A2A receptor inhibition could be a potential therapeutic strategy for Alzheimer's disease. These findings suggest that A1 receptor activation combined with A2A receptor inhibition may be a promising therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Tahereh Ensandoust
- Department of Physiology, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | | | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Science, Rasht, Iran.
| | - Mohammad Rostampour
- Department of Physiology, School of Medicine, Guilan University of Medical Science, Rasht, Iran; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kambiz Rohampour
- Department of Physiology, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Mojtaba Hedayati Ch
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
14
|
Wang X, Xia H, Li T, Zuo Q, Wang Z, Yan K, Xu Z, Xue W, Sun G, Liu Z, Zhang Y. Minimalist Adjuvant-Free Nano-Vaccine Based on Antigen Self-Assembled Amyloid-Like Fibrils to Induce Potent Immune Response. Adv Healthc Mater 2025; 14:e2401625. [PMID: 39491532 DOI: 10.1002/adhm.202401625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/12/2024] [Indexed: 11/05/2024]
Abstract
The development of cancer vaccines is at the forefront of cancer immunotherapy. Most existing strategies to induce an efficient anti-tumor immune response rely on molecular adjuvants and the incorporation of complex synthetic vectors into vaccine formulations. In contrast, this study introduces a one-step engineering technique to assemble the model antigen, Ovalbumin (OVA), into amyloid aggregates, leveraging biomimetic folding and aggregation to create non-fibrillar OVA globular aggregates and OVA amyloid-like fibrils as single-component, adjuvant-free vaccines. Notably, the OVA amyloid-like fibrils induced stronger immune responses compared to the native form, as evidenced by robust humoral immune reactions and the establishment of immune memory. These enhanced responses can be attributed to the self-adjuvant effect of the unique assembled structure, which preserves antigenic epitopes, improves antigen stability, facilitates antigen internalization, prolongs retention at the injection site, enhances antigen trafficking to the lymphoid organs, and promotes increased secretion of antibodies and cytokines. Furthermore, the efficacy of the vaccine was validated in a high OVA-expressing tumor model, demonstrating the potential of OVA amyloid-like fibrils as an effective vaccine for cancer immunoprevention. This minimalist self-adjuvant vaccine strategy holds promising implications for cancer immunotherapy and can inform the design of other protein antigen-based vaccines.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Haiyang Xia
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Tiantian Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Qinhua Zuo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Kangjian Yan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Zejun Xu
- College of Pharmacy, Jinan University, Guangzhou, 510630, China
- Bai Yun Shan Pharmaceutical General Factory, Guangzhou Bai Yun Shan Pharmaceutical Holdings Co.Ltd., Guangzhou, 510515, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| |
Collapse
|
15
|
Romo EZ, Hong BV, Agus JK, Jin Y, Kang JW, Zivkovic AM. A low-dose prebiotic fiber supplement reduces lipopolysaccharide-binding protein concentrations in a subgroup of young, healthy adults consuming low-fiber diets. Nutr Res 2025; 133:138-147. [PMID: 39733508 DOI: 10.1016/j.nutres.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024]
Abstract
Although the beneficial effects of fiber supplementation on overall health and the gut microbiome are well-known, it is not clear whether fiber supplementation can also alter the concentrations of lipopolysaccharide-binding protein (LBP), a marker of intestinal permeability. A secondary analysis of a previously conducted study was performed. In the randomized-order, placebo-controlled, double-blinded, cross-over study 20 healthy, young participants consuming a low-fiber diet at baseline were administered a daily dose of 12 g of prebiotic fiber compared with a placebo over a period of 4 weeks with a 4-week washout between arms. In this secondary analysis, we hypothesized that the fiber supplement would reduce LBP concentration. We further hypothesized that lecithin cholesterol acyltransferase activity, a measure of high-density lipoprotein functional capacity, would be altered. Fiber supplementation did not significantly alter LBP concentration or lecithin cholesterol acyltransferase activity in the overall cohort. However, in a subgroup of individuals with elevated baseline LBP concentrations, fiber supplementation significantly reduced LBP from 9.27 ± 3.52 to 7.02 ± 2.32 µg/mL (P = .003). Exploratory analyses found positive correlations between microbial genes involved in lipopolysaccharide synthesis and conversely negative correlations with genes involved in antibiotic synthesis and LBP. Positive correlations between LBP and multiple sulfated molecules including sulfated bile acids and perfluorooctanesulfonate, and ibuprofen metabolites were also found. These findings highlight multiple environmental and lifestyle factors such as exposure to industrial chemicals and medication intake, in addition to diet, which may influence the association between the gut microbiome and gut barrier function.
Collapse
Affiliation(s)
- Eduardo Z Romo
- Department of Nutrition, University of California, Davis, CA, USA
| | - Brian V Hong
- Department of Nutrition, University of California, Davis, CA, USA
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, CA, USA
| | - Yanshan Jin
- Department of Nutrition, University of California, Davis, CA, USA
| | - Jea Woo Kang
- Department of Nutrition, University of California, Davis, CA, USA
| | | |
Collapse
|
16
|
Medina-Vera D, López-Gambero AJ, Verheul-Campos J, Navarro JA, Morelli L, Galeano P, Suárez J, Sanjuan C, Pacheco-Sánchez B, Rivera P, Pavon-Morón FJ, Rosell-Valle C, Fonseca FRD. Therapeutic Efficacy of the Inositol D-Pinitol as a Multi-Faceted Disease Modifier in the 5×FAD Humanized Mouse Model of Alzheimer's Amyloidosis. Nutrients 2024; 16:4186. [PMID: 39683582 DOI: 10.3390/nu16234186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Alzheimer's disease (AD), a leading cause of dementia, lacks effective long-term treatments. Current therapies offer temporary relief or fail to halt its progression and are often inaccessible due to cost. AD involves multiple pathological processes, including amyloid beta (Aβ) deposition, insulin resistance, tau protein hyperphosphorylation, and systemic inflammation accelerated by gut microbiota dysbiosis originating from a leaky gut. Given this context, exploring alternative therapeutic interventions capable of addressing the multifaceted components of AD etiology is essential. METHODS This study suggests D-Pinitol (DPIN) as a potential treatment modifier for AD. DPIN, derived from carob pods, demonstrates insulin-sensitizing, tau hyperphosphorylation inhibition, and antioxidant properties. To test this hypothesis, we studied whether chronic oral administration of DPIN (200 mg/kg/day) could reverse the AD-like disease progression in the 5×FAD mice. RESULTS Results showed that treatment of 5×FAD mice with DPIN improved cognition, reduced hippocampal Aβ and hyperphosphorylated tau levels, increased insulin-degrading enzyme (IDE) expression, enhanced pro-cognitive hormone circulation (such as ghrelin and leptin), and normalized the PI3K/Akt insulin pathway. This enhancement may be mediated through the modulation of cyclin-dependent kinase 5 (CDK5). DPIN also protected the gut barrier and microbiota, reducing the pro-inflammatory impact of the leaky gut observed in 5×FAD mice. DPIN reduced bacterial lipopolysaccharide (LPS) and LPS-associated inflammation, as well as restored intestinal proteins such as Claudin-3. This effect was associated with a modulation of gut microbiota towards a more balanced bacterial composition. CONCLUSIONS These findings underscore DPIN's promise in mitigating cognitive decline in the early AD stages, positioning it as a potential disease modifier.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Unidad de Gestión Clínica del Corazón-CIBERCV (Enfermedades Cardiovasculares), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Antonio J López-Gambero
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- INSERM, Neurocentre Magendie, University of Bordeaux, 33000 Bordeaux, France
| | - Julia Verheul-Campos
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Juan A Navarro
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | - Pablo Galeano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | - Juan Suárez
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], 29001 Málaga, Spain
| | - Carlos Sanjuan
- Euronutra S.L. Calle Johannes Kepler, 3, 29590 Málaga, Spain
| | - Beatriz Pacheco-Sánchez
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Patricia Rivera
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Francisco J Pavon-Morón
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Unidad de Gestión Clínica del Corazón-CIBERCV (Enfermedades Cardiovasculares), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Cristina Rosell-Valle
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], 29001 Málaga, Spain
| |
Collapse
|
17
|
Kang H, Huang D, Zhang W, Wang J, Liu Z, Wang Z, Jiang G, Gao A. Pulmonary Flora-Derived Lipopolysaccharide Mediates Lung-Brain Axis through Activating Microglia Involved in Polystyrene Microplastic-Induced Cognitive Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404966. [PMID: 39499619 DOI: 10.1002/advs.202404966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/13/2024] [Indexed: 11/07/2024]
Abstract
Microplastics (MPs) have been detected in the atmospheric and the human respiratory system, indicating that the respiratory tract is a significant exposure route for MPs. However, the effect of inhaled MPs on cognitive function has not been adequately studied. Here, a C57BL/6 J mouse model of inhalation exposure to polystyrene MPs (PS-MPs, 5 µm, 60 d) is established by intratracheal instillation. Interestingly, in vivo fluorescence imaging and transmission electron microscopy reveal that PS-MPs do not accumulate in the brain. However, behavioral experiments shows that cognitive function of mice is impaired, accompanied by histopathological damage of lung and brain tissue. Transcriptomic studies in hippocampal and lung tissue have demonstrated key neuroplasticity factors as well as cognitive deficits linked to lung injury, respectively. Mechanistically, the lung-brain axis plays a central role in PS-MPs-induced neurological damage, as demonstrated by pulmonary flora transplantation, lipopolysaccharide (LPS) intervention, and cell co-culture experiments. Together, inhalation of PS-MPs reduces cognitive function by altering the composition of pulmonary flora to produce more LPS and promoting M1 polarization of microglia, which provides new insights into the mechanism of nerve damage caused by inhaled MPs and also sheds new light on the prevention of neurotoxicity of environmental pollutants.
Collapse
Affiliation(s)
- Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Danyang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - JingYu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyan Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Guangyu Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
18
|
Elsabrouty MH, Elwakil BH, Salam SA, Olama ZA. Nano-phytosome loaded Retama raetam extract/colistin: antibacterial, antioxidant activities and in vivo lipopolysaccharide-induced-neurotoxicity inhibition. Braz J Microbiol 2024; 55:3781-3795. [PMID: 39302630 PMCID: PMC11711430 DOI: 10.1007/s42770-024-01510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Antibiotics are misused nowadays, leading to the prevalence of antibiotic resistant bacterial strains; causing the world to move towards natural medicine. Retama raetam had wide medicinal use. In the present study, R. raetam ethanolic extract proved to be active against Pseudomonas aeruginosa with MIC values ranged from 15.62 to 250 µg/ml. Antioxidant analysis showed that the extract had high scavenging activity reached 92.40%. GC/MS analysis revealed that Sparteine and Tributyl acetylcitrate represent the extract major components. Furthermore, the combination between Retama raetam extract and colistin showed a synergistic effect. Moreover, nano-phytosome was designated and optimized to encapsulate Retama raetam extract/Colistin. Nano-phytosome characterized by particle size, Zeta potential, polydispersity index and Entrapment efficiency percentage of 16.92-32.85 nm, -30.40 mV, 0.26 and 89% respectively. The antibacterial activity of the prepared nano-phytosome formula against P. aeruginosa showed promising MIC, MBC, MIC index, and IZ diameter reaching 7.81, 15.62 µg/ml, 2, and 39 mm, respectively. While TEM examination of P. aeruginosa cells treated with nano-phytosome formula revealed cell wall breakage which led to cell death. Finally, P. aeruginosa LPS was used to induce neurodegenerative disease in rat model. Rats treated with nano-phytosome formula showed normal histoarchitecture organization and the cerebral cortex was partially restored compared to control groups.
Collapse
Affiliation(s)
- Mohab H Elsabrouty
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt.
| | - Bassma H Elwakil
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Zakia A Olama
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| |
Collapse
|
19
|
Bano N, Khan S, Ahamad S, Kanshana JS, Dar NJ, Khan S, Nazir A, Bhat SA. Microglia and gut microbiota: A double-edged sword in Alzheimer's disease. Ageing Res Rev 2024; 101:102515. [PMID: 39321881 DOI: 10.1016/j.arr.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The strong association between gut microbiota (GM) and brain functions such as mood, behaviour, and cognition has been well documented. Gut-brain axis is a unique bidirectional communication system between the gut and brain, in which gut microbes play essential role in maintaining various molecular and cellular processes. GM interacts with the brain through various pathways and processes including, metabolites, vagus nerve, HPA axis, endocrine system, and immune system to maintain brain homeostasis. GM dysbiosis, or an imbalance in GM, is associated with several neurological disorders, including anxiety, depression, and Alzheimer's disease (AD). Conversely, AD is sustained by microglia-mediated neuroinflammation and neurodegeneration. Further, GM and their products also affect microglia-mediated neuroinflammation and neurodegeneration. Despite the evidence connecting GM dysbiosis and AD progression, the involvement of GM in modulating microglia-mediated neuroinflammation in AD remains elusive. Importantly, deciphering the mechanism/s by which GM regulates microglia-dependent neuroinflammation may be helpful in devising potential therapeutic strategies to mitigate AD. Herein, we review the current evidence regarding the involvement of GM dysbiosis in microglia activation and neuroinflammation in AD. We also discuss the possible mechanisms through which GM influences the functioning of microglia and its implications for therapeutic intervention. Further, we explore the potential of microbiota-targeted interventions, such as prebiotics, probiotics, faecal microbiota transplantation, etc., as a novel therapeutic strategy to mitigate neuroinflammation and AD progression. By understanding and exploring the gut-brain axis, we aspire to revolutionize the treatment of neurodegenerative disorders, many of which share a common theme of microglia-mediated neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Jitendra Singh Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburg, PA, USA.
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA.
| | - Sumbul Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
20
|
Attia HG, Elmataeeshy ME, Aleraky M, Saleh SR, Ghareeb DA, El Demellawy MA, El-Nahas HM, Ibrahim TM. The assessment of pharmacokinetics and neuroprotective effect of berberine hydrochloride-embedded albumin nanoparticles via various administration routes: comparative in-vivo studies in rats. J Microencapsul 2024; 41:576-600. [PMID: 39229806 DOI: 10.1080/02652048.2024.2395976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/10/2024] [Indexed: 09/05/2024]
Abstract
The current study aimed to evaluate the pharmacokinetics and neuroprotective effect of well-characterised berberine-bovine serum albumin (BBR-BSA) nanoparticles. BBR-BSA nanoparticles were generated by desolvation method. Entrapment efficiency, loading capacity, particle size, polydispersity index, surface morphology, thermal stability, and in-vitro release were estimated. In-vitro pharmacokinetic and tissue distribution were conducted. Their neuroprotection was evaluated against lipopolysaccharides-induced neurodegeneration. BBR-BSA nanoparticles showed satisfactory particle size (202.60 ± 1.20 nm) and entrapment efficiency (57.00 ± 1.56%). Results confirmed the formation of spheroid-thermal stable nanoparticles with a sustained drug release over 48 h. Sublingual and intranasal routes had higher pharmacokinetic plasma profiles than other routes, with Cmax values at 0.75 h (444 ± 77.79 and 259 ± 42.41 ng/mL, respectively). BBR and its metabolite distribution in the liver and kidney were higher than in plasma. Intranasal and sublingual treatment improves antioxidants, proinflammatory, amyloidogenic biomarkers, and brain architecture, protecting the brain. In conclusion, neuroinflammation and neurodegeneration may be prevented by intranasal and sublingual BBR-BSA nanoparticles.
Collapse
Affiliation(s)
- Hany G Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Mohamed Aleraky
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
- Department of Clinical Pathology, Al-Azhar University, New Damietta, Egypt
| | - Samar R Saleh
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Alexandria University, Alexandria, Egypt
- Research Projects unit, Pharos University in Alexandria; Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Egypt
| | - Maha A El Demellawy
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Egypt
- Medical Biotechnology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Egypt
| | | | - Tarek M Ibrahim
- Department of Pharmaceutics, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Magnusson A, Wu R, Demirel I. Porphyromonas gingivalis triggers microglia activation and neurodegenerative processes through NOX4. Front Cell Infect Microbiol 2024; 14:1451683. [PMID: 39469453 PMCID: PMC11513391 DOI: 10.3389/fcimb.2024.1451683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024] Open
Abstract
Periodontitis and infections with periodontal bacteria have been highlighted as risk factors for dementia. In recent years, attention has been drawn to the role of microglia cells in neurodegenerative diseases. However, there is limited knowledge of the influence of periodontal bacteria on microglia cells. The aim of the present study was to investigate the interactions between the periodontal bacteria Porphyromonas gingivalis and microglia cells and to unravel whether these interactions could contribute to the pathology of Alzheimer's disease. We found, through microarray analysis, that stimulation of microglia cells with P. gingivalis resulted in the upregulation of several Alzheimer's disease-associated genes, including NOX4. We also showed that P. gingivalis lipopolysaccharides (LPS) mediated reactive oxygen species (ROS) production and interleukin 6 (IL-6) and interleukin 8 (IL-8) induction via NOX4 in microglia. The viability of neurons was shown to be reduced by conditioned media from microglia cells stimulated with P. gingivalis LPS and the reduction was NOX4 dependent. The levels of total and phosphorylated tau in neurons were increased by conditioned media from microglia cells stimulated with P. gingivalis or LPS. This increase was NOX4-dependent. In summary, our findings provide us with a potential mechanistic explanation of how the periodontal pathogen P. gingivalis could trigger or exacerbate AD pathogenesis.
Collapse
Affiliation(s)
- Anna Magnusson
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Periodontology and Implantology, Postgraduate Dental Education Center and School of Medical Sciences, Faculty of Medicine and Health, Orebro University, Örebro, Sweden
| | - Rongrong Wu
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
22
|
Navalpur Shanmugam NK, Eimer WA, Vijaya Kumar DK, Tanzi RE. The brain pathobiome in Alzheimer's disease. Neurotherapeutics 2024; 21:e00475. [PMID: 39510900 PMCID: PMC11585897 DOI: 10.1016/j.neurot.2024.e00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Nanda Kumar Navalpur Shanmugam
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - William A Eimer
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Deepak K Vijaya Kumar
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
23
|
Ge F, Zhao Y, Zheng J, Xiang Q, Luo P, Zhu L, He H. Discovering common pathogenetic processes between periodontitis and Alzheimer's disease by bioinformatics and system biology approach. BMC Oral Health 2024; 24:1074. [PMID: 39266981 PMCID: PMC11391628 DOI: 10.1186/s12903-024-04775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND There is increasing evidence that inflammation plays a key role in the pathophysiology of periodontitis (PT) and Alzheimer's disease (AD), but the roles of inflammation in linking PT and AD are not clear. Our aim is to analyze the potential molecular mechanisms between these two diseases using bioinformatics and systems biology approaches. METHODS To elucidate the link between PT and AD, we selected shared genes (SGs) with gene-disease-association scores of ≥ 0.1 from the Disease Gene Network (DisGeNET) database, followed by extracting the hub genes. Based on these genes, we constructed gene ontology (GO) enrichment analysis, pathway enrichment analysis, protein-protein interaction (PPI) networks, transcription factors (TFs)-gene networks, microRNAs (miRNAs)-gene regulatory networks, and gene-disease association analyses. Finally, the Drug Signatures database (DSigDB) was utilized to predict candidate molecular drugs related to hub genes. RESULTS A total of 21 common SGs between PT and AD were obtained. Cell cytokine activity, inflammatory response, and extracellular membrane were the most important enriched items in GO analysis. Interleukin-10 Signaling, LTF Danger Signal Response Pathway, and RAGE Pathway were identified as important shared pathways. IL6, IL10, IL1B, TNF, IFNG, CXCL8, CCL2, MMP9, TLR4 were identified as hub genes. Both shared pathways and hub genes are closely related to endoplasmic reticulum (ER) stress and mitochondrial dysfunction. Importantly, glutathione, simvastatin, and dexamethasone were identified as important candidate drugs for the treatment of PT and AD. CONCLUSIONS There is a close link between PT and AD pathogenesis, which may involve in the inflammation, ER and mitochondrial function.
Collapse
Affiliation(s)
- Fei Ge
- Department of Oral Implantology and Prosthodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Yang Zhao
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Jinren Zheng
- Department of Clinical Laboratory, Eyes ENT Hospital of Urumqi, Urumqi, 830002, People's Republic of China
| | - Qun Xiang
- Department of Stomatology, The Affiliated Huanan Hospital of Shenzhen University, Shenzhen, 518111, People's Republic of China
| | - Pei Luo
- Department of Stomatology, The Affiliated Huanan Hospital of Shenzhen University, Shenzhen, 518111, People's Republic of China
| | - Lu Zhu
- Department of Stomatology, The Affiliated Huanan Hospital of Shenzhen University, Shenzhen, 518111, People's Republic of China
| | - Huiyu He
- Department of Oral Implantology and Prosthodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.
| |
Collapse
|
24
|
Hossain MS, Mawatari S, Honsho M, Okauchi T, Fujino T. KIT-13, a novel plasmalogen derivative, attenuates neuroinflammation and amplifies cognition. Front Cell Dev Biol 2024; 12:1443536. [PMID: 39286482 PMCID: PMC11402709 DOI: 10.3389/fcell.2024.1443536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Plasmalogens (Pls) are specialized phospholipids integral to brain health, whose decline due to aging and stress contributes to cognitive impairment and neuroinflammation. This study explores the potential of a novel Pls derivative, KIT-13 (1-O-octadecyl-2-arachidonoyl-sn-glycerol-3-phosphoethanolamine), in mitigating neuroinflammation and enhancing cognition. When administered to mice, KIT-13 exhibited potent memory enhancement attributed to upregulated brain-derived neurotrophic factor (BDNF), a key player in cognitive processes. In vitro experiments with neuronal cells revealed KIT-13's ability to induce robust cellular signaling, surpassing natural plasmalogens. KIT-13 also promoted neurogenesis and inhibited apoptosis of neuronal-like cells, highlighting its potential in fostering neuronal growth and plasticity. Additionally, KIT-13 treatments reduced pro-inflammatory cytokine expression and attenuated glial activation in the brain. KIT-13's superior efficacy over natural Pls positions it as a promising therapeutic candidate for neurodegenerative conditions such as Alzheimer's disease, characterized by cognitive decline and neuroinflammation. This study presents KIT-13 as an innovative approach for addressing cognitive impairment and neuroinflammatory pathologies.
Collapse
Affiliation(s)
- Md Shamim Hossain
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Shiro Mawatari
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, Japan
| | - Takehiko Fujino
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| |
Collapse
|
25
|
Kim TC, Park HJ, Lee SW, Park YH, Van Kaer L, Hong S. Alpha-galactosylceramide pre-treatment attenuates clinical symptoms of LPS-induced acute neuroinflammation by converting pathogenic iNKT cells to anti-inflammatory iNKT10 cells in the brain. Inflamm Res 2024; 73:1511-1527. [PMID: 39028491 DOI: 10.1007/s00011-024-01915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Invariant natural killer T (iNKT) cells play protective or pathogenic roles in a variety of immune and inflammatory diseases. However, whether iNKT cells contribute to the progression of acute neuroinflammation remains unclear. Thus, we addressed this question with a mouse model of lipopolysaccharide (LPS)-induced acute neuroinflammation. METHODS For induction of acute neuroinflammation, wild-type (WT) C57BL/6 (B6) mice were injected intraperitoneally (i.p.) with LPS for either three or five consecutive days, and then these mice were analyzed for brain-infiltrating leukocytes or mouse behaviors, respectively. To examine the role of iNKT cell activation in LPS-induced neuroinflammation, mice were injected i.p. with the iNKT cell agonist α-galactosylceramide (α-GalCer) seven days prior to LPS treatment. Immune cells infiltrated into the brain during LPS-induced neuroinflammation were determined by flow cytometry. In addition, LPS-induced clinical behavior symptoms such as depressive-like behavior and memory impairment in mice were evaluated by the open field and Y-maze tests, respectively. RESULTS We found that iNKT cell-deficient Jα18 mutant mice display delayed disease progression and decreased leukocyte infiltration into the brain compared with WT mice, indicating that iNKT cells contribute to the pathogenesis of LPS-induced neuroinflammation. Since it has been reported that pre-treatment with α-GalCer, an iNKT cell agonist, can convert iNKT cells towards anti-inflammatory phenotypes, we next explored whether pre-activation of iNKT cells with α-GalCer can regulate LPS-induced neuroinflammation. Strikingly, we found that α-GalCer pre-treatment significantly delays the onset of clinical symptoms, including depression-like behavior and memory impairment, while decreasing brain infiltration of pro-inflammatory natural killer cells and neutrophils, in this model of LPS-induced neuroinflammation. Such anti-inflammatory effects of α-GalCer pre-treatment closely correlated with iNKT cell polarization towards IL4- and IL10-producing phenotypes. Furthermore, α-GalCer pre-treatment restored the expression of suppressive markers on brain regulatory T cells during LPS-induced neuroinflammation. CONCLUSION Our findings provide strong evidence that α-GalCer-induced pre-activation of iNKT cells expands iNKT10 cells, mitigating depressive-like behaviors and brain infiltration of inflammatory immune cells induced by LPS-induced acute neuroinflammation. Thus, we suggest the prophylactic potential of iNKT cells and α-GalCer against acute neuroinflammation.
Collapse
Affiliation(s)
- Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, 26339, South Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
| |
Collapse
|
26
|
Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol 2024; 194:112497. [PMID: 38909763 DOI: 10.1016/j.exger.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The gut microbiome plays a crucial role in host health throughout the lifespan by influencing brain function during aging. The microbial diversity of the human gut microbiome decreases during the aging process and, as a consequence, several mechanisms increase, such as oxidative stress, mitochondrial dysfunction, inflammatory response, and microbial gut dysbiosis. Moreover, evidence indicates that aging and neurodegeneration are closely related; consequently, the gut microbiome may serve as a novel marker of lifespan in the elderly. In this narrative study, we investigated how the changes in the composition of the gut microbiome that occur in aging influence to various neuropathological disorders, such as mild cognitive impairment (MCI), dementia, Alzheimer's disease (AD), and Parkinson's disease (PD); and which are the possible mechanisms that govern the relationship between the gut microbiome and cognitive impairment. In addition, several studies suggest that the gut microbiome may be a potential novel target to improve hallmarks of brain aging and to promote healthy cognition; therefore, current and future therapeutic interventions have been also reviewed.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
27
|
Chibh S, Singh A, Finkelstein-Zuta G, Koren G, Sorkin R, Beck R, Rencus-Lazar S, Gazit E. Amylum forms typical self-assembled amyloid fibrils. SCIENCE ADVANCES 2024; 10:eadp6471. [PMID: 39213351 PMCID: PMC11364109 DOI: 10.1126/sciadv.adp6471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Amyloid fibril formation is a central biochemical process in pathology and physiology. Over decades, substantial advances were made in elucidating the mechanisms of amyloidogenesis, its links to disease, and the production of functional supramolecular structures. While the term "amyloid" denotes starch-like features of these assemblies, no evidence of amyloidogenic behavior of polysaccharides has been so far reported. Here, we investigate the potential of amylum (starch) not only to self-assemble into hierarchical fibrillar structures but also to exhibit canonical amyloidogenic properties. Ordered amylum structures were formed through a sigmoidal growth process with characteristic amyloid features including typical nanofibril morphology, binding to indicative dyes, inherent luminescence, apple-green birefringence upon Congo red staining, and notable mechanical rigidity. These findings shed light on polysaccharide self-assembly and expand the generic amyloid phenomenon.
Collapse
Affiliation(s)
- Sonika Chibh
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ashmeet Singh
- Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Gal Finkelstein-Zuta
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gil Koren
- The Raymond & Beverly Sackler School of Physics and Astronomy, The Center for Nanoscience and Nanotechnology, and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University; Tel Aviv, 6997801, Israel
- Center of Physics and Chemistry of Living Systems, Tel Aviv University; Tel Aviv, 6997801, Israel
| | - Roy Beck
- The Raymond & Beverly Sackler School of Physics and Astronomy, The Center for Nanoscience and Nanotechnology, and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
28
|
Liu N, Haziyihan A, Zhao W, Chen Y, Chao H. Trajectory of brain-derived amyloid beta in Alzheimer's disease: where is it coming from and where is it going? Transl Neurodegener 2024; 13:42. [PMID: 39160618 PMCID: PMC11331646 DOI: 10.1186/s40035-024-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that primarily impacts cognitive function. Currently there are no disease-modifying treatments to stop or slow its progression. Recent studies have found that several peripheral and systemic abnormalities are associated with AD, and our understanding of how these alterations contribute to AD is becoming more apparent. In this review, we focuse on amyloid‑beta (Aβ), a major hallmark of AD, summarizing recent findings on the source of brain-derived Aβ and discussing where and how the brain-derived Aβ is cleared in vivo. Based on these findings, we propose future strategies for AD prevention and treatment, from a novel perspective on Aβ metabolism.
Collapse
Affiliation(s)
- Ni Liu
- Zhengzhou University, Zhengzhou, 450001, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Wei Zhao
- Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Chen
- Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- Zhengzhou University, Zhengzhou, 450001, China.
- Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
29
|
Zhao M, Wang Y, Shen Y, Wei C, Zhang G, Sun L. A review of the roles of pathogens in Alzheimer's disease. Front Neurosci 2024; 18:1439055. [PMID: 39224577 PMCID: PMC11366636 DOI: 10.3389/fnins.2024.1439055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease (AD) is one of the leading causes of dementia and is characterized by memory loss, mental and behavioral abnormalities, and impaired ability to perform daily activities. Even as a global disease that threatens human health, effective treatments to slow the progression of AD have not been found, despite intensive research and significant investment. In recent years, the role of infections in the etiology of AD has sparked intense debate. Pathogens invade the central nervous system through a damaged blood-brain barrier or nerve trunk and disrupt the neuronal structure and function as well as homeostasis of the brain microenvironment through a series of molecular biological events. In this review, we summarize the various pathogens involved in AD pathology, discuss potential interactions between pathogens and AD, and provide an overview of the promising future of anti-pathogenic therapies for AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Sun
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
30
|
Grijaldo-Alvarez SJB, Alvarez MRS, Schindler RL, Oloumi A, Hernandez N, Seales T, Angeles JGC, Nacario RC, Completo GC, Zivkovic AM, Bruce German J, Lebrilla CB. N-Glycan profile of the cell membrane as a probe for lipopolysaccharide-induced microglial neuroinflammation uncovers the effects of common fatty acid supplementation. Food Funct 2024; 15:8258-8273. [PMID: 39011570 PMCID: PMC11668514 DOI: 10.1039/d4fo01598c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Altered N-glycosylation of proteins on the cell membrane is associated with several neurodegenerative diseases. Microglia are an ideal model for studying glycosylation and neuroinflammation, but whether aberrant N-glycosylation in microglia can be restored by diet remains unknown. Herein, we profiled the N-glycome, proteome, and glycoproteome of the human microglia following lipopolysaccharide (LPS) induction to probe the impact of dietary and gut microbe-derived fatty acids-oleic acid, lauric acid, palmitic acid, valeric acid, butyric acid, isobutyric acid, and propionic acid-on neuroinflammation using liquid chromatography-tandem mass spectrometry. LPS changed N-glycosylation in the microglial glycocalyx altering high mannose and sialofucosylated N-glycans, suggesting the dysregulation of mannosidases, fucosyltransferases, and sialyltransferases. The results were consistent as we observed the restoration effect of the fatty acids, especially oleic acid, on the LPS-treated microglia, specifically on the high mannose and sialofucosylated glycoforms of translocon-associated proteins, SSRA and SSRB along with the cell surface proteins, CD63 and CD166. In addition, proteomic analysis and in silico modeling substantiated the potential of fatty acids in reverting the effects of LPS on microglial N-glycosylation. Our results showed that N-glycosylation is likely affected by diet by restoring alterations following LPS challenge, which may then influence the disease state.
Collapse
Affiliation(s)
- Sheryl Joyce B Grijaldo-Alvarez
- Department of Chemistry, University of California, Davis, 95616, USA.
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | | | | | - Armin Oloumi
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Noah Hernandez
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Tristan Seales
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Jorge Gil C Angeles
- Philippine Genome Center - Program for Agriculture, Livestock, Fisheries and Forestry, University of the Philippines Los Baños, Philippines, 4031.
| | - Ruel C Nacario
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Gladys C Completo
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, 95616, USA.
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, 95616, USA.
| | | |
Collapse
|
31
|
Sait AM, Day PJR. Interconnections between the Gut Microbiome and Alzheimer's Disease: Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:8619. [PMID: 39201303 PMCID: PMC11354889 DOI: 10.3390/ijms25168619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is known to accumulate amyloid-β (Aβ) and tau protein. Clinical studies have not identified pathogenesis mechanisms or produced an effective cure for AD. The Aβ monoclonal antibody lecanemab reduces Aβ plaque formation for the treatment of AD, but more studies are required to increase the effectiveness of drugs to reduce cognitive decline. The lack of AD therapy targets and evidence of an association with an acute neuroinflammatory response caused by several bacteria and viruses in some individuals has led to the establishment of the infection hypothesis during the last 10 years. How pathogens cross the blood-brain barrier is highly topical and is seen to be pivotal in proving the hypothesis. This review summarizes the possible role of the gut microbiome in the pathogenesis of AD and feasible therapeutic approaches and current research limitations.
Collapse
Affiliation(s)
- Ahmad M. Sait
- Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Philip J. R. Day
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
32
|
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain 2024; 17:44. [PMID: 39020435 PMCID: PMC11256416 DOI: 10.1186/s13041-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD is the accumulation of amyloid-beta (Aβ) plaques, which play pivotal roles in disease progression. These plaques initiate a cascade of events including neuroinflammation, synaptic dysfunction, tau pathology, oxidative stress, impaired protein clearance, mitochondrial dysfunction, and disrupted calcium homeostasis. Aβ accumulation is also closely associated with other hallmark features of AD, underscoring its significance. Aβ is generated through cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its beneficial and detrimental effects.
Collapse
|
33
|
Chmielarz M, Sobieszczańska B, Środa-Pomianek K. Metabolic Endotoxemia: From the Gut to Neurodegeneration. Int J Mol Sci 2024; 25:7006. [PMID: 39000116 PMCID: PMC11241432 DOI: 10.3390/ijms25137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Metabolic endotoxemia is a severe health problem for residents in developed countries who follow a Western diet, disrupting intestinal microbiota and the whole organism's homeostasis. Although the effect of endotoxin on the human immune system is well known, its long-term impact on the human body, lasting many months or even years, is unknown. This is due to the difficulty of conducting in vitro and in vivo studies on the prolonged effect of endotoxin on the central nervous system. In this article, based on the available literature, we traced the path of endotoxin from the intestines to the blood through the intestinal epithelium and factors promoting the development of metabolic endotoxemia. The presence of endotoxin in the bloodstream and the inflammation it induces may contribute to lowering the blood-brain barrier, potentially allowing its penetration into the central nervous system; although, the theory is still controversial. Microglia, guarding the central nervous system, are the first line of defense and respond to endotoxin with activation, which may contribute to the development of neurodegenerative diseases. We traced the pro-inflammatory role of endotoxin in neurodegenerative diseases and its impact on the epigenetic regulation of microglial phenotypes.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Beata Sobieszczańska
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw University of Medicine, Chalubinskiego 3a, 50-368 Wroclaw, Poland
| |
Collapse
|
34
|
Abdo Qaid EY, Abdullah Z, Zakaria R, Long I. Minocycline protects against lipopolysaccharide-induced glial cells activation and oxidative stress damage in the medial prefrontal cortex (mPFC) of the rat. Int J Neurosci 2024; 134:56-65. [PMID: 35638219 DOI: 10.1080/00207454.2022.2084092] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE/AIM Neuroinflammation and oxidative stress have been encountered in neurodegenerative diseases such as Alzheimer's disease (AD). However, the neuroprotective effects of minocycline against lipopolysaccharide (LPS)-induced glial cells activation and oxidative stress damage in the medial prefrontal cortex (mPFC) of rats are still elusive. The purpose of this study is to investigate the effects of minocycline and memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, on the microglia and astrocytes expression, as well as oxidative stress levels in the mPFC of LPS injected rats. MATERIALS AND METHODS Fifty adult Male Sprague Dawley rats were divided into five groups: control, LPS (5 mg/kg), LPS treated with minocycline (25 mg/kg), LPS treated with minocycline (50 mg/kg) and LPS treated with memantine (10 mg/kg). The immunohistochemistry and western blotting were used to analyse the expressions and densities of microglia marker (Iba-1) and astrocyte marker, (GFAP) while enzyme-linked immunosorbent assay (ELISA) was used to measure the protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) levels. RESULTS In comparison to the control group, the expression and density of Iba-1 and GFAP were significantly enhanced in the LPS group (p < 0.05). LPS group also exhibited significantly higher levels of PCO and MDA (p < 0.05) and significantly lower levels of CAT and SOD (p < 0.05) when compared to the control group. Both minocycline and memantine-treated LPS rats were able to protect against these effects. CONCLUSION Minocycline, like memantine treatment, reduces oxidative stress in the mPFC of LPS rats via inhibition of glial cells activation.
Collapse
Affiliation(s)
- Entesar Yaseen Abdo Qaid
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
- Faculty of Medicine and Health Sciences, Department of Histology, Taiz University, Taiz, Yemen
| | - Zuraidah Abdullah
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Idris Long
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| |
Collapse
|
35
|
Zhong S, Zhou Q, Yang J, Zhang Z, Zhang X, Liu J, Chang X, Wang H. Relationship between the cGAS-STING and NF-κB pathways-role in neurotoxicity. Biomed Pharmacother 2024; 175:116698. [PMID: 38713946 DOI: 10.1016/j.biopha.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Neurotoxicity can cause a range of symptoms and disorders in humans, including neurodegenerative diseases, neurodevelopmental disorders, nerve conduction abnormalities, neuroinflammation, autoimmune disorders, and cognitive deficits. The cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway and NF-κB pathway are two important signaling pathways involved in the innate immune response. The cGAS-STING pathway is activated by the recognition of intracellular DNA, which triggers the production of type I interferons and pro-inflammatory cytokines, such as tumor necrosis factor, IL-1β, and IL-6. These cytokines play a role in oxidative stress and mitochondrial dysfunction in neurons. The NF-κB pathway is activated by various stimuli, such as bacterial lipopolysaccharide, viral particle components, and neurotoxins. NF-κB activation may lead to the production of pro-inflammatory cytokines, which promote neuroinflammation and cause neuronal damage. A potential interaction exists between the cGAS-STING and NF-κB pathways, and NF-κB activation blocks STING degradation by inhibiting microtubule-mediated STING transport. This review examines the progress of research on the roles of these pathways in neurotoxicity and their interrelationships. Understanding the mechanisms of these pathways will provide valuable therapeutic insights for preventing and controlling neurotoxicity.
Collapse
Affiliation(s)
- Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
36
|
Alzahrani NA, Bahaidrah KA, Mansouri RA, Aldhahri RS, Abd El-Aziz GS, Alghamdi BS. Possible Prophylactic Effects of Sulforaphane on LPS-Induced Recognition Memory Impairment Mediated by Regulating Oxidative Stress and Neuroinflammatory Proteins in the Prefrontal Cortex Region of the Brain. Biomedicines 2024; 12:1107. [PMID: 38791068 PMCID: PMC11118062 DOI: 10.3390/biomedicines12051107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant global health concern, characterized by neurodegeneration and cognitive decline. Neuroinflammation is a crucial factor in AD development and progression, yet effective pharmacotherapy remains elusive. Sulforaphane (SFN), derived from cruciferous vegetables and mainly from broccoli, has shown a promising effect via in vitro and in vivo studies as a potential treatment for AD. This study aims to investigate the possible prophylactic mechanisms of SFN against prefrontal cortex (PFC)-related recognition memory impairment induced by lipopolysaccharide (LPS) administration. METHODOLOGY Thirty-six Swiss (SWR/J) mice weighing 18-25 g were divided into three groups (n = 12 per group): a control group (vehicle), an LPS group (0.75 mg/kg of LPS), and an LPS + SFN group (25 mg/kg of SFN). The total duration of the study was 3 weeks, during which mice underwent treatments for the initial 2 weeks, with daily monitoring of body weight and temperature. Behavioral assessments via novel object recognition (NOR) and temporal order recognition (TOR) tasks were conducted in the final week of the study. Inflammatory markers (IL-6 and TNF), antioxidant enzymes (SOD, GSH, and CAT), and pro-oxidant (MDA) level, in addition to acetylcholine esterase (AChE) activity and active (caspase-3) and phosphorylated (AMPK) levels, were evaluated. Further, PFC neuronal degeneration, Aβ content, and microglial activation were also examined using H&E, Congo red staining, and Iba1 immunohistochemistry, respectively. RESULTS SFN pretreatment significantly improved recognition memory performance during the NOR and TOR tests. Moreover, SFN was protected from neuroinflammation and oxidative stress as well as neurodegeneration, Aβ accumulation, and microglial hyperactivity. CONCLUSION The obtained results suggested that SFN has a potential protective property to mitigate the behavioral and biochemical impairments induced by chronic LPS administration and suggested to be via an AMPK/caspase-3-dependent manner.
Collapse
Affiliation(s)
- Noor Ahmed Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Khulud Abdullah Bahaidrah
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Rahaf Saeed Aldhahri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
- Department of Biochemistry, Faculty of Sciences, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Gamal S. Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
37
|
Kountouras J, Boziki M, Kazakos E, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Vardaka E, Mouratidou MC, Kyrailidi F, Tzitiridou-Chatzopoulou M, Orovou E, Giartza-Taxidou E, Deretzi G, Grigoriadis N, Doulberis M. Impact of Helicobacter pylori and metabolic syndrome on mast cell activation-related pathophysiology and neurodegeneration. Neurochem Int 2024; 175:105724. [PMID: 38508416 DOI: 10.1016/j.neuint.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Eirini Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Evaggelia Giartza-Taxidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, 8810, Horgen, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
38
|
Akhgarjand C, Vahabi Z, Shab-Bidar S, Anoushirvani A, Djafarian K. The effects of probiotic supplements on oxidative stress and inflammation in subjects with mild and moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled study. Inflammopharmacology 2024; 32:1413-1420. [PMID: 38319476 DOI: 10.1007/s10787-023-01427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
Through modulating effects on the gut-brain axis, probiotics are an effective adjuvant treatment for Alzheimer's disease (AD), one of our century's most important medical care challenges (Agahi et al. Front Neurol 9:662, 2018). This trial aimed to examine the effects of two different single-strain probiotics on oxidative stress and inflammation in patients with mild and moderate AD. This was a 12-week placebo-controlled, double-blind, randomized clinical trial performed on 90 patients with AD. Eligible patients were randomly assigned to two different interventions (Lacticaseibacillus rhamnosus HA-114 (7.5 × 109) or Bifidobacterium longum R0175 (7.5 × 109)) and a placebo group, supplemented twice daily. We used mixed-effect models to examine the probiotic's independent effects on clinical results. Significant improvements in serum inflammatory and oxidative stress markers were observed at the end of the trial (P < 0.05). Probiotic supplementation for 12 weeks had beneficial effects on oxidative stress, inflammation, quality of life, and physical activity in patients with mild and moderate AD.
Collapse
Affiliation(s)
- Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Cognitive Neurology and Neuropsychiatry Division, Psychiatry Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Geriatric Department, Ziaeeian Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliarash Anoushirvani
- Department of Internal Medicine, School of Medicine, Firoozgar General Hospital, Iran University of Medical Science, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Weng J, Wang Y, Tan Z, Yuan Y, Huang S, Li Z, Li Y, Zhang L, Du Z. Glabridin reduces neuroinflammation by modulating inflammatory signals in LPS-induced in vitro and in vivo models. Inflammopharmacology 2024; 32:1159-1169. [PMID: 38372849 DOI: 10.1007/s10787-023-01424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/23/2023] [Indexed: 02/20/2024]
Abstract
OBJECTIVES Chronic neuroinflammation has become one of the important causes of common neurodegeneration disease. Therefore, the target of this study was to explore the protective action of glabridin on lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro and its mechanism. METHODS The neuroinflammation model was established by LPS-induced BV2 cells. The cell viability with various concentrations of glabridin was determined by MTT assay, and the content of NO in each group was detected. A neuroinflammatory model was established in male C57BL/6J mice for a water maze test. Subsequently, NF-κB and SOD indices were measured by ELISA, GFAP and IBA-1 indices were measured by immunofluorescence, and Nissl staining was used to explore the Nissl bodies in the hippocampus of mice. RESULTS In vitro experiments, our results expressed that glabridin could markedly increase the cell activity of LPS-induced BV2 cells and reduce the NO expression in cells. It indicated that glabridin had a remarkable impact on the neuroinflammation of LPS-induced BV2 cell protection. In vivo neuroinflammation experiments, mice treated with different doses of glabridin showed significantly improved ability of memory compared with the LPS group in the Morris water maze test. The levels of NF-κB, GFAP, and the number of positive cells in Nissl staining were decreased. High-dose glabridin significantly increased the SOD content in the brain tissue and decreased the IBA-1 levels. CONCLUSION Glabridin can significantly reduce or even reverse LPS-induced neuroinflammation, which may be related to the fact that glabridin can reduce the NO expression, NF-κB, IBA-1, GFAP, and other inflammatory mediators, upregulate the expression of SOD to relieve oxidative stress of brain and inhibit the activation of gliocyte in brain tissue.
Collapse
Affiliation(s)
- Jiyu Weng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zekai Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanghe Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shiyuan Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zexi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiming Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
40
|
Brown GC, Heneka MT. The endotoxin hypothesis of Alzheimer's disease. Mol Neurodegener 2024; 19:30. [PMID: 38561809 PMCID: PMC10983749 DOI: 10.1186/s13024-024-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aβ expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
41
|
Yan L, Li H, Qian Y, Liu Q, Cong S, Dou B, Wang Y, Wang M, Yu T. Acupuncture modulates the gut microbiota in Alzheimer's disease: current evidence, challenges, and future opportunities. Front Neurosci 2024; 18:1334735. [PMID: 38495110 PMCID: PMC10940355 DOI: 10.3389/fnins.2024.1334735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Alzheimer's disease, one of the most severe and common neurodegenerative diseases, has no effective cure. Therefore it is crucial to explore novel and effective therapeutic targets. The gut microbiota - brain axis has been found to play a role in Alzheimer's disease by regulating the neuro-immune and endocrine systems. At the same time, acupuncture can modulate the gut microbiota and may impact the course of Alzheimer's disease. In this Review, we discuss recent studies on the role of acupuncture on the gut microbiota as well current challenges and future opportunities of acupuncture as potential treatment for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qidi Liu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Baomin Dou
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
42
|
Hu M, Zheng M, Wang C, Li Q, Li J, Zhou X, Ying X, Quan S, Gu L, Zhang X. Andrographolide derivative Andro-III modulates neuroinflammation and attenuates neuropathological changes of Alzheimer's disease via GSK-3β/NF-κB/CREB pathway. Eur J Pharmacol 2024; 965:176305. [PMID: 38160932 DOI: 10.1016/j.ejphar.2023.176305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Andrographolide has anti-inflammatory and neuroprotective effects, making it a potential therapeutic option for Alzheimer's disease (AD). Our research group optimized its structure in a previous study to minimize the risk of renal toxicity, which would beneficial for future clinical research. This study aims to examine the impact of Andro-III on enhancing cognitive learning ability in 3xTg-AD mice, as well as the mechanisms involved. Andro-III improved spatial learning ability, prevented the loss of Nysted's vesicles, reduced the accumulation of β-amyloid (Aβ) and tau proteins, and suppressed microglial activation. Further research found that the expression of nuclear factor kappa-B RelA (NF-κB p65) expression and glycogen synthase kinase-3β (GSK-3β) activity were inhibited, while CREB was upregulated in brain tissue treated with Andro-III. Moreover, Andro-III downregulated the expression of IBA1 and inflammatory factors in microglial cells of mice induced by Aβ. The regulation of the GSK-3β/NF-κB/CREB pathway was similar to that observed in 3xTg-AD mice. Therefore, Andro-III modulates neuroinflammation and attenuates neuropathological changes of AD via the GSK-3β/NF-κB/CREB pathway.
Collapse
Affiliation(s)
- Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Jinhua Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Xuebin Zhou
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - XinYi Ying
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Shengli Quan
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China.
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, PR China; Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China.
| |
Collapse
|
43
|
Duan R, von Ehrlich-Treuenstätt VH, Kakoschke SC, Schardey J, Wirth U, Albertsmeier M, Renz BW, Andrassy J, Bazhin AV, Hodin RA, Werner J, Ilmer M, Kühn F. Effect of Surgery on Postoperative Levels of the Gut Homeostasis-Regulating Enzyme Intestinal Alkaline Phosphatase. J Am Coll Surg 2024; 238:70-80. [PMID: 37870235 DOI: 10.1097/xcs.0000000000000879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Intestinal homeostasis is a crucial factor for complication-free short- and long-term postoperative recovery. The brush border enzyme intestinal alkaline phosphatase (IAP) is an important regulator of gut barrier function and intestinal homeostasis and prevents endotoxemia by detoxifying lipopolysaccharides (LPSs). As IAP is predominantly secreted by enterocytes in the duodenum, we hypothesized that pancreaticoduodenectomy (PD) leads to a significantly stronger decrease in IAP than other major abdominal surgery. STUDY DESIGN Pre- and postoperative blood, stool, and intestinal samples were collected from patients undergoing PD, as well as other major surgical procedures without duodenectomy. The samples were analyzed using enzyme histochemistry, the para -nitrophenyl phosphate method for IAP, and the limulus amebocyte lysate assay for LPS. RESULTS Overall, 88 patients were prospectively enrolled in the study. Fecal IAP activity negatively correlated with serum LPS (r = -0.3603, p = 0.0006). PD led to a significant decline in IAP compared to preoperative baseline levels (p < 0.0001). The decline in IAP correlated with the length of proximal small intestinal resection (r = 0.4271, p = 0.0034). Compared to controls, PD was associated with a much more pronounced reduction in IAP-also after adjusting for surgical trauma (operative time, blood loss; r = 0.4598, p = 0.0086). Simultaneously, PD triggered a clearly more prominent increase in serum LPS compared to controls (p = 0.0001). Increased postoperative LPS was associated with an elongated hospitalization (r = 0.7534, p = 0.0062) and more prominent in pancreatic cancer (p = 0.0009). CONCLUSIONS Based upon the functional roles for IAP, supplementation with exogenous IAP might be a new treatment option to improve short- and long-term outcome after PD.
Collapse
Affiliation(s)
- Ruifeng Duan
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Viktor H von Ehrlich-Treuenstätt
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Sara C Kakoschke
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Josefine Schardey
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Ulrich Wirth
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Markus Albertsmeier
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Bernhard W Renz
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Joachim Andrassy
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
| | - Alexandr V Bazhin
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Richard A Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA (Hodin)
| | - Jens Werner
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Matthias Ilmer
- From the Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany (Duan, von Ehrlich-Treuenstätt, Kakoschke, Schardey, Wirth, Albertsmeier, Renz, Andrassy, Bazhin, Werner, Ilmer)
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| | - Florian Kühn
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany (Renz, Bazhin, Werner, Ilmer, Kühn)
| |
Collapse
|
44
|
Hochuli N, Kadyan S, Park G, Patoine C, Nagpal R. Pathways linking microbiota-gut-brain axis with neuroinflammatory mechanisms in Alzheimer's pathophysiology. MICROBIOME RESEARCH REPORTS 2023; 3:9. [PMID: 38455083 PMCID: PMC10917618 DOI: 10.20517/mrr.2023.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 03/09/2024]
Abstract
Disturbances in the local and peripheral immune systems are closely linked to a wide range of diseases. In the context of neurodegenerative disorders such as Alzheimer's disease (AD), inflammation plays a crucial role, often appearing as a common manifestation despite the variability in the occurrence of other pathophysiological hallmarks. Thus, combating neuroinflammation holds promise in treating complex pathophysiological diseases like AD. Growing evidence suggests the gut microbiome's crucial role in shaping the pathogenesis of AD by influencing inflammatory mediators. Gut dysbiosis can potentially activate neuroinflammatory pathways through bidirectional signaling of the gut-brain axis; however, the precise mechanisms of this complex interweaved network remain largely unclear. In these milieus, this review attempts to summarize the contributing role of gut microbiome-mediated neuroinflammatory signals in AD pathophysiology, while also pondering potential mechanisms through which commensal and pathogenic gut microbes affect neuroinflammation. While certain taxa such as Roseburia and Escherichia have been strongly correlated with AD, other clades such as Bacteroides and Faecalibacterium exhibit variations at the species and strain levels. In order to disentangle the inflammatory aspects of neurodegeneration attributed to the gut microbiome, it is imperative that future mechanistic studies investigate the species/strain-level dependency of commensals, opportunistic, and pathogenic gut microbes that consistently show correlations with AD patients across multiple associative studies.
Collapse
Affiliation(s)
| | | | | | | | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
45
|
Schirmbeck GH, Seady M, Fróes FT, Taday J, Da Ré C, Souza JM, Gonçalves CA, Leite MC. Long-term LPS systemic administration leads to memory impairment and disturbance in astrocytic homeostasis. Neurotoxicology 2023; 99:322-331. [PMID: 38006911 DOI: 10.1016/j.neuro.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Dementia is the most prevalent neurodegenerative disorder, characterized by progressive loss of memory and cognitive function. Inflammation is a major aspect in the progression of brain disorders, and inflammatory events have been associated with accelerated deterioration of cognitive function. In the present work, we investigated the impact of low-grade repeated inflammation stimuli induced by lipopolysaccharide (LPS) in hippocampal function and spatial memory. Adult male Wistar rats received a weekly injection of LPS (500 ug/kg) for sixteen weeks, eliciting systemic inflammation. Animals submitted to LPS presented impaired spatial memory and neuroinflammation. While neuronal synaptic markers such as synaptophysin and PSD-95 were unaltered, critical aspects of astrocyte homeostatic functions, such as glutamate uptake and glutathione content, were reduced. Also, glucose uptake and astrocyte lactate transporters were altered, suggesting a disturbance in the astrocyte-neuron coupling. Our present work demonstrates that long-term repeated systemic inflammation can lead to memory impairment and hippocampal metabolic disorders, especially regarding astrocyte function.
Collapse
Affiliation(s)
- Gabriel Henrique Schirmbeck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Seady
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Telles Fróes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica Taday
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carollina Da Ré
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica Maria Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
46
|
Tyliszczak M, Wiatrak B, Danielewski M, Szeląg A, Kucharska AZ, Sozański T. Does a pickle a day keep Alzheimer's away? Fermented food in Alzheimer's disease: A review. Exp Gerontol 2023; 184:112332. [PMID: 37967591 DOI: 10.1016/j.exger.2023.112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Fermented food is commonly viewed as healthy, mostly due to its probiotic and digestion-enhancing properties and recently it has been examined with regard to the development of new therapeutic and preventive measures for Alzheimer's disease. Fermented food has been shown to have anti-inflammatory and antioxidant properties and to alter the gut microbiota. However, the exact pathogenesis of Alzheimer's disease is still unknown and its connections to systemic inflammation and gut dysbiosis, as potential targets of fermented food, require further investigation. Therefore, to sum up the current knowledge, this article reviews recent research on the pathogenesis of Alzheimer's disease with emphasis on the role of the gut-brain axis and studies examining the use of fermented foods. The analysis of the fermented food research includes clinical and preclinical in vivo and in vitro studies. The fermented food studies have shown promising effects on amyloid-β metabolism, inflammation, and cognitive impairment in animals and humans. Fermented food has great potential in developing new approaches to Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Michał Tyliszczak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | | | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
47
|
Wang Y, Zou J, Wang Y, Wang J, Ji X, Zhang T, Chu Y, Cui R, Zhang G, Shi G, Wu Y, Kang Y. Hydralazine inhibits neuroinflammation and oxidative stress in APP/PS1 mice via TLR4/NF-κB and Nrf2 pathways. Neuropharmacology 2023; 240:109706. [PMID: 37661037 DOI: 10.1016/j.neuropharm.2023.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is a common chronic progressive neurodegenerative disorder, and curative treatment has not been developed. The objective of this study was to investigate the potential effects of hydralazine (Hyd, a hypertension treatment drug) on the development process of AD and its mechanisms. We treated 6-month-old male APP/PS1 mice with Hyd for 5 weeks, measured changes in behavior and pathological status, and analyzed differences in gene expression by RNA sequencing. The results demonstrated that Hyd improved cognitive deficits and decreased amyloid beta protein deposition in the cortex and hippocampus, while RNA sequencing analysis suggested that the regulation of neuroinflammation and energy metabolism might play pivotal roles for Hyd's beneficial effects. Therefore, we further investigated inflammatory response, redox state, and mitochondrial function, as well as the expression of toll-like receptor 4 (TLR4)/nuclear factor Kappa B (NF-κB)-dependent neuroinflammation gene and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant gene in AD mice. The results showed that Hyd reduced the damage of neuroinflammation and oxidative stress, improved mitochondrial dysfunction, downregulated pro-inflammation gene expression, and upregulated antioxidant gene expression. The results in lipopolysaccharide (LPS)-induced BV2 cell model demonstrated that Hyd suppressed pro-inflammatory response via TLR4/NF-κB signaling pathway. In addition, by silencing the Nrf2 gene expression, it was found that Hyd can reduce LPS-induced reactive oxygen species production by activating the Nrf2 signaling pathway. Therefore, administration of Hyd in the early stage of AD might be beneficial in delaying the pathological development of AD via inhibiting neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiayang Zou
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinyang Wang
- The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, China.
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
48
|
Guo J, Sun J, Liu D, Liu J, Gui L, Luo M, Kong D, Wusiman S, Yang C, Liu T, Yuan Z, Li R. Developing a Two-Photon "AND" Logic Probe and Its Application in Alzheimer's Disease Differentiation. Anal Chem 2023; 95:16868-16876. [PMID: 37947381 DOI: 10.1021/acs.analchem.3c02634] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In Alzheimer's disease, hypochlorous acid involved in the clearance of invading bacteria or pathogens and butyrylcholinesterase engaged in the hydrolysis of the neurotransmitter acetylcholine are relatively significantly altered. However, there are few dual detection probes for hypochlorous acid and butyrylcholinesterase. In addition, single-response probes suffer from serious off-target effects and near-infrared probes do not easily penetrate the blood-brain barrier due to their excessive molecular weight. In this work, we constructed a two-photon fluorescent probe that recognizes hypochlorous acid and butyrylcholinesterase based on a dual-lock strategy. The thiocarbonyl group is oxidized in the presence of hypochlorous acid, and the hydrolysis occurs at the 7-position ester bond in the existence of butyrylcholinesterase, releasing a strongly fluorescent fluorophore, 4-methylumbelliferone. Excellent imaging was performed in PC12 cells using this probe, and deep two-photon imaging was observed in the brains of AD mice after tail vein injection with this probe. It indicates that the probe can provide a promising tool for the more precise diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Jingxuan Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Donghui Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 55004, China
| | - Ji Liu
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Man Luo
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dexin Kong
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sainaiwaiergul Wusiman
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 55004, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixi Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
49
|
Liu G, Yu Q, Zhu H, Tan B, Yu H, Li X, Lu Y, Li H. Amyloid-β mediates intestinal dysfunction and enteric neurons loss in Alzheimer's disease transgenic mouse. Cell Mol Life Sci 2023; 80:351. [PMID: 37930455 PMCID: PMC11072809 DOI: 10.1007/s00018-023-04948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is traditionally considered as a brain disorder featured by amyloid-β (Aβ) deposition. The current study on whether pathological changes of AD extend to the enteric nervous system (ENS) is still in its infancy. In this study, we found enteric Aβ deposition, intestinal dysfunction, and colonic inflammation in the young APP/PS1 mice. Moreover, these mice exhibited cholinergic and nitrergic signaling pathways damages and enteric neuronal loss. Our data show that Aβ42 treatment remarkably affected the gene expression of cultured myenteric neurons and the spontaneous contraction of intestinal smooth muscles. The intra-colon administration of Aβ42 induced ENS dysfunction, brain gliosis, and β-amyloidosis-like changes in the wild-type mice. Our results suggest that ENS mirrors the neuropathology observed in AD brains, and intestinal pathological changes may represent the prodromal events, which contribute to brain pathology in AD. In summary, our findings provide new opportunities for AD early diagnosis and prevention.
Collapse
Affiliation(s)
- Guoqiang Liu
- Medical College, Hubei University for Nationalities, Enshi, 445000, Hubei, China
| | - Quntao Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Houze Zhu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Tan
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongyan Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyan Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hao Li
- Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
50
|
Liu Z, Vinh LB, Tuan NQ, Lee H, Kim E, Kim YC, Sohn JH, Yim JH, Lee HJ, Lee DS, Oh H. Macrosphelides from Antarctic fungus Pseudogymnoascus sp. (strain SF-7351) and their neuroprotective effects on BV2 and HT22 cells. Chem Biol Interact 2023; 385:110718. [PMID: 37777167 DOI: 10.1016/j.cbi.2023.110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Strategies for reducing inflammation in neurodegenerative diseases have attracted increasing attention. Herein, we discovered and evaluated the neuroprotective potential of fungal metabolites isolated from the Antarctic fungus Pseudogymnoascus sp. (strain SF-7351). The chemical investigation of the EtOAc extract of the fungal strain isolate revealed a novel naturally occurring epi-macrosphelide J (1), a novel secondary metabolite macrosphelide N (2), and three known compounds, namely macrosphelide A (3), macrosphelide B (4), and macrosphelide J (5). Their structures were established unambiguously using spectroscopic methods, such as one-dimensional and two-dimensional nuclear magnetic resonance (1D and 2D-NMR) spectroscopy, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and gauge-including atomic orbital (GIAO) NMR chemical shift calculations, with the support of the advanced statistical method DP4+. Among the isolated metabolites, the absolute configuration of epi-macrosphelide J (1) was further confirmed using single-crystal X-ray diffraction analysis. The neuroprotective effects of the isolated metabolites were evaluated in lipopolysaccharide (LPS)-induced BV2 and glutamate-stimulated HT22 cells. Only macrosphelide B (4) displayed substantial protective effects in both BV2 and HT22 cells. Molecular mechanisms underlying this activity were investigated using western blotting and molecular docking studies. Macrosphelide B (4) inhibited the inflammatory response by reducing the nuclear translocation of NF-κB (p65) in LPS-induced BV2 cells and induced the Nrf2/HO-1 signaling pathway in both BV2 and HT22 cells. The neuroprotective effect of macrosphelide B (4) is related to the interaction between Keap1 and p65. These results suggest that macrosphelide B (4), present in the fungus Pseudogymnoascus sp. (strain SF-7351), may serve as a candidate for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiming Liu
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, South Korea.
| | - Le Ba Vinh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538, South Korea.
| | - Nguyen Quoc Tuan
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538, South Korea.
| | - Hwan Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, South Korea.
| | - Eunae Kim
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, South Korea.
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, South Korea.
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan, 46958, South Korea.
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea.
| | - Ha-Jin Lee
- Division of Chemistry and Bio-Environmental Sciences, Seoul Women's University, Seoul, 01797, South Korea.
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, South Korea.
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, 54538, South Korea.
| |
Collapse
|